N
N

N

HAL

open science

THEMIS: A Tool for Decentralized Monitoring
Algorithms

Antoine El-Hokayem, Ylies Falcone

» To cite this version:

Antoine El-Hokayem, Ylies Falcone. THEMIS: A Tool for Decentralized Monitoring Algorithms.

ISSTA 2017, Jul 2017, Santa Barbara, United States. pp.125-135 10.1145/3092703.3092723 .

01653727

HAL Id: hal-01653727
https://hal.science/hal-01653727
Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01653727
https://hal.archives-ouvertes.fr

THEMIS: A Tool for Decentralized Monitoring Algorithms

Antoine El-Hokayem
Univ. Grenoble Alpes, Inria,
Laboratoire d’Informatique de Grenoble
F-38000 Grenoble, France
antoine.el-hokayem@univ-grenoble-alpes.fr

ABSTRACT

THEMIS is a tool to facilitate the design, development, and analysis
of decentralized monitoring algorithms; developed using Java and
Aspect]. It consists of a library and command-line tools. THEMIS
provides an AP, data structures and measures for decentralized
monitoring. These building blocks can be reused or extended to
modify existing algorithms, design new more intricate algorithms,
and elaborate new approaches to assess existing algorithms. We
illustrate the usage of THEMIS by comparing two variants of a
monitoring algorithm.

KEYWORDS

Runtime Verification, Monitoring, Tool, Java, Aspect]

1 INTRODUCTION

Runtime Verification. Runtime Verification (RV) [1, 10, 12] is a
lightweight formal method which consists in verifying that a run
of a system is correct with respect to a user-provided specification.
The specification formalizes the expected behavior of the system.
Typically, the system is considered as a blackbox that feeds events to
a monitor. An event usually consists of a set of atomic propositions
describing abstract operations or states in the system. A sequence
of such events is referred to as a trace. When receiving a trace,
the monitor will emit verdicts in a truth domain that indicate the
compliance of the system to the specification. We focus on methods
to monitor decentralized systems, that is, systems with multiple
components having no central observation point. In decentralized
systems, the monitors have a partial view of the system and need
to account for communication [6] in addition to computation.

Existing Approaches. Several algorithms have been designed to
monitor decentralized systems, they are detailed in [8]. They can
be summarized into two different approaches. The first approach
consists in monitoring by formula rewriting such as rewriting Lin-
ear Temporal Logic (LTL) [6, 13]. Typically a formula is rewritten
and simplified until it is equivalent to T (true) or L (false) at which
point the algorithm terminates. The second approach [5] is con-
cerned with consensus on the verdict with fault-tolerance. Monitors
may fail to receive correct observations or communicate state with
other monitors. This approach determines the necessary verdict
domain needed to be able to reach a consensus. Algorithms are
primarily designed to address one issue at a time and are typically
experimentally evaluated by considering runtime and memory over-
heads. However, such algorithms are difficult to compare as they

July 2017
© 2017 Copyright held by the owner/author(s).

Yliés Falcone
Univ. Grenoble Alpes, Inria,
Laboratoire d’Informatique de Grenoble
F-38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

may combine multiple approaches at once. For example, algorithms
that use rewriting not only exhibit variable runtime behavior due
to the rewriting, but also incorporate different monitor synthesis
approaches that separate the specification into multiple smaller
specifications depending on the monitor. DecentMon [3, 6] was de-
veloped and extended to study the behavior of three decentralized
monitoring algorithms that rely on LTL rewriting. DecentMon uses
various measures to assess the algorithms both on computation and
communication overhead. The measures presented are related to
the delay, representing an extra time imposed by communication
to generate the verdict, number and size of messages transferred
across the system components and the number of progressions,
representing the rewrites done to the formula. DecentMon runs the
benchmarks on the three algorithms, generates the necessary syn-
thetic traces and reports the measures. However it does not easily
allow for flexibility to tune the existing algorithms, experiment
with different measures, develop new variants, and it only supports
LTL specifications.

2 THE THEMIS APPROACH

Methodology. THEMIS [9] is written in Java, uses Aspect] [11]
and is provided as a library with a set of command-line tools. The
primary goal of THEMIS is to design and analyze decentralized
monitoring algorithms. It is addressed mostly for researchers to ex-
periment, tune, and compare decentralized monitoring algorithms.
To assess the behavior of an algorithm, we identify four phases (Fig-
ure 1): design, instrument, execute, and analyze. The design phase
consists in elaborating a monitoring algorithm. THEMIS generalizes
the monitoring steps and provides an API to describe the opera-
tions. These operations are used as building-blocks to assemble an
algorithm. The instrument phase consists in the definition of mea-
sures. Measures are instrumented into THEMIS and the algorithms
at run-time and operate on the API and data structures. The execute
phase consists in using the THEMIS set of tools to run simulations
of the monitoring algorithms and record the measures. The analyze
phase consists in using the recorded measures to study, compare,
and refine the algorithm. In this paper, simulations are executed
on synthetic traces of programs. An instrumented program feeds
THEMIS a stream of events (by implementing the interface Trace).

Design Goals. The main design goal of THEMIS is to provide a
general API for decentralized monitoring. That is, to provide an
environment that accounts for changes at all levels: traces, specifi-
cation, monitoring logic. By doing so, we allow for new approaches
implementing the API to benefit from all existing metrics and anal-
ysis. Additionally, this allows metrics to be assessed at the abstract
level, for example the metric messages sent could be simply reused
if new algorithms exchange messages. Following this goal, we also

s

\ Design

\\\ = .
\ Design a moni-
A toring algorithm
A 2
g =
/ \\/

Instru-

Execute

Create or re-use metrics. |
| Metrics are automatically
ment A ; q

/| instrumented using Aspect]

L Y,
Analyze —
ya N

\[Use existing tools to
execute one or more
monitoring run(s)

| Execute

N 4

N[Measures are stored
| Analyze |

A/

in a database for
postmortem analysis

Figure 1: Using the THEMIS Framework

aimed that our measures be stored per run in a database. This al-
lows for analysis and benchmarking to be reduced to querying
and analysis of the database. This effectively separates the analysis
from the monitoring. Third-party tools can be used to explore and
analyze the data. Another important design goal is reproducibility.
We wanted to minimize the effort of re-running older simulations
or comparing new approaches with older ones. This is reflected
with the Experiment command-line tool which, in short, allows
users to bundle all traces, specifications and algorithms. Since met-
rics are designed to work at the API level and data structures, any
algorithm using the same building blocks can be measured similarly
without added effort. This allows for new algorithms or variants
of older algorithms to be easily compared against older ones with
the same data and measures. By accomplishing these two primary
goals, we minimize the overhead needed to design new algorithms
and study them, and let researchers focus on the algorithm and the
monitoring itself. Finally, THEMIS is designed to introduce decen-
tralized specifications [8]. That is, having different specifications for
different components in the system. While some approaches [2, 6]
do in effect introduce a decentralized specification, they primarily
focus on presenting one global formula of the system from which
they derive multiple specifications. THEMIS encompasses [2, 6] and
in addition supports any decentralized specification.

3 THE THEMIS FRAMEWORK

Monitoring. We begin by explaining the basic layout of a gener-
alized decentralized monitoring algorithm. A monitoring algorithm
has two phases: setup and monitor. In the first phase, the algorithm
creates and initializes the monitors, connects them to each other
so they can communicate, and attaches them to components so
they receive the observations generated by components. In the
second phase, each monitor receives observations at a timestamp
based on the component it is attached to. The monitor can then per-
form some computation, communicate with other monitors, abort
monitoring or report a verdict. To accomplish this we use the two
interfaces MonitoringAlgorithm and Monitor. In the basic use
case, MonitoringAlgorithm is expected to provide the setup()
method, which does the setup phase of the algorithm, and returns a
map specifying monitors and their ids. A monitor has to implement
the monitor () method for the monitoring logic, and the reset ()
method to reset its state when executing multiple runs. The method

monitor() provides the monitor with a timestamp and a memory
of observations at that timestamp based on the monitored com-
ponent. The provided flow of the base MonitoringAlgorithm is
similar to the Bulk Synchronous Parallel (BSP) [14] model. In the
BSP model, all processes execute a computation phase, then, they
communicate and finally synchronize. The timestamp is associated
with the round number. The monitoring phase begins by setting
up the monitor network. Then, for each timestamp, the observa-
tions are gathered from the trace, then all monitors execute their
monitor() method.

Listing 1 Main Instrumentation Methods

public void setupRun(MonitoringAlgorithm alg);
protected void runBegin();

protected void stepBegin(int t);

protected void stepEnd(int t);

protected void stepReport(int t, ReportVerdict rep);
protected void runEnd();

Measuring. THEMIS uses Aspect] to record measures of a met-
ric for a given algorithm. Writing a metric for an algorithm con-
sists in using Aspect]’s aspects to intercept the points in the ex-
ecution. To simplify the task, THEMIS provides the base aspect
Instrumentation and the classes Measure and MeasureFunction.
The Instrumentation aspect already defines basic pointcuts and
triggers simple methods upon reaching them, they are shown in
Listing 1. When running THEMIS tools to execute the monitoring al-
gorithms, metrics are instrumented into the code at load-time using
Aspect]’s Load-Time Weaving (LTW) configuration. This is found
in aop. xml, the file configures the Aspect] agent that weaves the
aspects during load-time. Thus, by pre-loading aop.xml measures
can be enabled or disabled for a specific run.

Traces. The provided tools and algorithms use a simple format
to represent components and the traces of events they receive. The
components are named alphabetically starting with a (for example:
a, b, ¢). The observations bound to the components are prefixed by
the component and followed with a number starting from 0 (for
example: a0, al, a2, b@, b1). The trace consists of multiple files,
prefixed by the trace ID and suffixed by the component name. A
trace for two components a and b consists of two files: 1-a. trace
and 1-b. trace. Each line in the file consists of an event.

Specifications. A top level specification is by default a decentral-
ized specification. A decentralized specification is a collection of
specifications. Specifications are passed to a monitoring algorithm
as a Map, where each specification is identified by a key. Each spec-
ification must provide two attributes: an id and a class name. The
id is a string name for the specification, it is used by the algorithm
during the setup phase. The provided algorithms use the id root
to denote the main specification. The class name is a string repre-
senting a full class name of the specification class. Listing 2 shows
an example of LTL specification. It is given the name root and is
loaded by the class SpecLTL. THEMIS will instantiate a SpecLTL ob-
ject and invoke the setLTL(String) method with the LTL formula
passed as string. THEMIS currently handles both LTL and Automata
specifications and supports loading from dot files similar to those

exported by 1t12mon [4].
Execution History Encoding (EHE). For the demonstration, we

focus on specifications formalized using automata. The execution

Listing 2 An LTL Specification

<specifications>
<specification id="root"
class="uga.corse.themis.monitoring.SpecLTL">
<setLTL><![CDATALXXXX(!a0 | (b1 U G(a@ & b0 & c0)))1I></setLTL>
</specification>
</specifications>

of the specification automaton, is in fact, the process of monitoring,
upon running the trace, the reached state determines the verdict.
In a decentralized system, a component receives only local observa-
tions, it generally does not have enough information to determine
the state at a given timestamp. Typically, when sufficient informa-
tion is shared between various components, it is possible to know
the state reached in the automaton. The EHE is a data structure that
encodes the execution of the automaton using boolean expressions
and ensures strong eventual consistency in determining the state
reached in the execution. Formal details are in [8].

Command-line Tools. The THEMIS framework is bundled with
several tools to execute monitoring. The Run tool takes as input
the name of a monitoring algorithm class, a specification file, the
number of components, the length of a trace (in order to timeout), a
traces directory, and one or more traces to read and simulate the run
of the algorithm on the given trace and specification. Upon finish-
ing the execution, the measures will be printed. The Experiment
tool is designed to execute a set of runs packaged as an experi-
ment. Experiments are used to define sets of parameters, traces and
specifications. An experiment is effectively a folder containing all
necessary files. After running a single run or an experiment, the
measures are stored in a database for postmortem analysis. These
can be queried, merged, or plotted easily using third-party tools.

4 THE MIGRATION ALGORITHM

The migration algorithm is a decentralized monitoring algorithm
where information is passed throughout the components to eventu-
ally verify the specification. In our setup, the migration algorithm
will assign a monitor per component. These monitors are strongly
connected; each monitor is connected to all other monitors. The
monitors are either active or inactive. Active monitors are monitors
that seek to find a verdict while inactive monitors are idle, waiting
for other monitors to send them their EHE. Both active and inac-
tive monitors store the observations they receive in their memory.
However, only active monitors will update the expressions in their
EHE. After expressions are updated, active monitors will determine
which other monitors should be sent the EHE to continue monitor-
ing using a method getNext. In this demonstration, we use two
different implementations of getNext. The first chooses the next
monitor by cycling through all monitors in a round-robin fashion.
The second chooses the monitor based on the earliest observation
missing to evaluate the EHE [6].

Setup. Listing 3 shows the setup phase. We first make sure to
convert the main specification (identified by root) to an automaton
specification (line 2-3). Next, we create the monitors map, and
generate as many monitors as components, giving them ids starting
from zero. Each monitor is then attached to a component (line 8) to
receive observations on that component. We note that in the default

implementation of communication, all monitors are connected to
each other, therefore there is no need to connect monitors to each
other.

Listing 3 Migration Setup Phase

1 protected Map<Integer, ? extends Monitor> setup() {

2 config.getSpec().put("root",

3 Convert.makeAutomataSpec(config.getSpec().get("root")));
4 Map<Integer, Monitor> mons = new HashMap<Integer, Monitor>();
5 Integer i = 0;

6 for(Component comp : config.getComponents()) {

7 MonMigrate mon = new MonMigrate(i);

8 attachMonitor(comp, mon);

9 mons.put(i, mon);

10 i++;

1 }

12 return mons;
13 }

Monitor. The monitoring logic of the monitor is shown in List-
ing 4. First, the monitor updates its memory by adding the new
observations (line 3). Then, the monitor checks if it received any-
thing and merges the received EHE. If the monitor receives anything
then they become active. Upon receiving observations the moni-
tor then updates its EHE and checks for a verdict. If a verdict has
changed (line 9) and the verdict reached is a final verdict (line 11),
then we report it and remove unnecessary entries in the EHE (line
13). We then determine the id of the new monitor to send the EHE
to (line 15). The two implementations of the method getNext ()
determine the variants of Migration. If it is a different monitor id,
then we must migrate, the EHE is sent to the next monitor (line 18)
and the current monitor is rendered inactive (line 19).

Listing 4 Migration Monitor

1 public void monitor(int t, Memory<Atom> observations)
2 throws ReportVerdict, ExceptionStopMonitoring {

3 m.merge (observations) ;

4 if(receive()) isMonitoring = true;

5 if(isMonitoring) {

6 if(!observations.isEmpty())

7 autRep.tick();

8 boolean b = autRep.update(m, -1);

9 if(b) {

10 VerdictTimed v = autRep.scanVerdict();

11 if(v.isFinal())

12 throw new ReportVerdict(v.getVerdict(), t);
13 autRep.dropResolved();

14 }

15 int next = getNext();

16 if(next != getID()) {

17 Representation toSend = autRep.slicelive();
18 send(next, new RepresentationPacket(toSend));
19 isMonitoring = false;

20 }

21 }

22 }

Measures. To evaluate the behavior of the migration algorithm
we use the communication as an example metric. We measure the
number of messages sent and the size of the messages. The number
of messages indicates the number of migrations performed, while
the size of the messages indicates how big the EHE is. The number
of messages is shown in Listing 5. We begin by adding the measure
and initializing with zero (line 2). We intercept the message sending
using Aspect] (line 4) and update our measure (line 5).

Listing 5 Measuring Communication

1 protected void setupRun(MonitoringAlgorithm alg) {

2 addMeasure (new Measure("msg_num","Msgs", 0L,Measures.addLong));
3}

4 after(Integer to, Message m) : Commons.sendMessage(to, m) {

5 update("msg_num" , 1L);

6

}

SELECT alg, comps, avgi{msg num), avg(msg data), count(*)
FROM bench WHERE alg in ('Migration®, 'MigrationRR')
GROUP BY alg, comps

WK =

alg comps avgimsg_num} count(*)

1| Migration 3 2.04226336011177 267.8458714635 572600

avg(msg_data)

2| Migration 4 2.16402472527473 668.129401098901 364000

3| Migration 5 3.33806822465134 3954,09705050886 530600

4| MigrationRR | 3 32.7222301781348 482.572275585051 572600

5| MigrationRR 4 31.8533351648352 932.708425824176 364000

6| MigrationRR 5 19.2345269506219 4361.30746324915 530600

Figure 2: Example Database Querying

Analyze. We aim to compare the communication patterns of
the two variants. To do so, we execute 2,934,400 runs to generate
a database of the measures. We use 200 traces of 100 events per
component, we associate with each component 2 observations. We
vary the number of components between 3 and 5, and ensure that
for each number we have at least 1,000 formulae that reference all
components. Specifications are generated as random LTL formulae
using randltl from Spot [7], then converted to automata using
1t12mon [4]. Figure 2 displays our example query on the database
to retrieve the communication measures, where column alg (resp.
comps, avg(msg_num), avg(msg_data), count) indicates the algo-
rithm (resp. number of components, average number of messages,
average size of messages, the number of runs). MigrationRR stands
for Migration with round robin. We can see that the naive round-
robin variant has both a higher number of messages and more
communication. The smaller number of messages indicates that
less migrations are performed overall.

5 CONCLUSION

We present THEMIS, a tool for designing and analyzing decentralized
monitoring algorithms. THEMIS is an extensible framework for ana-
lyzing current algorithms, designing new ones, and experimenting
with variants of existing algorithms. In addition, THEMIS provides
common metrics for communication and computation overheads.
THEMIS allows for re-use of both algorithms and measures so as
to allow for easier comparison between algorithms. We provide
an example of the methodology by applying it to the migration
algorithm.

Finally, it is possible to check the tool, more examples, usage tu-
torial, technical documentation, and the (reproducible) experiments
conducted with THEMIS on its website [9].

REFERENCES

[1] Ezio Bartocci, Yliés Falcone, Borzoo Bonakdarpour, Christian Colombo, Nor-
mann Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles
Reger, Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi
Zhang. 2017. First international Competition on Runtime Verification: rules,
benchmarks, tools, and final results of CRV 2014. International Journal on Soft-
ware Tools for Technology Transfer (2017), 1-40. DOI: http://dx.doi.org/10.1007/
510009-017-0454-5

[2] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2015. Failure-aware Run-
time Verification of Distributed Systems. In 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015
(LIPIcs), Prahladh Harsha and G. Ramalingam (Eds.), Vol. 45. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 590-603.

[3] Andreas Bauer and Yliés Falcone. 2016. Decentralised LTL monitoring. Formal
Methods in System Design 48, 1-2 (2016), 46-93.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verifi-
cation for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4 (2011), 14.

[5] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosen-
blueth, and Corentin Travers. 2016. Decentralized Asynchronous Crash-Resilient
Runtime Verification. In 27th International Conference on Concurrency Theory
(CONCUR 2016) (LIPIcs), Josée Desharnais and Radha Jagadeesan (Eds.), Vol. 59.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 16:1-16:15.

[6] Christian Colombo and Yliés Falcone. 2016. Organising LTL monitors over
distributed systems with a global clock. Formal Methods in System Design 49, 1-2
(2016), 109-158.

[7] Alexandre Duret-Lutz. 2013. Manipulating LTL formulas using Spot 1.0. In
Proceedings of the 11th International Symposium on Automated Technology for
Verification and Analysis (ATVA’13) (Lecture Notes in Computer Science), Vol. 8172.
Springer, 442-445.

[8] Antoine El-Hokayem and Yliés Falcone. 2017. Monitoring Decentralized Spec-
ifications. In Proceedings of 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’17), Santa Barbara, CA, USA, July 2017. DOI :
http://dx.doi.org/https://doi.org/10.1145/3092703.3098224

[9] Antoine El-Hokayem and Yliés Falcone. 2017. THEMIS Website. (2017). https:

//gitlab.inria.fr/monitoring/themis.

Ylies Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime

Verification. In Engineering Dependable Software Systems, Manfred Broy, Doron

a. Peled, and Georg Kalus (Eds.). NATO science for peace and security series,

Vol. 34. 10S press, 141-175.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of Aspect]. In ECOOP 2001 - Object-
Oriented Programming, 15th European Conference (Lecture Notes in Computer
Science), Jorgen Lindskov Knudsen (Ed.), Vol. 2072. Springer, 327-353.

[12] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. J. Log. Algebr. Program. 78, 5 (2009), 293-303.

[13] Grigore Rosu and Klaus Havelund. 2005. Rewriting-Based Techniques for Run-

time Verification. Autom. Softw. Eng. 12, 2 (2005), 151-197.

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.

ACM 33, 8 (Aug. 1990), 103-111.

[10

(14

http://dx.doi.org/10.1007/s10009-017-0454-5
http://dx.doi.org/10.1007/s10009-017-0454-5
http://dx.doi.org/https://doi.org/10.1145/3092703.3098224
https://gitlab.inria.fr/monitoring/themis
https://gitlab.inria.fr/monitoring/themis

	Abstract
	1 Introduction
	2 The THEMIS Approach
	3 The THEMIS Framework
	4 The Migration Algorithm
	5 Conclusion
	References

