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Abstract: We address component-based regularisation of a multivariate Gener-

alised Linear Model (GLM). A set of random responses Y is assumed to depend,

through a GLM, on a set X of explanatory variables, as well as on a set A of addi-
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tional covariates. X is partitioned into R conceptually homogenous variable groups

X1, . . ., XR, viewed as explanatory themes. Variables in each Xr are assumed many

and redundant. Thus, generalised linear regression demands dimension-reduction and

regularisation with respect to each Xr. By contrast, variables in A are assumed few

and selected so as to demand no regularisation. Regularisation is performed search-

ing each Xr for an appropriate number of orthogonal components that both con-

tribute to model Y and capture relevant structural information in Xr. To estimate a

single-theme model, we first propose an enhanced version of Supervised Component

Generalised Linear Regression (SCGLR), based on a flexible measure of structural

relevance of components, and able to deal with mixed-type explanatory variables.

Then, to estimate the multiple-theme model, we develop an algorithm encapsulating

this enhanced SCGLR: THEME-SCGLR. The method is tested on simulated data,

and then applied to rainforest data in order to model the abundance of tree-species.

Key words: Components; Multivariate Generalised Linear Model; Regularisation;

SCGLR; Dimension reduction.

1 Introduction

1.1 Framework

Our framework is that of a multivariate GLM (Fahrmeir and Tutz, 1994) with multiple

responses and a high number of covariates partitioned into several thematic groups,

hence referred to as themes. This high number, with possibly high collinearities within
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each theme, demands that dimension-reduction and regularisation (i.e. stabilisation

of regressor-coefficients) be performed during the GLM estimation. Indeed, standard

GLM estimation keeping correlated covariates is bound to lead to overfitting and yield

a highly unstable (if identified) linear predictor. Here, dimension-reduction is to be

carried out within each theme, so that each extracted dimension refers to a specific

theme.

The data we want to both explore and model is floristic data consisting of the abun-

dance (measured through counts) of q = 27 tree genera on n = 1000 plots in the

tropical forest of the Congo-Basin (see subsection 5.2 for details). We want to model

and explain these counts using several thematic blocks of variables, namely: one

containing p1 = 23 enhanced vegetation indices (EVI), one containing p2 = 13 plu-

viometric indicators, and finally, a categorical variable describing the geology of plots.

The pluviometric indicators exhibit high-correlation patterns, and so do the EVI’s.

So, dimension reduction and regularisation are required in the first two themes. By

contrast, we want to keep the geological type variable as such in the model. Ul-

timately, we want to extract from pluviometric indicators and EVI’s respectively,

few reliable and interpretable dimensions which best complement geology in mod-

elling and explaining the abundances of the 27 tree-genera. In a first stage, these

27 response variables can be assumed to be Poisson random variables, independent

conditional on the explanatory variables.

The approach we propose is component-based: through components (i.e. linear com-

binations of the covariates), we want to explore, decompose in a synthetic way, and

interpret the multidimensional explanatory and predictive potential of each explana-

tory theme. In order to be clearly interpretable, a component has to align with at
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least some variables in its theme. The more variables it aligns with, the “stronger”

the component, in that: 1) it is corroborated by more measures, so captures a “well-

documented information”, and 2) through component-based regularisation, many cor-

related variables end up stabilising the part of the linear predictor which is related

to them.

Within each theme, components are wanted to extract the information that is useful

to predict the responses, when associated with the components of the other themes.

Orthogonal components within a theme make it easy to graph the covariates through

correlation scatterplots, reveal the multidimensional structure of the explanatory in-

formation they contain, and facilitate its interpretation. This is one reason why we

prefer this approach to classical penalty-based approaches as Ridge, LASSO or Elastic

net (Tibshirani (1996), Tikhonov and Arsenin (1977), Zou and Hastie (2005)), which

do provide a regularised linear predictor, but no decomposition of it on a reduced set

of interpretable dimensions. Yet, the penalty-coefficient of the latter methods is a

continuous tuning-parameter, and this is a facility we would like to have.

The first work dealing with component-based regularisation of a GLM was that of

Marx (1996), who introduced the PLS mechanism into the Fisher Scoring Algorithm

(FSA) of a univariate GLM, leading to the Iteratively Re-weighted Partial Least

Squares (IRPLS) method. In his wake, Bry et al. (2013) have introduced a component-

based technique named Supervised Component-based Generalised Linear Regression

(SCGLR), which extends both the work by Marx and multivariate PLS Regression,

and contains an additional continuous regularisation-tuning parameter. Like IRPLS,

SCGLR performs component-based regularisation of the model within the FSA. The

interest of operating at FSA level is that estimation weights keep consistent with the
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component-model being estimated. Fort and Lambert-Lacroix (2005) have proposed

to sequentially (as opposed to iteratively) combine PLS regression with a penalised

estimation of a logistic model, in two steps: on step 1, a ridge-penalised logistic re-

gression of the binary response y is carried out on a set of covariates X so as to yield

a pseudo-response z (aka “working variable”). On step 2, PLS regression of z on X

is carried out, yielding explanatory components. More recently, Durif et al. (2015)

have extended this technique to explanatory variable selection by replacing the PLS

step with a Sparse PLS one. To us, this 2-step approach has two assets and one

drawback. The first asset is that it goes beyond mere regularisation, which yields

a “good” linear predictor, but fails to decompose it on interpretable directions such

as strong components. The second asset is that limiting the model estimation to a

2-step-sequence clearly limits convergence problems to those of ridge GLM estimation

(since PLS has none). Yet, we think that this is paid for by a notable theoretical

drawback: the aim being the estimation of a model, it seems to us that once explana-

tory directions (be they components or selected original variables) are taken as input,

estimation demands that the pseudo-responses be recalculated accordingly. This is

what every 2-step approach (performing regularisation of GLM estimation prior to

component-search) fails to do, by calculating pseudo-responses once and for all on the

first step. By contrast, SCGLR, just as IRPLS did, recalculates the pseudo-responses

and the estimation weights each time a component has been updated, thus keeping

model estimation, i.e. estimation weights, consistent with the current model inputs.

Practically, of course, the estimation weights may have a rather marginal impact,

and the 2-step approach may be advocated for its simplicity. Nevertheless, we must

add that we did not encounter convergence problems with SCGLR in our numeric

experiments on gaussian and Poisson data (provided zero counts are not too may, in
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the latter case).

Now, SCGLR, in its original version, does have limitations which the present work

aims at overcoming. Firstly, we want to be allowed to specify the type of relevant

structure we would like our components to align on: principal components, variable-

bundles, original variables, subspaces based on interpretable constraints, etc. To that

aim, we propose to include in a new SCGLR algorithm the Structural Relevance (SR)

measure proposed by Bry and Verron (2015), which extends the component’s vari-

ance used in IRPLS and the original SCGLR in a general and flexible way. Secondly,

we also want to address mixed-type (i.e. quantitative and categorical) covariates.

Thirdly, in many models, some covariates, which we shall term “additional covari-

ates”, have been included after some pre-processing precluding redundancy with the

others, and owing to the particular attention they should get. Such covariates are

bound to be few, their regression coefficients demand no regularisation, and dimen-

sion reduction does not concern them. Thus, they should be dealt with accordingly

in the model-building. Finally, SCGLR only considered one explanatory theme. The

situation we want to be able to deal with is of a much greater practical interest to the

modeller, as sketched in the description of the floristic data, the covariates have been

partitioned into several themes, each of them being conceptually homogenous. By

looking for components within themes, the modeller makes their interpretation con-

ceptually easier and more natural. In the multiple-theme situation, components are

wanted to separate the effects of the explanatory themes on the responses, revealing

and synthesizing each theme’s partial effect, if any. So that, between themes, compo-

nents must remain unconstrained. That way, every theme is quite free to express its

predictive potential along the others, like variables do in a classical regression model.

This, of course, precludes collinearity between themes, i.e. between strong dimensions
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pertaining to distinct themes. Besides, every theme must be given the same a-priori

importance. Indeed, the “thematic model” is similar to a classical regression model,

where every variable would be replaced with a thematic set of variables to be searched

for interesting latent dimensions. In our example, we want to extract the most pre-

dictive pluviometric components (if any), and also vegetation index dimensions (if

any), which can enter a model together, along with geology, to explain and predict

tree abundances.

1.2 Model and issues

A set of q random variables Y = {y1, . . . , yq}, referred to as responses, is assumed to

be dependent on p common explanatory column-vectors which can be either numeric

variables or indicator-variables of factor-levels, partitioned in R themes X1, . . . , XR,

with: ∀r, Xr = {x1
r, ..., x

pr
r }, plus one matrix A of additional covariates (which may

also contain indicator variables). Every Xr may contain several unknown structurally

relevant dimensions important to predict Y , how many we do not a priori know.

Variables in A are assumed to have been selected in some way, so as to preclude

instability of their estimated coefficients, while variables in Xr’s have not. In other

words, matrix A gathers all explanatory variables that we wish to keep as such: no

dimension-reduction is to be performed within A, whereas dimension reduction is

needed in the Xr’s. Each Xr is thus to be searched for an appropriate number of

orthogonal components that both capture relevant structural information in it and

contribute to model Y .

Let X := [X1, ..., XR]. Each yk is modelled through a GLM (McCullagh and Nelder,

1989), taking X ∪ A as covariate set. Moreover, {y1, . . . , yq} are assumed inde-
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pendent conditional on X. All variables are measured on the same n statistical

units. The conceptual model stating that variables in Y are dependent on variables

in {X1, ..., XR ; A}, and that structurally relevant dimensions should be explicitly

identified in the Xr’s will be referred to as thematic model and denoted by symbolic

equation: Y = F (X1) + ...+ F (XR) + A.

We are currently interested in the following issues:

• Tracking down structurally relevant dimensions in spaces V ec(Xr), that can

ground a good explanatory and predictive model of Y . For the time being, let

us informally say that a “structurally relevant” dimension (or, more shortly,

structural dimension) in a theme Xr is one that accounts for “enough” variance

in Xr.

• Regularisation of the out-coming model with respect to each Xr.

In this work, we propose to overcome the limitations of SCGLR by:

• introducing matrix A of additional covariates into SCGLR’s model;

• extending the measure of structural strength of a component (as measured by its

variance) to one of structural relevance, so as to track various kinds of structures;

• dealing with mixed-type covariates (i.e. numeric or categorical);

• extending SCGLR to the multiple-theme situation.

In the ordinary linear framework for thematic model Y = F (X1) + ... + F (XR),

Bry et al. (2009) have introduced a multi-theme extension of PLS regression named
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Structural Equation Exploratory Regression, which was extended by Bry et al. (2012)

and then to THEME by Bry and Verron (2015).

1.3 Plan of the paper and notations

Section 2 first adapts the Fisher Scoring Algorithm to the situation of multivariate

responses when all responses depend on the same component in X. Then, it recalls

the notion of Structural Relevance, which measures the ability of a component in

a theme to capture strong and relevant structures within it. Eventually, it intro-

duces the Structural Relevance into the FSA and designs the new SCGLR algorithm.

Section 3 builds up THEME-SCGLR from this algorithm. Section 4 addresses model-

assessment and component selection. Finally, in section 5, we study the performance

of THEME-SCGLR on various simulated data structures, and then apply it to forest

data.

For the sake of clarity, let us define some notations :

• u, v being two vectors pertaining to the same euclidean space endowed with metric

M , their scalar product will be denoted 〈u|v〉M , and their cosine, cosM(u, v). The

euclidean norm of u will be denoted ||u||M .

• U = {u1, .., uk}, .., T = {t1, .., tk} being sets of vectors pertaining to the same space,

the sub-space they span will be denoted V ec(U, .., T ).

2 An enhanced SCGLR

In this section, we consider the thematic equation with only one theme.
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2.1 Multivariate GLM with partially common predictors

Ultimately, we want to find components common to all y’s, i.e. on which to perform

regression of every yk. We thus consider a multivariate GLM where all responses have

linear predictors collinear in their X-parts :

∀k = 1, ..., q : ηk = Xuγk + Aδk .

For identification, as well as later taking the SR into account, we impose u′M−1u = 1.

This model calls for adapting the FSA. Indeed, the FSA can be viewed as an iterated

weighted regression on a linearised model, which reads on iteration [t]:

∀k = 1, ..., q : z
[t]
k = Xuγk + Aδk + ζ

[t]
k , (2.1)

where z
[t]
k are the working variables and where the associated errors’ variance matrix

is denoted V (ζ
[t]
k ) = W

−1[t]
k .

In our context, model (2.1) is not linear, owing to the product uγk. So, it must be

estimated through an alternated least squares step, estimating in turn γk and u. Let

f = Xu and Πk
V ec(f,A) be the projector onto V ec(f, A) with respect to Wk . In view

of the independence of responses conditional on predictors, the estimation of model

(2.1) may be viewed as the solution of the following equivalent programs:

Q : min
f∈V ec(X)

∑
k

‖zk − Πk
V ec(f,A)zk‖2

Wk
⇐⇒ Q′ : max

u∈Rp ,u′M−1u=1
ψ(u) ,

where ψ(u) =
∑

k ‖zk‖2
Wk

cos2
Wk

(zk;V ec(Xu,A)). Note that program Q′ extends that

of a weighted Instrumental Variable PCA of Z on matrix [X,A], the program of which

we get by taking ∀k,Wk = I. ψ is a pure goodness-of-fit (GoF) measure, which is now

to be aptly combined with some structural relevance measure to get regularisation.
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2.2 Structural Relevance

Estimating the multivariate GLM with common predictors did not involve any no-

tion of structural strength of the component: all directions in V ec(X) were a priori

equally important. But we would like to favour directions correlated to many vari-

ables as being “stronger”, or directions close to known interpretable sub-spaces, as

being “more relevant”. The notion of Structural Relevance has been introduced by

Bry and Verron (2015). Various measures of SR may be considered, according to the

type of structure u (or f) should align with. Let weight-matrix W reflect the a priori

relative importance of units (typically: W = n−1In for a uniform weighting). Let X

be a n× p matrix associated with a theme, and M an associated p× p metric matrix

in Rp, the purpose of which is to “weight” X’s variables appropriately. M may take

various forms according to the type of variables and structure of data (Bry et al.,

2012). Finally consider component f = Xu, where u is constrained by: ‖u‖2
M−1 = 1.

Let us recall the general formula of structural relevance. Given a set of J “reference”

symmetric positive semi-definite matrices N = {Nj ; j = 1, ..., J}, a weight system

Ω = {ωj ; j = 1, ..., J}, and a scalar l ≥ 1, the associated Structural Relevance (SR)

measure is defined as the following function of u:

φ(u) :=

(
J∑
j=1

ωj(u
′Nju)l

) 1
l

. (2.2)

Two particular examples of SR deserve mentioning.

• Component Variance

X being composed of centred numeric variables, take:

φ(u) = V (Xu) = ‖Xu‖2
W = u′(X ′WX )u .
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This is the inertia of units along u, and is maximised by the first (direct)

eigenvector in the PCA of (X,M,W ). So here, M must be such that PCA of

(X,M,W ) is relevant. Consider a typical mixture of numeric and categorical

variables: X =
[
x1, ..., xK , X1, ..., XL

]
, where: x1, ..., xK are column-vectors

coding the numeric regressors, and X1, ..., XL are blocks of centred indicator

variables, each block coding a categorical regressor (X l has ql−1 columns if the

corresponding variable has ql levels, the removed level being taken as “reference

level”). In order to get a relevant PCA of (X,M,W ), we must consider the

metric block-diagonal matrix:

M := diag
{

(x1′Wx 1)−1, ..., (xK
′
WxK)−1, (X1′WX 1)−1, ..., (XL′WX L)−1

}
.

It is well known that this matrix bridges ordinary PCA of numeric variables

with that of Multiple Correspondence Analysis.

• Variable Powered Inertia (VPI)

Contrary to the component’s variance, VPI involves parameter l. This param-

eter tunes the locality of the variable-bundles components should align on, in

that increasing l results in raising the bonus given in the SR to directions close

to local gatherings of variables (cf figure 1). Having components aligning bet-

ter on a small number of highly correlated variables makes their interpretation

easier, at the possible cost of some loss in generality, i.e. synthetic power of the

component.

We impose ‖f‖2
W = 1 through M = (X ′WX )−1. Note that in order for X ′WX

to be regular, X has to have full rank in column, which we will assume mo-

mentarily. For X consisting of p standardised numeric variables xj, the VPI is
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f=Xu

ϕ1(u)

ϕ2(u)

ϕ4(u)

Figure 1: Polar representation of the Variable Powered Inertia according to the value

of l

defined as:

φ(u) =
(∑p

j=1 ωjρ
2l(Xu, xj)

) 1
l

=
(∑p

j=1 ωj〈Xu|xj〉2lW
) 1

l

=
(∑p

j=1 ωj(u
′X ′Wxjxj

′
WXu)l

) 1
l
.

In the elementary case of 4 coplanar variables x with ∀j, ωj = 1, Figure 1 graphs

φl(u) in polar coordinates (z(θ) = φl(eiθ)eiθ ; θ ∈ [0, 2π[) for various values of l.

Note that φl(u) was graphed instead of φ(u) so that curves would be easier to

read. One can see how the value of l tunes the locality of bundles considered:

the greater the l, the more local the bundle.

For X consisting of p categorical variables Xj, each of which is coded through

the set of its centred indicator variables (one being removed to avoid singularity
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of Xj ′WXj), we will take:

φ(u) =

(
p∑
j=1

ωj cos2l
W (Xu, V ec(Xj))

) 1
l

=

(
p∑
j=1

ωj〈Xu|ΠXjXu〉lW

) 1
l

,

where: ΠXj = Xj(Xj ′WXj)−1Xj ′W .

Now, when X ′WX is singular, owing to collinearity, X should be replaced with

the matrix C of its principal components associated with non-null eigenvalues,

and the component sought as f = Cu. We have: C = XV , where V is the

matrix of corresponding unit-eigenvectors. Then, f = Cu = Xw with w = V u.

Supplemental material 7.5 shows that among all coefficient vectors t such that

Xt = f , w is that which has the minimum L2-norm.

2.3 The enhanced SCGLR: new criterion and program

Introducing the SR into the current step of the algorithm given in Section 2.1, we

now consider the program:

R : max
u′M−1u=1

S(u), with S(u) = ψ(u)1−sφs(u) , (2.3)

where s is a parameter tuning the relative importance of the SR with respect to the

GoF. Taking s = 0 equates the criterion with the GoF, while at the other end, taking

s = 1 equates it with the mere SR. Thus, increasing s increases regularisation of the

model (s = 0 is associated with no regularisation at all). This role is similar to that

of the penalty-coefficient in penalty-based methods such as ridge and LASSO.

The product form in (2.3) may be advocated as follows:

max
u′M−1u=1

ψ(u)1−sφs(u) ⇔ max
u′M−1u=1

((1− s) lnψ(u) + s lnφ(u)) .

This implies that, at the maximum: 〈du|(1− s)∇ lnψ(u) + s∇ lnφ(u)〉M−1 = 0 , ∀du

tangent to the unit-sphere. So, at the maximum, relative variations of GoF and SR
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compensate, with elasticity of ψ relative to φ being equal to s/(1−s), which gives s a

precise interpretation. Note that the product form of the criterion is a straightforward

way to make the solution insensitive to “size effects” of φ(u) and ψ(u). An analytical

expression of S(u) is derived in supplemental material 7.1.

2.4 Rank 1 component

Theme-SCGLR’s rank 1 component is obtained as a solution of program R (2.3).

In supplemental material 7.2, we give an algorithm to maximise, at least locally,

any criterion on the unit-sphere: the Projected Iterated Normed Gradient (PING)

algorithm. PING may be used to solve program R, with function h(u) = S(u) or

ln(S(u)), and D = 0.

2.5 Rank h > 1 component

Components in X are to span, as extensively as possible, a subspace leaning on strong

structures of X which is useful for predicting Y , when associated with the additional

covariatesA. This is what component 1 does when this subspace is constrained to have

dimension 1. Because of this optimality, we choose to consider component 1 given,

and are not going to reconsider it. So, component 2 will have to span, together with

component 1, a 2-dimensional subspace leaning on strong structures of X and useful

for predicting Y . Moreover, we want component 2 to be orthogonal to component 1 for

graphing purposes. So, we shall look for a component 2 leaning on strong structures

of X, orthogonal to component 1, and giving the best possible fit to the model under

such constraints. And so on with higher-rank components. We thus adopt the local

nesting principle (LocNes) presented in Bry et al. (2009) and extended in Bry et al.
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(2012), which we will now express formally. Let F h := {f 1, ..., fh} denote the set of

the first h components. According to the LocNes principle, extra component fh+1

must best complement the existing ones and A, i.e. Ah := F h ∪ A. So fh+1 must be

calculated using Ah as additional covariates. Moreover, we must impose that fh+1 be

orthogonal to F h:

F h′Wfh+1 = 0 . (2.4)

This principle allows to build up an increasing sequence of components, which can

eventually span the whole V ec(X) space (when h = p or sooner). But then, the

noise-dimensions in V ec(X) (those irrelevant to model Y , or strongly backed by no

regressor) would be used in the linear predictor, producing overfitting and jeopardizing

prediction quality. So, when they start producing overfitting, components will have

to be discarded. This will be assessed later by cross-validation trials.

There are two ways of ensuring orthogonality of every extra-component with the

previous ones, expressed in (2.4): deflation of X, or extra orthogonality constraint.

Deflation

This method, classical in PLS, consists in currently replacingX withXh := ΠV ec(Fh)⊥X

in program R to calculate fh+1 = Xhu. This technique has two drawbacks: 1) losing

the original variables, it sometimes requires adapting metric M to the new covariate

matrix Xh ; 2) as one ultimately needs to get an expression of the linear predictors

as a function of the original variables, one has to be able to get back from every Xh

to X, which requires recursive calculations (Bry et al., 2013).

Extra orthogonality constraint

This method consists in adding constraint (2.4) to program R. To calculate compo-
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nent fh+1 = Xu, we would now solve:

R : max
u′M−1u=1 ,Dh′u=0

S(u) where Dh := X ′WF h .

Again, the PING algorithm given in supplemental material 7.2 allows to solve this

program. Supplemental material 7.4 proves that deflation and orthogonality con-

straints are equivalent for SR measures based on the component’s variance, and how

to make them equivalent for every SR measure based on closeness to subspaces. As far

as calculation is concerned, using an extra orthogonality-constraint is much handier,

since it directly provides the coefficient-vector of each component on the variables,

which is needed for predictions.

3 THEME-SCGLR

Consider now the complete thematic equation: Y = F (X1)+...+F (XR)+A. In order

to deal with multiple themes, we must replace Q′ by another equivalent program:

Q′′ : max
∀r,ur∈Rpr ,u′rM

−1
r ur=1

ψ(u1, ..., uR) ,

where ψ(u1, ..., uR) =
∑

k ‖zk‖2
Wk

cos2
Wk

(zk;V ec(X1u1, ..., XRuR, A)). Q′ and Q′′ are

obviously equivalent because V ec(X1, ..., XR, A) = V ec(X,A) and the criterion ψ

to be maximised is 0-degree-homogenous in its arguments: the direction of V ec(X)

maximising ψ is the same in either case. But Q′′ opens the way to theme-specific

regularisation.
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3.1 Rank 1 components

Let us introduce the SR of components into program Q′′ by solving instead:

R′′ : max
∀r,ur∈Rpr ,u′rM

−1
r ur=1

ψ(u1, ..., uR)g
R∏
r=1

φsr(ur) . (3.1)

The product form of (3.1) can be justified in much the same way as for (2.3). To

make things simpler, one may take: ∀r = 1, ..., R: sr = s and g = 1− s. This choice

tunes each theme’s SR with respect to the model’s GoF. It is not the only possible

choice, of course: one could instead want to tune the importance of the overall SR

with respect to the GoF by taking ∀r ∈ {1, ..., R}, sr = s
R

and g = 1 − s. In both

cases, every theme is given the same a-priori importance. In particular, the criterion

is insensitive to the number of variables in each theme. Such would not be the case if

all themes were pooled into one. R′′ can be solved by iteratively maximising in turn

the criterion on every ur. Now, we have:

∀r : cos2
Wk

(zk ; V ec(X1u1, ..., XRuR, A)) = cos2
Wk

(zk ; V ec(Xrur, Ãr)) ,

where

Ãr = A ∪ {fs; s 6= r} .

For convenience, when seeing ψ(u1, ..., uR) as a function of a particular ur, we will

write it ψ(ur). The additional covariates will be specified on every such occasion. So,

R′′ can be solved by iteratively solving:

R′′r : max
ur∈Rpr ,u′rM

−1
r ur=1

ψ(ur)
(1−s)φs(ur) ,

with Ãr as additional covariates. Section 2.4 already showed how to solve this pro-

gram.
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3.2 Rank h > 1 components

Components in a theme (e.g. Xr) are to span, as extensively as possible, a subspace

leaning on strong structures of Xr which is useful for predicting Y when associated,

not only with A, but also the components of the other themes. So, momentarily

considering these given, we can add them to A and proceed as in SCGLR (section

??) to calculate a sequence of components in Xr. We can do that in every theme,

and of course, iterate. Let us write this more formally. Suppose we want to calculate

Hr components in theme Xr. ∀h < Hr , let F h
r := {f `r ; ` = 1, ..., h}. The LocNes

principle states that component fh+1
r must best complement the existing ones, i.e.

F h
r and all components of all other themes, plus A, i.e. : Ahr := F h

r ∪
s 6=r

FHs
s ∪ A .

Taking Ahr as additional covariates, the current value of fh+1
r is calculated solving:

R′′r : max
ur∈Rpr , u′rM

−1
r ur=1, Dh

r
′ur=0

ψ(ur)
(1−s)φs(ur) where Dh

r := X ′rWF h
r .

Informally, the algorithm consists in currently calculating all Hr components in Xr -

in the way given in 2.5, taking A ∪
s 6=r

FHs
s as additional covariates - and then loop on

r until overall convergence of the component-system.

Note that the LocNes principle induces a partial order. For h1 ≤ H1, ..., hR ≤ HR, let

M(h1, ..., hR) denote the component-model based on components {F hr
r }1≤r≤R. Model

M(H1, ..., HR), produced by our algorithm, contains sub-models. A sub-model is

defined by any ordered pair (r, hr) where hr ≤ Hr, as:

SM(r, hr) = M(H1, ..., Hr−1, hr, Hr+1..., HR) .

The set of all sub-models is not totally ordered. But we have the following theme-

local nesting property:

Every sequence of sub-models defined by SM(r, .) = (SM(r, hr))0≤hr≤Hr
is totally
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ordered through the relation: SM(r, h′r) ≤ SM(r, hr) ⇔ h′r ≤ hr .

This order is easy to interpret, considering that the component fhr making the differ-

ence between SM(r, h−1) and its successor SM(r, h) is the Xr -component orthogonal

to F h−1
r that best completes model SM(r, h− 1) controlling for all other components

in SM(r, h− 1) .

On these principles, we have built the algorithm given in supplemental material 7.3,

that calculates Hr components in each theme Xr. This algorithm has been imple-

mented in an R-package named SCGLR. If we suppose we retain enough components

in every theme to exhaust their own predictive capacity, then, components in theme

Xr, being determined through their partial effect, will focus on the specific role of Xr

in the GLM. Of course, as in SCGLR, they will be too many as soon as they produce

overfitting, so their sequence will have to be pruned according to cross-validation per-

formance. Cross-validation trials require the coefficients of original variables in linear

predictors to be calculated.

3.3 Coefficients of original variables in linear predictors

Let U = [u1
1, . . . , u

H1
1 , . . . , u1

R, . . . , u
HR
R ]. Once the components

{
fhr = Xru

h
r

}
1≤r≤R,1≤h≤Hr

have been calculated, a generalised linear regression of each yk is performed on [F,A],

where F :=
{
FHr
r

}
1≤r≤R, yielding linear predictor:

ηk = θk + Aδk + Fγk = θk + Aδk +Xβk where βk = Uγk .
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4 Model Assessment

4.1 Principle

Model assessment is based on the predictive capacity of models. Prediction is assessed

using cross-validation. Consider a given model M = M(h1, ..., hR) . The sample

is first divided into two subsamples: CT (for calibration and testing) and V (for

validation). Then, CT is subdivided a given number of times into two subsamples: C

(calibration sample) and T (test sample). For every observation in T and every y, we

calculate some prediction-error indicator e fitting y’s nature. An average error rate

AER(M,C,T) has to be defined over all dependent variables, and a cross-validation

error rate CVER(M), as the average of AER(M,C,T) over (C,T) pairs. Models are

then compared with respect to their CVER, the best ones must be validated on V .

4.2 Prediction-error indicators

To every type of y may correspond one (or more) appropriate error indicators. For

instance, for a binary output y ∼ B(p(x, t)), AUC denoting the corresponding area

under ROC curve, we would advise to take:

e = 2(1− AUC) .

Whereas for a quantitative variable, we ought to consider indicators based on the

mean quadratic error, such as:

e =
1

n

n∑
i=1

(yi − Ê(yi|xi, ti))2

V̂ (yi|xi, ti)
.
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For instance, for a Poisson-distributed variable y ∼ P (λ(x, t)), we would get:

e =
1

n

n∑
i=1

(yi − λ̂(xi, ti))
2

λ̂(xi, ti)
.

But these error indicators are not necessarily comparable, and must yet be pooled into

an overall indicator. We propose to use geometric averaging, since it allows relative

compensations of indicators.

4.3 Backward component selection for a given structural rel-

evance

The LocNes principle calls for backward component selection. Indeed, starting with

“large enough” numbers of components in every theme allows to capture most of

the theme’s proper predictive power, and thus, minimise the risk of confusing effects

between themes. But, to ensure having “large enough” such numbers, one should

start with “too large” ones, hence an over-fitting model. As every component has

been calculated given the former-rank ones in its theme, only higher-rank components

should then be removed, starting with the highest. In the logic of LocNes, every extra

component should allow to improve the overall quality of prediction of the responses,

unless it contributes to over-fitting. So, we consider the loss in CVER(M(h1, ..., hR))

brought by the highest rank component fhrr in Xr.

The backward selection algorithm consists in comparing the loss in CVER values

associated with each highest rank component, removing the one which causes the

highest CVER increase (or lowest decrease), recalculating the whole set of components

in all themes with the updated numbers of components, and resuming so long as the

model is not empty.
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Such a procedure being rather costly, we considered in practice the following one, less

accurate but considerably faster. The model with the maximum number of compo-

nents is first calculated. The components are then considered given. Then, we remove

in turn the higher-rank component in every theme, estimate the regression coefficients

of the pruned model and calculate its CVER. The one with the least CVER is chosen,

and the pruning procedure goes on from it.

5 Applications to data

5.1 Testing the enhanced SCGLR on simulated data

To illustrate the behaviour of the SR criterion, we restrict this simulation study to

a single explanatory theme X, with empty A. We consider n = 100 units, p = 200

covariates, and q = 50 responses. X is structured around four variable bundles: B1

(20 variables), B2 (30 v.), B3 (40 v.) and B4 (50 v.), plus a cloud of 60 uncorrelated

noise-variables. Each bundle Bk is structured about a latent variable φk . The

correlation between the φk’s is tuned through: corr(φk, φm) = cos2(α), α ∈ [0; π/2],

and the width of bundles through parameter ν ∈ [0; 1] (see supplemental material 7.6

for the detailed simulation scheme). Only bundles B1 to B3 are really explanatory, in

decreasing order of importance, B4 being a heavy junk bundle. The idea behind this

scheme is that ideally, a good method should identify central directions φ1, φ2, and φ3

in the proper order, i.e. V ec(φ1), then V ec(φ1, φ2) and finally V ec(φ1, φ2, φ3) without

being fooled by B4. Now, B4 being so heavy, it is likely to mislead any method that

uses a simply quadratic PCA-type measure of structural relevance. Such is the case
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of PCGLR (GLR on PC’s), and the basic version of SCGLR. By contrast, varying

parameter l (and possibly s) should help track down the true directions in the right

order.

We generate data for the following experimental design:

α ∈ {π
2
,
π

4
} × ν ∈ {0.1, 0.5, 1} .

On every dataset simulated according to an ordered pair (α, ν), we use the VPI

criterion as SR measure, with different values of l and s, trying to find out which

choice of (l, s) performs best according to the situation.

To judge the quality of the estimation, we calculate the following indicators:

• Quality of capture of φk by V ec(F h):

QLTh(φk) =
h∑
j=1

ρ2(f j, φk) .

• Hence, average quality of capture of the true explanatory directions by V ec(F h):

QLTh =
1

3

3∑
k=1

QLT h(φk) .

• Propensity of V ec(F h) to capture the wrong direction φ4 :

QLTh(φ4) .

Results are presented in Figure 2. They show that VPI with l = 1 has been all the

more cheated as s is high, while VPI with l > 1 has not, and all the less as l is high.

For α = π
2
, for instance, and when s = 0.5, i.e. SR is taken into account equally with

GoF, QLT3(φ1) is poor, but QLT3(φ4) is high (see Figure 3), which we want to avoid.
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As s decreases, things improve, because the GoF has then more weight than the SR.

But the key-parameter is still l: whatever the (non-zero) value of s, l = 8 allows all

φk, k = 1..., 3 to be captured by V ec(F 3), and discards φ4 (cf. Figure 3).
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Figure 2: Quality of capture of the simulated true latent variables by the space

spanned by components 1 to 3. Value 1 indicates perfect capture (wanted here), and

value 0, non-capture. Parameters α and ν tune the design of the simulated bundles,

while s and l tune the component-extraction algorithm.

5.2 Applying THEME-SCGLR to the tropical tree species

distribution

There is a crucial need to improve our current knowledge of the tree species distri-

bution of central African forests in order to define sustainable management policies
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Figure 3: Quality of capture of the simulated nuisance latent variables by the space

spanned by components 1 to 3. Value 1 indicates perfect capture, and value 0, non-

capture (wanted here). Parameters α and ν tune the design of the simulated bundles,

while s and l tune the component-extraction algorithm.

and better predict their future in the face of global changes. We analysed floristic

data consisting of the abundance of 27 common tree genera, provided by logging con-

cessions, from 1 000 plots in the tropical moist forest of the Congo-Basin covering an

area of more than six Mha over four countries: Cameroon, Gabon, Central African

Republic and the Republic of Congo. 40 geo-referenced environmental variables were

monitored, which include 13 pluviometric indicators, geology of each plot and 23 EVI

indices measuring photosynthetic activity. The environmental variables were divided

into two clearly defined themes: (i) the EVI indices (X1), and (ii) pluviometry (X2).

The geological factor was used as an additional covariate (A). Thus, 27 response

variables, assumed to be Poisson random variables, were available, two themes were

defined and one additional covariate was used on 1 000 plots (observation units).
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We have tried all combinations of (l, s) ∈ {1, 2, 3, 4}×{0.15, 0.25, 0.5} and calculated

the CVER along the backward component-selection path for each (l, s). A model with

k components in X1 and h in X2 will be shorthanded k h. In most cases, the best-

predictive model was 4 4, but the model 0 4 having discarded the EVI theme was not

bad either. Indeed, the model-choice issue is not as straightforward as it seems, since

at least three concerns are involved, which may fail to coincide: prediction quality,

parsimony, and interpretability. Prediction quality is measured by the CVER only.

Parsimony is twofold: dimensional parsimony is measured by the overall number of

components involved in the final model, but thematic parsimony is measured by the

number of themes involved. Finally, interpretability of a component-model is that

of its components, i.e. the height of their correlations with some of the variables

in their themes. In our application, we have chosen the model 0 4 obtained with

l = 2, s = 0.5 since it has one of the lowest CVER’s (1.8366), together with the

highest parsimony (the EVI theme playing no role in it, and 4 components being

sufficient - and easily interpretable - in the pluviometry theme). Note, though, that

for the same (l, s), model 4 4 led to a slightly lower CVER (1.8291), and that model

5 4 with l = 3, s = 0.15 still improved the performance (CVER = 1.8254), but

negligibly and at a high cost in terms of parsimony.

Figure 4 presents the average CVER over the 10 replications for all k h, k and h rang-

ing from 1 to 6. On this figure, the path found by the backward selection procedure

is plotted as a continuous black line. Note that it crosses the very best combination

(4 4) and, provided we do not stop at it, leads to an almost equivalently predictive

but much more parsimonious solution (4 0), which we will retain. This first result

demonstrates that EVI has far less importance for predicting tree genus abundances

than pluviometry.
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Figure 4: Average CVER values for all combinations of component numbers in the

two themes.

It must be noted at this stage that if we mix up all explanatory variables in a single

theme and perform SCGLR, the lowest CVER is never obtained with less than 12

components. Besides, with l = 2, s = 0.5 and retaining 8 components, it performs

worse, with CVER=1.8366 , than the two-theme model 4 4 (CVER=1.8291). Finally,

with only 4 components, it yields a CVER = 1.8883, which is significantly larger than

that of model 4 0 (CVER=1.8366).

These results highlight how THEME-SCGLR may improve and refine the initial

SCGLR model by dividing the set of covariates into different well-defined themes.

Indeed, using SCGLR with a single theme mixing all covariates, components 1 and

2 are dominated by an EVI bundle (see fig. 5), which is strong enough to attract

them, although it has but an insignificant role in prediction: SCGLR is trapped by

the strong structure within the EVI covariates, whereas, by contrast, separating the

EVI theme from the pluviometric one in the thematic model reveals that the EVI’s

have but little predictive importance and allows to discard it from the conceptual
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model of the data.
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Figure 5: Correlation scatterplot of covariates in the plane spanned by the first two

components obtained using the single-theme SCGLR approach.

The correlation scatterplot of Figure 6b shows that the first pluviometric component

is highly linked to a rain-pattern opposing winter rainfalls to spring ones, the second

pluviometric component being characterised by rainfalls on intermediate months.
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Figure 6: Correlation scatterplot of covariates in the planes spanned by the first two

components obtained by THEME-SCGLR using EVI (a) and pluviometry (b) themes.
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6 Conclusion

The original SCGLR was a PLS-type tradeoff between Multivariate GLM estimation

(which cannot afford many and redundant covariates) and PCA-like dimension re-

duction methods (which take no explanatory model into account). It allowed both to

regularise GLM estimation and to decompose the linear predictors on strong common

components, which methods as LASSO or Ridge, merely penalising the norm of the

coefficient-vector, do not do. THEME-SCGLR extends SCGLR in two major ways:

• It replaces the component’s variance, used in SCGLR as a measure of structural

strength, with a more general and flexible measure of Structural Relevance. This

measure allows to better align components on more local variable structures, as

bundles or theory-based subspaces, enhancing their interpretability.

• By extending SCGLR to a thematic partition of the explanatory variables, it

allows to make better use of the complementarity between the explanatory

themes, both statistically when fitting the model, and conceptually when in-

terpreting the components. Moreover, through an unambiguous component

selection mechanism, it allows to find the useful dimensionality of each theme

and explore it hierarchically.

These features enable testing thematic models of the phenomenon under attention

through the interpretability of the components and the prediction quality that the

corresponding estimated models offer. Thus, THEME-SCGLR allows to explore the

multiple competitive conceptual hypotheses that can be considered when modelling

a phenomenon in high dimension, and gradually refine and adjust the design of the

thematic model according to previous findings.
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In our simulations, THEME-SCGLR proved to have the expected behaviour regarding

bundles. On the environmental data set, using a 2-theme model separating EVI and

pluviometry allowed to conclude to a negligible role of the EVI’s, which a single-theme

model could not do.
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7 Supplemental material

7.1 Analytical expression of S(u)

We aim at expressing S(u) as a function of quadratic forms. To achieve that, we

decompose the projection on the regression space as follows:

V ec(Xu,A) = V ec(X̃u,A) with X̃ := ΠA⊥X

V ec(X̃) ⊥ V ec(A) ⇒ ΠV ec(Xu,A) = ΠV ec(X̃u,A) = ΠV ec(X̃u) + ΠV ec(A)

⇒ ‖zk‖2
Wk

cos2
Wk

(zk;V ec(Xu,A)) = 〈zk|ΠV ec(Xu,A)zk〉Wk
= 〈zk|(ΠV ec(X̃u)+ΠV ec(A))zk〉Wk

=
(
〈zk|ΠV ec(X̃u)zk〉Wk

+ 〈zk|ΠV ec(A)zk〉Wk

)

Now:

〈zk|ΠV ec(X̃u)zk〉Wk
= z′kWkΠV ec(X̃u)zk =

u′X̃ ′Wkzkz
′
kWkX̃u

u′X̃ ′WkX̃u

Let:

Ak := X̃ ′Wkzkz
′
kWkX̃ ; Bk := X̃ ′WkX̃ ; ck := 〈zk|ΠV ec(A)zk〉Wk

We have:

ψ(u) =
∑
k

(
u′Aku

u′Bku
+ ck

)
(7.1)

Now, from (2.2) and (7.1), we get the general matrix form of criterion S(u) to be

maximised:

S(u) =

(∑
k

(
u′Aku

u′Bku
+ ck

))( J∑
j=1

ωj(u
′Nju)l

) s
l
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7.2 The Projected Iterated Normed Gradient (PING) algo-

rithm

The current value of any quantity a on iteration t is denoted: a[t].

Consider program:

max
u∈Rp , u′M−1u=1, D′u=0

h(u)

First note that, putting v = M−1/2u, g(x) = h(M1/2x) and C = M1/2D, this is

strictly equivalent to:

RC : max
v∈Rp , v′v=1, C′v=0

g(v)

Also note that C = 0 corresponds to the case of no orthogonality constraint.

L(v, λ, µ) = g(v)− λ(v′v − 1)− µ′C ′v

∇
λ,µ
L(v, λ, µ) = 0 ⇔

v′v = 1 (7.2)

C ′v = 0 (7.3)

∇
v
L(v, λ, µ) = 0 ⇔ Γ(v)− 2λv − Cµ = 0 with Γ(v) := ∇

v
g(v) (7.4)

⇔ v =
1

2λ
(Γ(v)− Cµ) (7.5)

Premultiplying (7.4) by C ′, with (7.5), yields

C ′Γ(v) = C ′Cµ ⇔ µ = (C ′C)−1C ′Γ(v)

Put back into (7.5), this yields:

v =
1

2λ
ΠC⊥Γ(v) where ΠC⊥ := I − C(C ′C)−1C ′ (7.6)

Note that in the particular case where C = 0, we shall take: ΠC⊥ = I.

Finally, (7.6) and (7.2) imply:

v =
ΠC⊥Γ(v)

‖ΠC⊥Γ(v)‖
(7.7)
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This gives the basic iteration of the PING algorithm:

v[t+1] =
ΠC⊥Γ(v[t])

‖ΠC⊥Γ(v[t])‖
(7.8)

Let us show that this iteration follows a direction of ascent. Since, by construction:

∀s: v[s] ⊥ C

we have:

∀s: v[s] = ΠC⊥v
[s] ⇒ 〈v[t+1] − v[t]|Γ(v[t])〉 = 〈ΠC⊥(v[t+1] − v[t])|Γ(v[t])〉

= 〈v[t+1] − v[t]|ΠC⊥Γ(v[t])〉

which has the sign of:

〈v[t+1] − v[t]|v[t+1]〉 = 1− 〈v[t]|v[t+1]〉 = 1− cos(v[t], v[t+1]) ≥ 0

Of course, picking a point on a direction of ascent does not guarantee that g actually

increases, since we may “go too far” in this direction. Let γ[t] :=
Π

C⊥Γ(v[t])

‖Π
C⊥Γ(v[t])‖ . If

we stay “close enough” to the current starting point on the arc (v[t], γ[t]), we can

guarantee that g increases. Indeed, let $ be the plane tangent to the sphere on v[t]

and let w denote the vector tangent to arc (v[t], γ[t]) on v[t]. Then:

∃τ > 0, w = τΠ$γ
[t] ⇒ 〈w|γ[t]〉 = τ〈Π$γ

[t]|γ[t]〉 = τ cos2(γ[t], $) > 0

v

w

γ

γ
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Yet, if we stay “too close” to the current starting point on the arc (v[t], γ[t]), the

algorithm may get too slow to reach the maximum. We avoid that by using a one-

dimensional maximisation function (e.g. Gauss-Newton type) to find the maximum

of g(v) on the arc (v[t], γ[t]), and take it as v[t+1]. The fixed point of the resulting

algorithm is a critical point of (7.2), hence a local maximum of g s.t. C ′v = 0.

7.3 The THEME-SCGLR algorithm

Additional notations: ∀r ∈ {1, ..., R}, Fr := FHr
r ; F := ∪

r=1,...,R
Fr .

Initialisation:

Let ∀r = 1, . . . , R ; ∀k = 1, ..., Kr: f
k
r = kthPC of Xr.

Initialise Z = [z1|...|zq] to Z [0] with:

∀i = 1, . . . , n , ∀j = 1, . . . , q : z
j[0]
i = g(αyji + (1− α)ȳj), where α = 0.95,

and {Wk}k=1, q to {W [0]
k }k=1, q = { 1

n
In}k=1, q

Current iteration:

Iterate from s = 0 until convergence of F [s] :

1) GLS Regression step: for l = 1 to q,

- Carry out GLS regression of each zl[s] on F [s] with respect to weighs W
[s]
l :

- Update each zl[s] and W
[s]
l using the regression coefficients.

2) Updating components : Iterate from t = 1 until F [s,∞],
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- Set F [s,0] = F [s−1,∞]

- For r= 1 to R:

For h = 1 to Hr:

Solve program: R′′r on Z [s],

with additional covariates Ah−1
r := F h−1

r ∪
s 6=r

FHs
s ∪ A

and with orthogonality constraint matrix Dh−1
r := X ′rWF h−1

r .

Call u
h[s,t]
r the solution.

Set f
h[s,t]
r = Xru

h[s,t]
r ;

Set F
h[s,t]
r = [F

h−1[s,t]
r , f

h[s,t]
r ]

End for h

End for r

7.4 Equivalence between deflation and orthogonality con-

straint for some measures of SR

1) SR = Component’s variance

We show the following equivalence:

max
u′u=1 , C′u=0

‖Xu‖2
W , where C ′ = F ′WX ⇔ max

u′u=1
‖ΠF⊥Xu‖2

W .

Indeed:

F ′WXu = 0 ⇒ ΠF⊥Xu = (I − F (F ′WF )−1F ′W )Xu = Xu .

2) SR = Closeness of component to a given subspace

Consider a unit-variance component f constrained to W -orthogonality with

respect to subspace F (e.g. the subspace spanned by lower-rank components),

and S ⊂ Rn a given reference-subspace. Consider any SR such as:

g(cos2(f, S)) = g(〈f |ΠSf〉W ) with g increasing.
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Let {s1, ..., sd} be an orthonormal basis of S. We have:

ΠS =
d∑

m=1

Πsm ⇒ 〈f |ΠSf〉W =
d∑

m=1

〈f |Πsmf〉W =
d∑

m=1

〈f |sm〉2W .

Now, as ΠF⊥f = f , we have:

∀m, 〈f |sm〉W = 〈ΠF⊥f |sm〉W = 〈f |ΠF⊥sm〉W .

So, 〈f |ΠSf〉W =
∑d

m=1〈f |ΠF⊥sm〉2W . As a consequence, if the deflation proce-

dure is based on deflated vectors sFm := ΠF⊥sm, and SR measure φ = g(
∑d

m=1〈f |sFm〉2W ),

deflation is equivalent to using the orthogonality-to-F constraint.

As immediate consequences:

– Deflation and orthogonality constraint are equivalent for VPI on standard-

ised numerical variables.

– Deflation and orthogonality constraint can be made equivalent for VPI on

categorical variables Xj, by considering for each the subspace spanned by

its centred indicator variables.

7.5 Using principal components in VPI when X ′WX is sin-

gular

Let C denote the block of X’s PC’s associated with non-null eigenvalues: C = XV ,

where V is the matrix of corresponding unit-eigenvectors. Let f = Cu be the com-

ponent calculated after replacing X with C : f = Xw with w = V u.

Consider the following program:

min
t∈Rp , Xt=f

‖t‖2 ⇔ min
t∈Rp , Xt=Xw

‖t‖2 .



THEME-SCGLR 41

Of course,

Xt = Xw ⇔ Xe = 0 where e = t− w .

Now:

1. ∀vk ∈ V, X ′WXvk = λkvk, with λk > 0 ⇒ V ∈ V ec(X ′) ⇒ w = V u ∈

V ec(X ′) .

2. Xe = 0 ⇔ e ∈ V ec(X ′)⊥ .

This implies that decomposition t = w + e is unique.

Now, Pythagore’s theorem yields ‖t‖2 = ‖w‖2 + ‖e‖2; by which ‖t‖2 is minimum for

e = 0, i.e. t = w.

7.6 Simulation scheme

X is generated as follows:

1. Simulate the four latent variables directing bundles

• Simulate five independent normal random vectors:

ψ = (N(0; 1))⊗n ; {ψm = (N(0; 1))⊗n ; m = 1, ..., 4} .

• Generate the exogenous latent variables as follows:

∀m = 1, ..., 4 : φm := standardize(ψ cosα + ψm sinα) .

The correlation between the φ’s can be tuned through angle α. The smaller the

α, the more confusion between the φ’s.
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2. Simulate bundles of observed regressors about the latent variables:

• Simulate 200 independent random vectors:

{ηt = (N(0; 1))⊗n ; t = 1, ..., 200} .

• Let ν > 0 be a noise parameter tuning the width of variable bundles about

their central direction. The larger the ν, the bigger the noise, so, the more

confusion within the bundles:

B1: ∀j = 1, ..., 20 : xj = φ1 + νηj ; B1 is to be the most explanatory bundle (20

variables).

B2 : ∀j = 21, ..., 50 : xj = φ2 + νηj ; B2 is to be the second most explanatory

bundle (30 variables).

B3: ∀j = 51, ..., 90 : xj = φ3 + νηj ; B3 is to be the third most explanatory

bundle (40 variables).

B4: ∀j = 91, ..., 140 : xj = φ4 + νηj ; B4 is to be a non-explanatory bundle (50

variables).

Finally, pure noise: ∀j = 141, ..., 200 : xj = ηj (60 variables).

3. Simulate observed responses: The y’s are Poisson-distributed. They were gen-

erated according to the following scheme:

∀1 ≤ k ≤ q,∀1 ≤ i ≤ n : yki ∼ P (eη
k
i ), where ηki = ak0 +

3∑
h=1

akhφ
k
i

with, independently:

∀k = 1, ..., 25 : ak1 ∼ U [−4, 4] ; ak2 ∼ U [−2, 2] ; ak3 ∼ U [−1, 1]

∀k = 26, ..., 40 : ak1 ∼ U [−2, 2] ; ak2 ∼ U [−4, 4] ; ak3 ∼ U [−1, 1]

∀k = 41, ..., 50 : ak1 ∼ U [−1, 1] ; ak2 ∼ U [−1, 1] ; ak3 ∼ U [−2, 2]
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