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Ext-int. one affine functions are functions affine in the direction of onedivisible exterior forms, with respect to exterior product in one variable and with respect to interior product in the other. The purpose of this article is to prove a characterization theorem for this class of functions, which plays an important role in the calculus of variations for differential forms.

Introduction

In this article, we introduce the notion of ext-int. one convex functions and study the structure of its affine analogue. This class of functions arise naturally in the context of calculus of variations when we consider the minimization problem for integrals of the form

I(ω) = Ω f (dω, δω) , where 1 k n -1, f : Λ k+1 × Λ k-1 → R is continuous, Ω ⊆ R n is open, ω : Ω → Λ k
is a k-form and d, δ are exterior derivative and codifferential operators respectively. In particular, when k = 1, identifying one-forms with vector 1 fields, the minimization problem can be seen as the minimization of one involving the curl and the divergence, see Barroso-Matias [START_REF] Barroso | Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl[END_REF], Dacorogna-Fonseca [START_REF] Dacorogna | A-B quasiconvexity and implicit partial differential equations[END_REF] and references therein. A subclass of the class of functions aforementioned above, namely the class of ext. one convex functions, was first introduced in Bandyopadhyay-Dacorogna-Sil [START_REF] Bandyopadhyay | Calculus of Variations with Differential Forms[END_REF] to handle minimization problems where f depends only on the exterior derivative. In the same article, a characterization theorem was obtained for ext. one affine functions, see Theorem 3.3 of [START_REF] Bandyopadhyay | Calculus of Variations with Differential Forms[END_REF]. To extend the framework to the case where f has explicit dependence on the codifferential as well, one needs to introduce the notion of ext-int. one convex functions which play a role as crucial as that of ext. one convex functions in the aforementioned context.

The main goal of this article is to prove a characterization theorem for extint. one affine functions, see Theorem 20. In the process, we also find a new proof of the theorem (cf. Theorem 15) that characterizes ext. one affine functions. The new proof is more algebraic in spirit, constructive through a recursion and provides a different perspective on the result. Additionally, the technique we employ here to handle order-preserving permutations of multiple number of ordered multi-indices in the course of the proof is of independent value and implicitly already played an important role in connecting the calculus of variations with forms with the classical vectorial calculus of variations, see Bandyopadhyay-Sil [START_REF] Bandyopadhyay | Exterior Convexity and Classical Calculus of Variations[END_REF].

The rest of the article is organized as follows. In Section 2, we collect the notations we have used throughout the article. Section 3 introduces various classes of exterior convex functions i.e. functions that are convex with respect to the exterior structure. A few algebraic lemmas are proved in Section 4, which are used in Section 5 to prove the main theorem that reads as follows

Theorem 1 Let 1 k n -1. Then, f : Λ k+1 × Λ k-1 → R is ext-int. one affine if and only if there exist c s ∈ Λ (k+1)s and d r ∈ Λ (n-k+1)r , for all 0 s n k+1 , 0 r n n-k+1 such that, f (ξ, η) = [ n k+1 ] s=0 c s ; ξ s + [ n n-k+1 ] r=0 d r ; ( * η) r , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 .
The aforementioned theorem has a curious implication. Note that, we have nonlinearity in ξ and η if and only if k is odd, n is even, n 2(k + 1) and n 2(n -k + 1). Since the two inequalities are never satisfied simultaneously, we have nonlinearity at the most in one variable, the other variable appearing as an affine term, see Corollary 21. This observation is an important one in the context of calculus of variations involving differential forms, as it controls the way a variational problem behaves as a function of the order of the form.

In spite of being a problem of vectorial nature, the variational problem always behaves as though it is a scalar one with respect to one of the variables.

Notations

Let n ∈ N and let k ∈ N ∪ {0}.

1. Λ k (R n ) (or simply Λ k ) denotes the vector space of all alternating k-linear maps. For k = 0, we set Λ

0 = R. Note that, Λ k (R n ) = {0} for k > n, and, for k ≤ n, dim Λ k (R n ) = n k . 2. For 1 k n, we write T k := {(i 1 , . . . , i k ) ∈ N k : 1 i 1 < • • • < i k n} and for each r ∈ {1, . . . , n}, T r k := {I ∈ T k : r / ∈ I}.
Let I ∈ T k and let I := (i 1 , . . . , i k ). For each 1 p k, we write I(i p ) := (i 1 , . . . , i p, . . . , i k ), where p denotes the absence of the index p. Note that, I(i p ) ∈ T k-1 , for all 1 p k.

3. ∧, , ; and * denote the exterior product, the interior product, the scalar product and the Hodge star operator respectively.

4. We use the multi-index notation often. For

I = (i 1 , . . . , i k ) ∈ T k , we write e I to denote e i1 ∧ • • • ∧ e i k . In this notation, if e 1 , • • • , e n is a basis of R n , then, identifying Λ 1 with R n , it follows that e I : I ∈ T k is a basis of Λ k .

5.

Let ω ∈ Λ k and let 0 s k n. The space of interior annihilators of f of order s is Ann (ω, s) := {f ∈ Λ s : f ω = 0}.

Furthermore, we define the rank of order s of ω as rank s (ω) := n s -dim (Ann (ω, s)) .

See [START_REF] Csató | The pullback equation for differential forms[END_REF], [START_REF] Dacorogna | Divisibility in Grassmann algebra[END_REF] for more details on rank and annihilator.

6. Let m, n ∈ N and let r 1 , . . . , r m ∈ N be such that r 1 + • • • + r m n. For all j = 1, . . . , m, let I j ∈ T rj satisfy I p ∩ I q = ∅, for all p = q. Then, we define [I 1 , . . . , I m ] to be the permutation of (I 1 , . . . , I m ) such that

[I 1 , . . . , I m ] ∈ T r1+•••+rm .
Furthermore, we define the sign of [I 1 , . . . , I m ], denoted by sgn (I 1 , . . . , I m ), as e [I1,...,Im] := sgn (I 1 , . . . ,

I m ) e I1 ∧ • • • ∧ e Im .
Concerning the last notation, the following properties are easy to check, which we record for the sake of completeness.

Proposition 2

Let m, n ∈ N and let r 1 , . . . , r m ∈ N be such that r 1 + • • • + r m n. For all j = 1, . . . , m, let I j ∈ T rj satisfy I p ∩ I q = ∅, for all p = q. Then,

(i) [I 1 , I 2 ] = [I 2 , I 1 ] and [I 1 , I 2 , I 3 ] = [I 1 , [I 2 , I 3 ]] = [[I 1 , I 2 ], I 3 ]. (ii) sgn(I 1 , I 2 ) = (-1) r1r2 sgn(I 2 , I 1 ). (iii) sgn(I 1 , I 2 , I 3 ) = sgn(I 2 , I 3 ) sgn(I 1 , [I 2 , I 3 ]) = sgn(I 1 , I 2 ) sgn([I 1 , I 2 ], I 3 ). (iv) If I ∈ T k is written as I := (i 1 , . . . , i k ), for all µ, ν = 1, . . . , k, sgn(I(i µ ), i µ ) = (-1) k-µ and sgn(i ν , I(i ν )) = (-1) ν-1 . (v) For all ω ∈ Λ k , ϕ ∈ Λ l and I ∈ T k+l , ω ∧ ϕ; e I = R∈T k ,S∈T l , R∪S=I,R∩S=∅ sgn(R, S) ω; e R ϕ; e S .

Notions of exterior convexity

Let us introduce the following classes of functions convex with respect to the exterior structure. We will restrict ourselves to the corresponding affine classes in the subsequent sections.

Definition 3

Let 1 k n -1 and let f : Λ k+1 × Λ k-1 → R. We say that 1. f is ext-int. one convex if for every ξ ∈ Λ k+1 , η ∈ Λ k-1 , a ∈ Λ 1 and b ∈ Λ k , the function g : R → R defined as

g(t) := f (ξ + t a ∧ b, η + t a b), for all t ∈ R, is convex. Furthermore, f is said to be ext-int. one affine if f , -f are both ext-int. one convex. 2. f is ext-int. quasiconvex if f is locally integrable, Borel measurable and Ω f (ξ + dω, η + δω) f (ξ, η) meas Ω, for every open, bounded set Ω ⊆ R n , ξ ∈ Λ k+1 , η ∈ Λ k-1 and ω ∈ W 1,∞ 0 Ω; Λ k . Moreover, f is said to be ext-int. quasiaffine if f , -f are both ext-int. quasiconvex. 3. f is ext-int. polyconvex if there exists a convex function F : Λ k+1 × • • • × Λ (k+1)[ n k+1 ] × Λ n-k+1 × • • • × Λ (n-k+1)[ n n-k+1 ] → R such that, for all ξ ∈ Λ k+1 , η ∈ Λ k-1 , f (ξ, η) = F ξ, . . . , ξ [ n k+1 ] , * η, . . . , ( * η) [ n n-k+1 ] .
Furthermore, f is said to be ext-int. polyaffine if f , -f are both ext-int. polyconvex.

Recall that the following classes were introduced in [START_REF] Bandyopadhyay | Calculus of Variations with Differential Forms[END_REF].

Definition 4 1. Let 1 k n. We say that f : Λ k → R is ext. one convex if for every ω ∈ Λ k , a ∈ Λ 1 and b ∈ Λ k-1 , the function g : R → R defined as g(t) := f (ω + t a ∧ b), for all t ∈ R, is convex. Furthermore, f is said to be ext. one affine if f , -f are both ext. one convex. 2. Let 0 k n -1. We say that f : Λ k → R is int. one convex if for every ω ∈ Λ k , a ∈ Λ 1 and b ∈ Λ k+1 , the function g : R → R defined as g(t) := f (ω + t a b), for all t ∈ R, is convex. Furthermore, f is said to be int. one affine if f , -f are both int. one convex.
The notion of Hodge transform allows us to go back and forth between ext. one convex and int. one convex functions, see Remark 6.

Definition 5 (Hodge transform)

Let 0 k n and let f : Λ k → R. The Hodge transform of f is the function

f * : Λ n-k → R defined as f * (ω) := f ( * ω) , for all ω ∈ Λ n-k .
Remark 6 1. Evidently, every convex function is ext-int. polyconvex. Furthermore, using standard techniques of calculus of variations, we have the following chain of implications ext-int. polyconvexity ⇒ ext-int. quasiconvexity ⇒ ext-int. one convexity.

2. Ext-int. polyconvexity is equivalent to convexity when both of k, n are even, or when n ∈ {2k -1, 2k, 2k + 1}.

3. The duality between the aforementioned notions of convexity is reflected through the following observation. When 0 k n -1, f is int. one convex if and only if f * is ext. one convex. Similarly, when 1 k n, f is ext. one convex if and only if f * is int. one convex.

4. When k = 1, n-1, n, or k = n-2 with n odd, ext. one convexity is equivalent to convexity. See [START_REF] Bandyopadhyay | Calculus of Variations with Differential Forms[END_REF] for more details on ext. one convex functions.

The following lemma relates ext-int. one convexity with ext. one and int. one convexity.

Lemma 7

Let

1 k n -1 and let f : Λ k+1 × Λ k-1 → R be ext-int. one convex (resp.
ext-int. one affine). Then, the following holds true

(i) The function f η : Λ k+1 → R defined as f η (ξ) := f (ξ, η), for all ξ ∈ Λ k+1
is ext. one convex (resp. ext. one affine), for every η ∈ Λ k-1 .

(ii) The function f ξ : Λ k-1 → R defined as

f ξ (η) := f (ξ, η), for all η ∈ Λ k-1
is int. one convex (resp. int. one affine), for every ξ ∈ Λ k+1 .

Remark 8

The converse of Lemma 7 is false. This can be seen by considering the function

f : Λ 2 × Λ 0 = Λ 2 × R → R with k = 1, n = 2, defined as f (ξ, η) := ( * ξ)η, for all ξ ∈ Λ 2 , η ∈ R.
While f ξ , f η are affine for all ξ ∈ Λ 2 and η ∈ R, f is not ext-int. one convex. Theorem 20 and Corollary 21 discuss how much of the converse of Lemma 7 is true in the category of ext-int. one affine functions.

Proof. To prove (i), it is enough to see that for any

a ∈ Λ 1 , b ∈ Λ k , there exist c ∈ Λ 1 , d ∈ Λ k such that c ∧ d = a ∧ b and c d = 0
, which is a consequence of Lemma 9. One can prove (ii) in the same spirit.

Some algebraic lemmas

In this section, we prove few algebraic results required to prove the main theorem. The following lemma is elementary.

Lemma 9 (Decomposition lemma) Let 1 k n, let ω ∈ Λ k and let x ∈ S n-1 . Then, there exist ω T (x) ∈ Λ k-1 ({x} ⊥ ) and ω N (x) ∈ Λ k ({x} ⊥ ) such that ω = x ∧ ω T (x) + ω N (x).
Remark 10 Note that ω T (x) = x ω, x ω T (x) = 0 and x ω N (x) = 0. In the sequel, we will write ω T and ω N instead of ω T (e 1 ) and ω N (e 1 ) respectively.

The following function will have a recurrent appearance in the subsequent discussion.

Definition 11

Let k, p, n ∈ N, 2 k n and let us suppose that D A ∈ Λ kp satisfy e 1 D A = 0, for all A ∈ T 1 k-1 . We define

F p : Λ k × Λ k → R as F p (ω, α) := A∈T 1 k-1 D A ; ω p-1 ∧ α α; e 1 ∧ e A , for all ω, α ∈ Λ k .
The following lemma isolates the algebraic consequence of ext. one affinity.

Lemma 12

Let k, n ∈ N and let 2 k n. For all

J ∈ T 1 k-1 , let D J ∈ Λ k satisfy e 1 D J = 0 and let F 1 (ω, a ∧ b) = 0, for all ω ∈ Λ k , a ∈ Λ 1 , b ∈ Λ k-1 . (4.1)
Then, for all

I, R ∈ T 1 k-1 and J, S ∈ T k satisfying I ∩ J = R ∩ S = ∅ and I ∪ J = R ∪ S, we have sgn(I, J) D I ; e J = (-1) k sgn(R, S) D R ; e S (4.2) 
Hence, if either k is odd or 2k > n,

F 1 (ω, ω) = 0, for all ω ∈ Λ k . (4.3)

Remark 13

As we will see later, forms D J are connected to the coefficients of a ext. one affine function, which, as it will turn out, is a polynomial. In the proof of Theorem 15, we will see that Equation (4.1) is basically the property of being affine in the direction of one-divisible forms in a different guise.

Proof. We begin by noting that, for all J ∈ T 1 k-1 , e J D J = 0. Indeed, for a fixed R ∈ T 1 k-1 , it follows from Equation (4.1) that,

0 = J∈T 1 k-1 e R D J ; a e R e 1 ∧ e J ; a = -e R D R ; a e 1 ; a , for all a ∈ Λ 1 .
This implies that e R D R = 0. Therefore, for all R, S ∈ T We now claim that, for all J ∈ T 1 k-1 , e j D J = 0, for all j ∈ {1} ∪ J. Note that, using Equation (4.4), we deduce that, for all P, Q ∈ T 1 k-1 and r ∈ {1, . . . , n}, D P ; e Q ∧ e r + D Q ; e P ∧ e r = 0. (4.7)

We prove Equation (4.2) by induction on card(I ∩ R). First, let us prove Equation (4.2) when card(I ∩ R) = 0 i.e. I ∩ R = ∅. In this case, for some 1 p, q k, we have I = (s 1 , . . . , s p, . . . , s k ) = S(s p ) and R = (j 1 , . . . , j q , . . . , j k ) = J(j q ), with s p = j q . Therefore, it follows from Equation (4.7) that D I ; e J =(-1) k-q D S(sp) ; e J(jq) ∧ e jq = (-1) k-q+1 D J(jq) ; e S(sp) ∧ e jq =(-1) k-q+1 D R ; e S(sp) ∧ e sp = (-1) p+q+1 D R ; e S . (4.8)

Furthermore, we observe that sgn(I, J) = (-1) q+1+k-p sgn(R, S). 

(i µ ) ∪ {j ν }) ∪ (J(j ν ) ∪ {i µ }) = R ∪ S, (I(i µ ) ∪ {j ν }) ∩ (J(j ν ) ∪ {i µ }) = ∅,
and card((I(i µ ) ∪ {j ν }) ∩ R) = p, it follows from the induction hypothesis that sgn([I(i µ ), j ν ] , [J(j ν ); i µ ]) D [I(iµ);jν ] ; e [J(jν );iµ] = (-1) k sgn(R, S) D R ; e S .

(4.11) On noting that sgn([I(i µ ), j ν ] , [J(j ν ), i µ ]) = (-1) µ+ν sgn(I, J) sgn(I(i µ ), j ν ) sgn(J(j ν ), i µ ), it follows from Equations (4.10) and (4.11) that

D I ; e J = (-1) k sgn(R, S) sgn(I, J) D R ; e S ,
which proves the induction step. This proves Equation (4.2). To prove Equation (4.3), it is enough to prove that D J = 0, for all J ∈ T 1 k-1 . If k is odd, this follows from Equations (4.2) and (4.5). When 2k > n, let us assume to the contrary that D J = 0, for some J ∈ T 1 k-1 . Therefore, rank 1 D J k, see Proposition 2.37 of [START_REF] Csató | The pullback equation for differential forms[END_REF]. Furthermore, using Equation (4.5), we deduce that {e 1 , e r : r ∈ J} ⊆ Ann D J , 1 .

Therefore,

k rank 1 D J = n -dim Ann D J , 1 n -|J| -1 = n -k.
This implies that 2k n which is a contradiction. Hence D J = 0. This proves the lemma.

Lemma 14 Let k, p, n ∈ N, k 2, let D A ∈ Λ kp satisfy e 1 D A = 0, for all A ∈ T 1 k-1 , and let F p (ω, a ∧ b) = 0, for all ω ∈ Λ k , a ∈ Λ 1 , b ∈ Λ k-1 . (4.12)
Then, for some H p ∈ Λ kp+k-1 with e 1 H p = 0, The proof is very similar to that of Equation (4.2) of Lemma 12. To avoid the trivial case, let us assume that kp n. If p = 1, Equation (4.14) follows from Lemma 12. So, we assume p 2. At the outset, let us observe that for all Q ∈ T (p-1)k , there exists ω ∈ Λ k satisfying

F p (ω, ω) = e 1 ∧ H p ; ω p+1 , for all ω ∈ Λ k . ( 4 
ω p-1 = e Q . ( 4 

.15)

Indeed, for Q := q 1 , . . . , q (p-1)k ∈ T (p-1)k , the form ω ∈ Λ k defined by

ω := 1 (p -1)! p-2 r=0 e q rk+1 ∧ • • • ∧ e q (r+1)k ,
satisfies Equation (4.15). Therefore, it follows from Equations (4.12) and ( 4

.15) that, for all a ∈ Λ 1 , b ∈ Λ k-1 and Q ∈ T (p-1)k , A∈T 1 k-1 e Q D A ; a ∧ b a ∧ b; e 1 ∧ e A = 0. (4.16)
The rest of the proof of Equation (4.14) follows essentially from Lemma 12 and its proof. Note that, e i D I = 0, for all i ∈ {1} ∪ I, I ∈ T 1 k-1 (4.17)

It remains to prove Equation (4.13). To avoid the trivial case, we assume kp n.

When k is odd, F p is evidently zero on the diagonal when p 2. Hence, one can take H p = 0 in this case. When p = 1 and k is odd, it follows from Lemma 12 that F 1 is zero on the diagonal. Therefore, we can set H 1 = 0 in this case as well. Hence, it is enough to settle the lemma for the case when k is even. To define H p ∈ Λ kp+k-1 , using Equation (4.14), we note that, for all R ∈ T 1 k-1 , S ∈ T 1 kp and R ∩ S = ∅, there exists α R∪S ∈ R such that

D R ; e S = α R∪S sgn(R, S). ( 4 

.18)

Let us now define H p ∈ Λ kp+k-1 by

H p := 1 p + 1 I∈T 1 kp+k-1 α I e I .
It follows from Equation (4.18) that H p is well-defined. Note that, e 1 H p = 0. Furthermore, for all ω ∈ Λ k , it follows from Equation (4.17) that

F p (ω, ω) = R∈T 1 k-1 D R ; ω p ω; e 1 ∧ e R = R∈T 1 k-1   S∈T 1 kp ,R∩S=∅ D R ; e S ω p ; e S   ω; e 1 ∧ e R = R∈T 1 k-1   S∈T 1 kp ,R∩S=∅ α R∪S sgn(R, S) ω p ; e S   ω; e 1 ∧ e R = I∈T 1 k-1+kp α I      R∈T 1 k-1 ,S∈T 1 kp , R∪S=I,R∩S=∅ sgn(R, S) (ω p ) N ; e S ω T ; e R      = I∈T 1 k-1+kp α I ω T ∧ (ω p ) N ; e I = (p + 1) H p ; ω T ∧ (ω p ) N .
Since e 1 H p = 0 and k is even, it follows that,

F p (ω, ω) = (p + 1) H p ; ω T ∧ (ω p ) N = e 1 ∧ H p ; ω p+1 , for all ω ∈ Λ k ,
which proves the lemma.

Characterization of ext-int. one affine functions

Let us begin by characterizing ext. one affine functions.

Theorem 15

Let 1 k n and let f : Λ k → R. Then, f is ext. one affine if and only if there exist m ∈ N with m n, a r ∈ Λ kr , where r = 0, . . . , m such that

f (ω) = m r=0 a r ; ω r , for all ω ∈ Λ k . (5.1) 

Remark 16

Note that, since ω r = 0 for all r > n k , it follows that m n k . Proof. We show that any ext. one affine function f : Λ k → R is of the form (5.1). The converse part is easy to check. In view of Remark 6, let us assume k

2. The proof proceeds by induction on the dimension n. When n = k, the result follows easily. Let us assume that the theorem holds true when n = k, . . . , p, for some p k. We prove the result for n

= p + 1. It is given that f : Λ k R p+1 → R is ext. one affine. Since f is ext. one affine, f (ω) =f (ω N ) + J∈T 1 k-1 ω 1,J f ω N + e 1 ∧ e J -f (ω N ) =f (ω N ) + J∈T 1 k-1 ω 1,J (f e 1 ∧e J (ω N ) -f (ω N )) , for all ω ∈ Λ k , (5.2) 
where, for all J ∈ T 1 k-1 , f e 1 ∧e J : Λ k {e 1 } ⊥ → R is defined as

f e 1 ∧e J (ξ) := f ξ + e 1 ∧ e J , for all ξ ∈ Λ k {e 1 } ⊥ . Since f : Λ k R p+1 → R is ext. one affine, so are f | Λ k ({e 1 } ⊥ )
and f e 1 ∧e J , for all J ∈ T 1 k-1 . Therefore, the induction hypothesis ensures the existence of

m(p, k) ∈ N, m(p, k) p and a 0 0 , a J 0 ∈ R, a 0 r , a J r ∈ Λ kr {e 1 } ⊥ for all J ∈ T 1 k-1
and r = 1, . . . , m(p, k), satisfying

f (ϕ) = a 0 0 + m(p,k) r=1 a 0 r ; ϕ r , for all ϕ ∈ Λ k {e 1 } ⊥ ,
and

f e 1 ∧e J (ϕ) = a J 0 + m(p,k) r=1 a J r ; ϕ r , for all ϕ ∈ Λ k {e 1 } ⊥ .
Thus, it follows from Equation (5.2) that, for all ω ∈ Λ k ,

f (ω) =   a 0 0 + m(p,k) r=1 a 0 r ; ω r N   + J∈T 1 k-1 ω 1,J   a J 0 -a 0 0 + m(p,k) r=1 a J r -a 0 r ; ω r N   =   a 0 0 + m(p,k) r=1 a 0 r ; ω r   + J∈T 1 k-1 m(p,k) r=1 D J r ; ω r ω; e 1 ∧ e J =   a 0 0 + m(p,k) r=1 a 0 r ; ω r   + m(p,k) r=1 F r (ω, ω), (5.3) 
where

a 0 r := a 0 1 + e 1 ∧ J∈T 1 k-1 a J 0 -a 0 0 e J , if r = 1, a 0 r , if r = 2, .
. . , m(p, k). and D J r := a J r -a 0 r , for all J ∈ T 1 k-1 and r = 1, . . . , m(p, k). Note that, for all J ∈ T 1 k-1 , and r = 1, . . . , m(p, k), e 1 D J r = 0. Since f is ext. one affine,

m(p,k) r=1 rF r (ω, c ∧ d) = 0, for all ω ∈ Λ k , c ∈ Λ 1 , d ∈ Λ k-1 .
Hence, by different degree of homogeneity, for all r = 1, . . . , m(p, k),

F r (ω, c ∧ d) = 0, for all ω ∈ Λ k , c ∈ Λ 1 , d ∈ Λ k-1 .
We invoke Lemma 14 at this point to find G r ∈ Λ kr+k , for all r = 1, . . . , m(p, k), F r (ω, ω) = G r ; ω r+1 , for all ω ∈ Λ k , from where the result follows using Equation (5.3). This completes the proof.

Invoking the Hodge transform, see Remark 6, the characterization of int. one affine functions follows immediately from Theorem 15.

Corollary 17

Let 0 k n -1 and let f : Λ k → R. Then, f is int. one affine if and only if there exists a r ∈ Λ (n-k)r , for all r = 0, . . . , n n-k , such that

f (ω) = [ n n-k ] r=0 a r ; ( * ω) r , for all ω ∈ Λ k . (5.4)
An interesting consequence of Theorem 15 and Corollary 17 is the following.

Theorem 18

Let 1 k n -1 satisfy 2k = n. Then, f : Λ k → R is affine if and only if f is both ext. and int. one affine.

Remark 19

Theorem 18 does not hold if 2k = n with k even. To see this, define f :

Λ k R 2k → R by f (ω) := e 1 ∧ • • • e 2k ; ω ∧ ω , for all ω ∈ Λ k R 2k .
Proof. If 2k > n, the conclusion follows trivially from Theorem 15. If 2k < n, i.e. n < 2(n -k), since f is int. one affine, using Corollary 17, we deduce that f is affine.

Theorem 20 (Characterization of ext-int. one affine functions)

Let 1 k n -1 and f : Λ k+1 × Λ k-1 → R.
The following statements are equivalent

(i) f is ext-int. polyaffine. (ii) f is ext-int. quasiaffine.
(iii) f is ext-int. one affine.

(iv) For all 0 s n k+1 and 0 r n n-k+1 , there exist c s ∈ Λ (k+1)s , d r ∈ Λ (n-k+1)r such that

f (ξ, η) = [ n k+1 ] s=0 c s ; ξ s + [ n n-k+1 ] r=0 d r ; ( * η) r , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 .
Theorem 20 has the curious implication that nonlinearity can trickle into an ext-int. one affine function at the most through one variable. This is formally stated in the following corollary whose proof is easy enough to skip over.

Corollary 21 Let 1 k n -1. Then f : Λ k+1 × Λ k-1 → R is ext-int. one affine if and only if there exist g : Λ k+1 → R and h : Λ k-1 → R such that f (ξ, η) = g (ξ) + h (η) , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 ,
where (i) g is affine and h is int. one affine, when n 2k -2.

(ii) g, h are affine, when n = 2k -1, 2k, 2k + 1, or both of k, n are even.

(iii) g is ext. one affine and h is affine, when n 2k + 2.

Remark 22

There is no analogue of Corollary 21 at the level of ext-int. polyconvexity. In other words, there are ext-int. polyconvex functions that cannot be written as a sum of ext. polyconvex and int. polyconvex functions. To see this, one may consider the following function f : Λ

2 × R → R, with k = 1, n = 4, defined as f (ξ, η) := e |ξ∧ξ| 2 +η 2 , for all ξ ∈ Λ 2 , η ∈ R.
Let us proceed to proving Theorem 20.

Proof. The chain of implications (i) ⇒ (ii) ⇒ (iii), follows from standard techniques of classical calculus of variations, see [START_REF] Sil | [END_REF] for details. It is obvious from the definition of ext-int. polyconvexity that (iv) implies (i). It remains to prove (iii) ⇒ (iv). Let us divide the proof in four steps.

Step 1: For each η ∈ Λ k-1 , we use Lemma 7 and Theorem 15 to find c s (η) ∈ Λ (k+1)s for all s = 0, . . . , n k+1 , such that

f (ξ, η) = f η (ξ) = [ n k+1 ] s=0 c s (η); ξ s , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 , (5.5) 
where c s : Λ k-1 → Λ (k+1)s is such that the function η → f (ξ, η) is int. one affine for every ξ ∈ Λ k+1 . Defining

f s (ξ, η) := c s (η); ξ s , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 ,
we see that due to different degrees of homogeneity in ξ, for each s, f s is ext-int. one affine. Hence, it is enough to consider each f s separately, with 0 s n k+1 .

Step 2: Let 0 s n k+1 be fixed. Let us write

f s (ξ, η) = I∈T (k+1)s c I s (η)(ξ s ) I , (5.6) 
where c I s (η), (ξ s ) I denote the I-th component of c s (η) and ξ s respectively, for all I ∈ T (k+1)s . We claim that for each multiindex I ∈ T (k+1)s , c I s is int. one affine.

Indeed, there is nothing to prove when s = 0. When 1 s n k+1

and

I = i 1 , . . . , i (k+1)s ∈ T (k+1)s , on setting 
ξ 1 := e i1 ∧ • • • ∧ e i k+1 + e i k+2 ∧ • • • ∧ e i 2(k+1) + • • • + e i (k+1)(s-1)+1 ∧ • • • ∧ e i (k+1)s ,
we see that f s (ξ 1 , η) = s! c I s (η), for all η ∈ Λ k-1 , from where it follows that c I s is int. one affine as f s is ext-int. one affine, see Lemma 7. This proves the claim. (5.7)

Once again, by different degree of homogeneity in * η, it is enough to consider fixed but arbitrary r with 0 r n n-k+1 . To that effect, we define f r,s : Λ k+1 × Λ k-1 → R as This can be written as, Henceforth, we will disregard questions of signs, as it is not important for the argument and use ± to denote that either sign is possible. Using Equation 5. With our choice of a, b, ξ, η in Equation (5.10), the quadratic term in t, say Q(t), in the above expression on the right hand side is, for all t ∈ [0, 1], Since f r,s is ext-int. one affine, Q(t) = 0, for all t ∈ [0, 1], which forces d I,J r,s = 0. This proves Equation (5.9) and the proof is complete.

Q(t) = ±t 2 r!s! K∈T ( 

1 k- 1 e

 1 with R = S, on setting b := e R + e S , it follows from Equation (4R + e S D J ; a e R + e S e 1 ∧ e J ; a = e R + e S D R ; a e R + e S e 1 ∧ e R ; a + e R + e S D S ; a e R + e S e 1 ∧ e S ; a = -e S D R ; a e 1 ; a -e R D S ; a e 1 ; a = -e S D R + e R D S ; a e 1 ; a , for all a ∈ Λ 1 . Hence, we have proved that e R D S + e S D R = 0, for all R, S ∈ T 1 k-1 . (4.4)

(4. 5 )

 5 To see this, let R ∈ T1 k-1 and let p ∈ {1} ∪ R be fixed. To avoid the trivial case, let us assume that p ∈ R. It is enough to prove that e p D R ; e S = 0, for all S ∈ T k-1 . (4.6) Let S ∈ T k-1 be given. If 1 ∈ S, it follows from the hypothesis that e p D R ; e S = 0. Also, if p ∈ S, we deduce that e p D R ; e S = D R ; e p ∧ e S = 0. Therefore, we can assume that 1, p / ∈ S. Note that, R = S because p ∈ R. It follows from Equation (4.4) that, as p ∈ R, 0 = e S D R + e R D S ; e p = D R ; e p ∧ e S = e p D R ; e S , which proves Equation (4.6). It remains to prove Equation (4.2). To avoid the trivial case, we assume that 1 / ∈ J ∪ S. Let us now write I := (i 1 , . . . , i k-1 ); J := (j 1 , . . . , j k ), R := (r 1 , . . . , r k-1 ); S := (s 1 , . . . , s k ).

  and (4.9), Equation (4.2) follows when card(I ∩ R) = 0. Let us now assume that Equation (4.2) holds true when card(I ∩ R) = 0, . . . , p, for some p ∈ {0, . . . , k-1}. We prove Equation (4.2) when card(I ∩ R) = p + 1, where p + 1 k -1. Since J \ (I ∪ R), S \ (I ∪ R) = ∅, let us choose 1 µ k -1 and 1 ν k such that i µ ∈ I ∩ R and j ν ∈ J \ (I ∪ R). Clearly i µ = j ν . It follows from Equation (4.7) that D I ; e J =(-1) k-ν D I ; e J(jν ) ∧ e jν = (-1) k-ν+1 D J(jν ) ; e I ∧ e jν =(-1) µ+ν sgn(I(i µ ), j ν ) sgn(J(j ν ), i µ ) D [I(iµ);jν ] ; e [J(jν );iµ] . (4.10) Since (I

  .13) Proof. Let us begin by proving that if k is even, for all I, R ∈ T 1 k-1 and J, S ∈ T kp satisfying I ∩ J = R ∩ S = ∅ and I ∪ J = R ∪ S, we have sgn(I, J) D I ; e J = sgn(R, S) D R ; e S . (4.14)

Step 3 :

 3 Invoking Corollary 17, it follows from Step 2 that ; ( * η) r , for all η ∈ Λ k-1 .Therefore, using Equation (5.6),f s (ξ, η) = I∈T (k+1)s ; ( * η) r (ξ s ) I   , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 .

  f r,s (ξ, η) := I∈T (k+1)s d I r,s ; ( * η) r (ξ s ) I , for all ξ ∈ Λ k+1 , η ∈ Λ k-1 .

f

  r,s (ξ, η) =I∈T (k+1)s J∈T (n-k+1)r d I,J r,s (( * η) r ) J (ξ s ) I (5.8)terms containing ξ s are absent from the expression for f . If k + 1 is even, Equation (5.11) is easily seen to hold for any 2 s n k+1 . One can similarly argue for * η.

  8, we have, for anyt ∈ [0, 1], f r,s (ξ + ta ∧ b, η + ta b) = K∈T (k+1)s ,L∈T (n-k+1)r d K,L r,s (( * (η + ta b)) r ) L ((ξ + ta ∧ b) s ) K = K∈T (k+1)s ,L∈T (n-k+1)r d K,L r,s (( * η ± ta ∧ ( * b)) r ) L ((ξ + ta ∧ b) s ) K .

e

  k+1)s ,L∈T (n-k+1)r d K,L r,s ( * η) r-1 ∧ a ∧ ( * b) L ξ s-1 ∧ a ∧ b K = ±t 2 r!s! K∈T (k+1)s ,L∈T (n-k+1)r d K,L r,s e J\Jq ∧ ±e Jq L I\Ip ∧ ±e Ip K = ±t 2 r!s! K∈T (k+1)s ,L∈T (n-k+1)r d K,Lr,s ±e J L ±e I K = ±t 2 r!s!d I,J r,s .
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Step 4: To finish the proof, it is enough to prove that for all I ∈ T (k+1)s and J ∈ T (n-k+1)r , d I,J r,s = 0, for all 1 s n k + 1 , 1 r n n -k + 1 .

(5.9)

We now proceed to show that. Let 1 s n k+1 , 1 r n n-k+1 be fixed. Note that, for any I ∈ T (k+1)s and J ∈ T (n-k+1)r , I ∩ J has at least one element (In fact, there must be at least two). Let us write I = i 1 , . . . , i (k+1)s ∈ T (k+1)s and J = j 1 , . . . , j (n-k+1)r ∈ T (n-k+1)r with i p = j q for some p, q.

Let us divide I into s blocks of multiindices I α each containing k + 1 indices, where

, for all 1 α s.

Similarly, we divide the multiindex J into r blocks of multiindices J β , each containing n -k + 1 indices, J β , where

Furthermore, for the sake of clarity, let I p ∈ T k+1 denote the block of k + 1 indices of I containing i p and J q ∈ T n-k+1 denote the block of n -k + 1 indices of J which contains j q . Note that, in our notation, this implies that

]+1 , and J q = J [ q-1 n-k+1 ]+1 . = sgn (j q , J q (j q )) (-1) k(n-k) e Jq .

Let us choose

Moreover, we observe that ξ s-1 = e I\Ip , and ( * η) r-1 = e J\Jq .

(5.11)

Note that here we implicitly used the following facts. If s = 1 or 2, Equation (5.11) is trivially true, and if s 2, it follows that k + 1 is even, for otherwise,