
HAL Id: hal-01653725
https://hal.science/hal-01653725

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring Decentralized Specifications
Antoine El-Hokayem, Yliès Falcone

To cite this version:
Antoine El-Hokayem, Yliès Falcone. Monitoring Decentralized Specifications. ISSTA 2017, Jul 2017,
Santa Barbara, CA, United States. pp.125-135, �10.1145/3092703.3092723�. �hal-01653725�

https://hal.science/hal-01653725
https://hal.archives-ouvertes.fr

Monitoring Decentralized Specifications
Antoine El-Hokayem

Univ. Grenoble Alpes, Inria, CNRS,
Laboratoire d’Informatique de Grenoble

F-38000 Grenoble, France
antoine.el-hokayem@univ-grenoble-alpes.fr

Yliès Falcone
Univ. Grenoble Alpes, Inria, CNRS,

Laboratoire d’Informatique de Grenoble
F-38000 Grenoble, France

ylies.falcone@univ-grenoble-alpes.fr

ABSTRACT
We define two complementary approaches to monitor decentralized
systems. The first relies on those with a centralized specification,
i.e, when the specification is written for the behavior of the entire
system. To do so, our approach introduces a data-structure that i)
keeps track of the execution of an automaton, ii) has predictable
parameters and size, and iii) guarantees strong eventual consistency.
The second approach defines decentralized specifications wherein
multiple specifications are provided for separate parts of the system.
We study decentralized monitorability, and present a general algo-
rithm for monitoring decentralized specifications. We map three
existing algorithms to our approaches and provide a framework
for analyzing their behavior. Lastly, we introduce our tool, which
is a framework for designing such decentralized algorithms, and
simulating their behavior.

KEYWORDS
RuntimeVerification,Monitoring, Decentralized Specification,Mon-
itorability, Eventual Consistency

1 INTRODUCTION
Runtime Verification (RV) [2, 18, 21] is a lightweight formal method
which consists in verifying that a run of a system is correct wrt
a specification. The specification formalizes the behavior of the
system typically in logics (such as variants of Linear-Time Tem-
poral Logic, LTL) or finite-state machines. Typically the system is
considered as a blackbox that feeds events to a monitor. An event
usually consists of a set of atomic propositions that describe some
abstract operations or states in the system. The sequence of events
transmitted to the monitor is referred to as the trace. Based on the
received events, the monitor emits verdicts in a truth domain that
indicate the compliance of the system to the specification. RV tech-
niques have been used for instance in the context of decentralized
automotive [9] and medical [22] systems. In both cases, RV is used
to verify correct communication patterns between the various com-
ponents and their adherence to the architecture and their formal
specifications. While RV comprehensively deals with monolithic
systems, multiple challenges are presented when scaling existing
approaches to decentralized systems, that is, systems with multiple
components with no central observation point.

Challenges. Several algorithms have been designed [5, 6, 8, 16]
and used [1] to monitor decentralized systems. Algorithms are pri-
marily designed to address one issue at a time and are typically

July 14, 2017
© 2017 Copyright held by the owner/author(s).

experimentally evaluated by considering runtime andmemory over-
heads. However, such algorithms are difficult to compare as they
may combine multiple approaches at once. For example, algorithms
that use LTL rewriting [5, 8, 25] not only exhibit variable runtime
behavior due to the rewriting, but also incorporate different monitor
synthesis approaches that separate the specification into multiple
smaller specifications depending on the monitor. In this case, we
would like to split the problem of generating equivalent decen-
tralized specifications from a centralized one (synthesis) from the
problem of monitoring. In addition, works on characterizing what
one can monitor (i.e., monitorability [17, 20, 24]) for centralized
specifications exist [4, 10, 17], but do not extend to decentralized
specifications. For example by splitting an LTL formula ad-hoc, it is
possible to obtain a non-monitorable subformula1 which interferes
with the completeness of a monitoring algorithm.

Contributions. In this paper, we tackle the presented challenges
using two complementary approaches. We first lay out the basic
blocks, by introducing our basic data structure, and the basic notions
of monitoring with expressions in Sec. 3. Then, we present our first
approach, a middle ground between rewriting and automata eval-
uation by introducing the Execution History Encoding (EHE) data
structure in Sec. 4. We restrict the rewriting to boolean expressions,
determine the parameters and their respective effect on the size of
expressions, and fix upper bounds. In addition, EHE is designed to be
particularly flexible in processing, storing and communicating the
information in the system. EHE operates on an encoding of atomic
propositions and guarantees strong-eventual consistency [28]. In
Sec. 5, we shift the focus on studying decentralized specifications
and their properties, we define their semantics, interdependencies
and study their monitorability. We aim at abstracting the high-level
steps of decentralized monitoring. By identifying these steps, we
elaborate a general decentralized monitoring algorithm. We view
a decentralized system as a set of components C. We associate n
monitors to these components with the possibility of two or more
monitors being associated to a component. We see a decentralized
specification as a set of n finite-state automata with specific prop-
erties. Each automaton is associated with a monitor. Therefore, we
generalize monitoring algorithms to multiple monitors. Therefore,
we present a general decentralized monitoring algorithm that uses
two high level steps: setup and monitor. Monitoring a centralized
system can be seen as a special case with one component, one
specification, and one monitor. Additionally, the two high level
operations help decompose monitoring into different subproblems
and define them independently. For example, the problem of gener-
ating a decentralized specification from a centralized specification

1We use the example from [8]: GF(a) ∧ ¬(GF(a)) is monitorable, but its subformulae
are both non-monitorable.

is separated from checking the monitorability of a specification,
and also separated from the computation and communication per-
formed by the monitor. In Sec. 6, we use our analysis of EHE to
study the behavior of three existing algorithms and discuss the
situations that advantage certain algorithms over others. In Sec. 7,
we present THEMIS, a JAVA tool that implements the concepts in
this paper; and show how it can be used to design and analyze new
algorithms. In Sec. 8, we use THEMIS to create new metrics related
to load-balancing and our data structures, and to experimentally
verify our analysis. Finally, we conclude and present future work
in Sec. 9. An extended version of this paper (with full proofs) is
available at [14].

2 RELATEDWORK
Several approaches have been taken to handle decentralized mon-
itoring focusing on different aspects of the problem. The first
class of approaches consists in monitoring by LTL formula rewrit-
ing [5, 8, 25]. Given an LTL formula specifying the system, amonitor
will rewrite the formula based on information it has observed or
received from other monitors. Typically a formula is rewritten and
simplified until it is equivalent to ⊤ (true) or ⊥ (false) at which
point the algorithm terminates. Another approach [29] extends
rewriting to focus on real-time systems. They use Metric Temporal
Logic (MTL), which is an extension to LTL with temporal operators.
This approach also covers lower bound analysis on monitoring
MTL formulae. While these techniques are simple and elegant,
rewriting varies significantly during runtime based on observa-
tions, thus analyzing the runtime behavior could prove difficult if
not unpredictable. For example, when excluding specific syntactic
simplification rules,G(⊤) could be rewritten⊤∧G(⊤) and will keep
growing in function of the number of timestamps. To tackle the
unpredictability of rewriting LTL formulae, another approach [16]
uses automata for monitoring regular languages, and therefore (i)
can express richer specifications, and (ii) has predictable runtime
behavior. This approach focuses on a centralized specification.

Another class of research focuses on handling a different prob-
lem that arises in distributed systems. In [6], monitors are subject
to many faults such as failing to receive correct observations or
communicate state with other monitors. Therefore, the problem
handled is that of reaching consensus with fault-tolerance, and is
solved by determining the necessary verdict domain needed to be
able to reach a consensus. To remain general, we do not impose
the restriction that all monitors must reach the verdict when it
is known, as we allow different specifications per monitor. Since
we have heterogeneous monitors, we are not particularly inter-
ested in consensus. However for monitors that monitor the same
specification, we are interested in strong eventual consistency. We
maintain the 3-valued verdict domain, and tackle the problem from
a different angle by considering eventual delivery of messages. Sim-
ilar work [3] extends the MTL approach to deal with failures by
modeling knowledge gaps and working on resolving these gaps.

We also highlight that the mentioned approaches [3, 5, 8], and
other works [11, 26, 27] do in effect introduce a decentralized spec-
ification. These approaches define separate monitors with different
specifications, typically consisting of splitting the formula into
subformulae. Then, they describe the collaboration between such

monitors. However, they primarily focus on presenting one global
formula of the system from which they derive multiple specifica-
tions. In our approach, we generalize the notions from a centralized
to a decentralized specification, and separate the problem of generat-
ing multiple specifications equivalent to a centralized specification
from the monitoring of a decentralized specification.

3 COMMON NOTIONS
We begin by introducing the dict data structure used to build more
complex data structures in Sec. 3.1. Then, we introduce the basic
concepts for decentralized monitoring in Sec. 3.2.

3.1 The dict Data Structure
In monitoring decentralized systems, monitors typically have a
state, and attempt to merge other monitor states with theirs to
maintain a consistent view of the running system, that is, at no
point in the execution, should two monitors receive updates that
conflict with one another. We would like in addition, that any two
monitors receiving the same information be in equivalent states.
Therefore, we are interested in designing data structures that can
replicate their state under strong eventual consistency (SEC) [28],
they are known as state-based convergent replicated data-types
(CvRDTs). We use a dictionary data structure dict as our basic
building block that maps a key to a value. dict supports two opera-
tions: query and merge. The merge operation is the only operation
that modifies dict. The modifications never remove entries, the
state of dict is then monotonically increasing. By ensuring that
merge is idempotent, commutative, and associative we fulfill the
necessary conditions for our data structure to be a CvRDT.

Proposition 3.1. Data structure dict with operations query and
merge is a CvRDT.

We model dict as a partial function f. The keys are the domain
of f , i.e., dom(f) and values are mapped to each entry of the domain.
The query operation checks if a key k ∈ dom(f) and returns f(k).
If k < dom(f), then it is undef. The merge operation of a dict
f with another dict д, is modeled as function composition. Two
partial functions f and g are composed using operator †op where
op : (dom(f) × dom(д)) → (codom(f) ∪ codom(д)) is a binary
function.

f †op g(x) : dom(f) ∪ dom(g) → codom(f) ∪ codom(g)

=


op(f(x), g(x)) if x ∈ dom(f) ∩ dom(g)
g(x) if x ∈ dom(g) \ dom(f)
f(x) if x ∈ dom(f) \ dom(g)
undef otherwise

On sets of functions, †op applies pairwise:
⊎op{f1, . . . fn} = ((f1 †op

f2) . . . fn) The following two operators are used in the rest of the pa-
per: †2 and †∨. We define both of these operators to be commutative,
idempotent, and associative to ensure SEC.

†2(x ,x
′) =

{
x ′ if x ≺ x ′

x otherwise †∨ (x ,x ′) = x ∨ x ′

Operator †2 acts as a replace function with the addition of a total or-
der (≺) between the elements, so that it always chooses the highest
element to guarantee idempotence, while †∨ is simply the logical

2

or operator. Respectively, we denote the pairwise set operators as⊎2 and
⊎∨.

3.2 Basic Monitoring Concepts
We recall the basic building blocks of monitoring. We consider the
set of verdicts B3 = {⊤,⊥, ?} to denote the verdicts true, false, not
reached (or inconclusive) respectively. A verdict from B2 = {⊤,⊥}

is a final verdict. Given a set of atomic propositions AP , we de-
fine an encoding of the atomic propositions as Atoms, this encod-
ing is left to the monitoring algorithm to specify. ExprAtoms (resp.
ExprAP) denotes the set of boolean expressions over Atoms (resp.
AP). When omitted, Expr refers to ExprAtoms . An encoder is a func-
tion enc : ExprAP → ExprAtoms that encodes the atomic proposi-
tions into atoms. In this paper, we use two encoders: idt which is
the identity function (it does not modify the atomic proposition),
and tst which adds a timestamp t to each atomic proposition. A
decentralized monitoring algorithm requires retaining, retrieving
and communicating observations.

Definition 3.2 (Event). An observation is a pair in AP × B2 indi-
cating whether or not a proposition has been observed. An event is
a set of observations in 2AP×B2 .

Example 3.3 (Event). The event {⟨a,⊤⟩, ⟨b,⊥⟩} over AP = {a,b}
indicates that the proposition a has been observed to be true, while
b has been observed to be false.

Definition 3.4 (Memory). A memory is a dict, and is modeled as
a partial function M : Atoms → B3 that associates an atom to a
verdict. The set of all memories is defined as Mem.

Events are commonly stored in a monitor memory with some
encoding (e.g., adding a timestamp). An event can be converted to a
memory by encoding the atomic propositions to atoms, and associ-
ating their truth value: memc : 2AP×B2 ×(ExprAP → ExprAtoms) →

Mem.

Example 3.5 (Memory). Let e = {⟨a,⊤⟩, ⟨b,⊥⟩} be an event at
t = 1, the resulting memories using our encoders are:
memc(e, idt) = [a 7→ ⊤,b 7→ ⊥],

memc(e, ts1) = [⟨1,a⟩ 7→ ⊤, ⟨1,b⟩ 7→ ⊥].

If we impose that Atoms be a totally ordered set, then two mem-
ories M1 and M2 can be merged by applying operator †2. The
total ordering is needed for the operator †2. This ensures that the
operation is idempotent, associative and commutative. Monitors
that exchange their memories and merge them have a consistent
snapshot of the memory, regardless of the ordering. Since memory
is a dict and †2 is idempotent, associative, and commutative, it
follows from Prop. 3.1 that it is a CvRDT.

Corollary 3.6. A memory with operation †2 is a CvRDT.

In this paper, we perform monitoring by manipulating expres-
sions in Expr . The first operation we provide is rw, which rewrites
the expression to attempt to eliminate Atoms.

Definition 3.7 (Rewriting). An expression expr is rewritten with
a memoryM using rw(expr,M) defined as follows:

rw : Expr ×Mem → Expr

rw(expr,M) = match expr with

| a ∈ Atoms →

{
M(a) if a ∈ dom(M)

a otherwise
| ¬e → ¬rw(e,M)

| e1 ∧ e2 → rw(e1,M) ∧ rw(e2,M)

| e1 ∨ e2 → rw(e1,M) ∨ rw(e2,M)

Using information from amemoryM, the expression is rewritten
by replacing atoms with a final verdict (a truth value in B2) inM

when possible. Atoms that are not associated with a final verdict are
kept in the expression. The operation rw yields a smaller formula
to work with and repeatedly evaluate.

Example 3.8 (Rewriting). We consider M = [a 7→ ⊤,b 7→ ⊥];
and e = (a ∨ b) ∧ c . We have M(a) = ⊤, M(b) = ⊥, M(c) = ?.
Since c is associated with ? < B2 then it will not be replaced. The
resulting expression is rw(e,M) = (⊤ ∨ ⊥) ∧ c .

We eliminate additional atoms using boolean logic. We denote
by simplify(expr) the simplification of formula expr 2.

Example 3.9 (Simplification). Consider M = [a 7→ ⊤] and e =
(a ∧ b) ∨ (a ∧ ¬b). We have e ′ = rw(e,M) = (b ∨ ¬b). Atoms can
be eliminated with simplify(e ′). We finally get ⊤.

We combine both rewriting and simplification in the eval func-
tion which determines a verdict from an expression expr.

Definition 3.10 (Evaluating an expression). The evaluation of an
boolean expression expr ∈ Expr using amemoryM yields a verdict.
eval : Expr ×Mem → B3:

eval(expr,M) =


⊤ if e ′ ⇔ ⊤

⊥ if e ′ ⇔ ⊥

? otherwise
with e ′ = simplify(rw(expr,M))

Function eval returns the ⊤ (resp. ⊥) verdict if the simplification
after rewriting is (boolean) equivalent to ⊤ (resp. ⊥), otherwise it
returns the verdict ?.

Example 3.11 (Evaluating expressions). Consider M = [a 7→

⊤,b 7→ ⊥] and e = (a ∨ b) ∧ c . Ãź We have simplify(rw(e,M)) =

simplify((⊤ ∨ ⊥) ∧ c) = c , and eval(e,M) = ? which depends on c :
we cannot emit a final verdict before observing c .

A decentralized system is as set of components C, we associate a
sequence of events to each component using a decentralized trace
function.

Definition 3.12 (Decentralized trace). A decentralized trace is a
function tr : N × C → 2AP×B2 .

Function tr assigns an event to a component for a given times-
tamp. We additionally define function lu : AP → C to associate an

2This is also known as The Minimum Equivalent Expression problem [7].

3

observation to a component3.
lu(ap) = c s.t. ∃t ∈ N,∃v ∈ B2 : ⟨ap,v⟩ ∈ tr(t , c).

We consider timestamp 0 to be associated with the initial state,
therefore our traces start at 1. Thus, a finite trace of length n is
a function tr with a domain [1,n]. An empty trace has length 0
and is denoted by ∅. While tr gives us a view of what components
can locally see, we reconstruct the global trace to reason about all
observations.

Definition 3.13 (Reconstructing a global trace). Given a decentral-
ized trace tr of length n, the global trace ρ(tr) = e1 · . . . · en is s.t.
∀i ∈ [1,n] : ei =

⋃
c ∈C tr(i, c).

For each timestamp i ∈ [1,n] we take all observations of all
components and union them to get a global event. Consequently,
an empty trace yields an empty global trace, ρ(∅) = ∅.

4 CENTRALIZED SPECIFICATIONS
We now focus on a decentralized system specified by one global
automaton. The automaton is similar to automata defined for moni-
toring LTL3. This has been the topic of a lot of the Runtime Verifica-
tion literature, we focus on adapting the approach to use a new data
structure called Execution History Encoding (EHE). Typically, mon-
itoring is done by labeling an automaton with events, then playing
the trace on the automaton and determining the verdict based on
the reached state. We present EHE, a data structure that encodes
the necessary information from an execution of the automaton,
and ensures strong eventual consistency. We begin by defining the
specification automaton used for monitoring in Sec. 4.1, then we
present the EHE data structure, illustrate how it can be used for mon-
itoring in Sec. 4.2, and describe its use when partial observations
are available in Sec. 4.3.

4.1 Preliminaries
Specifications are similar to the Moore automata generated by [4].
We modify labels to be boolean expressions over atomic proposi-
tions (in ExprAP).

Definition 4.1 (Specification). The specification is a deterministic
Moore automaton ⟨Q,q0 ∈ Q,δ , ver⟩ where δ : Q × ExprAP → Q is
the transition function and ver : Q → B3 is the labeling function.

We choose to label the transitions with boolean expressions as
opposed to events, to keep a homogeneous representation4. The
labeling function associates a verdict with each state. The specifica-
tion is a complete automaton, only one label will be equivalent to⊤,
and for a given state q ∈ Q if we disjunct the labels of all outgoing
transitions, the expression should be equivalent to ⊤. When using
multiple automata we use the subscript notation to separate them,
Ai = ⟨Qi ,qi0 ,δi , veri ⟩. The semantics of the specification are given
by a function ∆5.

3We assume that (1) no two components can observe the same atomic propositions,
and (2) a component has at least one observation at all times (a component with no
observations to monitor, can be simply considered excluded from the system under
monitoring).
4Indeed, an event can be converted to an expression by the conjunction of all observa-
tions, negating the terms that are associated with the verdict ⊥.
5We note that in this case, we are not using any encoding (Atoms = AP).

q0 q1

a ∨ b ⊤¬a ∧ ¬b

Figure 1: Representing F(a ∨ b)

Definition 4.2 (Semantics of the specification). Given Ai , a state
q ∈ Qi , and an event e , we build the memory M = memc(e, idt).
We have:

∆i (q, e) =

{
q′ | ∃q′ ∈ Qi : go(q,q′,M) if e , ∅

q otherwise
go(q,q′,M) ⇔ ∃e ∈ ExprAP : δ (q, e) = q′ ∧ eval(e,M) = ⊤

UsingM we evaluate each label of an outgoing transition, and
determine if a transition can be taken on e . In the case of an empty
event (e = ∅), we return the same state. To handle a trace, we extend
∆i to its reflexive and transitive closure in the usual way, and note
it ∆∗

i .

Example 4.3 (Monitoring using expressions). We considerAtoms =
AP = {a,b} and the specifiction in Fig. 1, we seek to monitor
F(a∨b). The automaton consists of two states: q0 and q1 associated
respectively with the verdicts ? and ⊤. We consider at t = 1 the
event e = {⟨a,⊤⟩, ⟨b,⊥⟩}. The resulting memory is M = [a 7→

⊤,b 7→ ⊥] (see Ex. 3.5). The transition from q0 to q1 is taken since
eval(a ∨ b,M) = ⊤. Thus we have ∆(q0, e) = q1 with verdict
ver(q1) = ⊤.

4.2 Execution History Encoding
The execution of the specification automaton, is in fact, the process
of monitoring, upon running the trace, the reached state determines
the verdict. An execution of the specification automaton can be
seen as a sequence of states q0 ·q1 · . . .qt ·qt+1 It indicates that
for each timestamp t ∈ [0,∞[the automaton is in the state qt . In a
decentralized system, a component receives only local observations
and does not necessarily have enough information to determine the
state at a given timestamp. Typically, when sufficient information
is shared between various components, it is possible to know the
state qt that is reached in the automaton at t (we say that the state
qt has been found, in such a case). The main motivation behind
designing the EHE encoding is to ensure strong eventual consistency
in determining the state qt of the execution of an automaton. That
is, after two different monitors share their EHE, they should both be
able to find qt for t (if there exists enough information to infer the
global state), or if not enough information is available, they both
find no state at all.

Definition 4.4 (Execution History Encoding - EHE). An Execution
History Encoding (EHE) of the execution of an automaton Ai is a
partial function Ii : N ×Q → Expr .

For a given execution, we encode the conditions to be in a state
at a given timestamp as an expression in Expr . Ii (t ,q) = e indicates
that the automaton is in state q at t if eval(e,M) is ⊤ given a
memory M. Since we are encoding deterministic automata, we
assume that when a state q is reachable at t , no other state is
reachable at t (i.e., ∃q ∈ Qi : eval(Ii (t ,q)) = ⊤ =⇒ ∀q′ ∈

Qi : q′ , q =⇒ eval(Ii (t ,q′)) , ⊤).
To compute Ii for a timestamp range, we will next define some

(partial) functions: seli , verAti , nexti , toi , and movi . The purpose
4

Table 1: A tabular representation of I2

t q expr
0 q0 ⊤

1 q0 ¬⟨1, a ⟩ ∧ ¬⟨1, b ⟩
1 q1 ⟨1, a ⟩ ∨ ⟨1, b ⟩
2 q0 (¬⟨1, a ⟩ ∧ ¬⟨1, b ⟩) ∧ (¬⟨2, a ⟩ ∧ ¬⟨2, b ⟩)
2 q1 (⟨1, a ⟩ ∨ ⟨1, b ⟩) ∨ ((¬⟨1, a ⟩ ∧ ¬⟨1, b ⟩) ∧ (⟨2, a ⟩ ∨ ⟨2, b ⟩))

of these functions is to extract information from Ii at a given
timestamp, which we can use to recursively build Ii for future
timestamps. Given a memory M which stores atoms, the function
seli determines if a state is reached at a timestamp t . If the memory
does not contain enough information to evaluate the expressions,
then the state is undef. The state q at timestamp t with a memory
M is determined by:

seli (Ii ,M, t) =


q if ∃q ∈ Qi :
eval(Ii (t ,q),M) = ⊤

undef otherwise

Function verAti is a short-hand to retrieve the verdict at t :

verAti (Ii ,M, t) =


veri (q) if ∃q ∈ Qi :
q = seli (Ii ,M, t)

? otherwise

The automaton is in the first state at t = 0. We start building
up Ii with the initial state and associating it with expression ⊤:
Ii = [0 7→ q0 7→ ⊤]. Then, we check the next possible states in
the automaton; for timestamp t , we look at the states in Ii (t) and
check for the possible states at t + 1 using δi .

nexti (Ii , t) = {q′ | ∃q ∈ Ii (t ,q),∃e : δi (q, e) = q′}
We now build the necessary expression to reach q′ from multiple
states q by disjoining the transition labels. Since the label consists
of expressions in ExprAP we use an encoder to get an expression
in ExprAtoms To get to the state q′ at t + 1 from q we conjunct the
condition to reach q at t .

toi (Ii , t ,q′, f) =
∨

{ ⟨q,e ′⟩ | δ (q,e ′)=q′ }

(Ii (t ,q) ∧ enc(e ′))

By considering the disjunction, we cover all possible paths to reach
a given state. Updating the conditions for the same state on the
same timestamp is done by disjoining the conditions.

movi (Ii , ts , te) =
{

movi (I ′
i , ts + 1, te) if ts < te

Ii otherwise

with: I ′
i = Ii †∨

∨⊎
q′∈nextA (Ii ,ts)

{ts + 1 7→ q′ 7→ toi (Ii , ts ,q′, tsts+1)}.

Finally,I ′
i is obtained by considering the next states andmerging

all their expressions to Ii . We omit the A subscript when we have
one automaton, and denote the encoding up to a timestamp t as
It .

Example 4.5 (Monitoring with EHE). We encode the execution of
the automaton presented in Ex. 4.3. We have I0 = [0 7→ q0 7→ ⊤].
From q0, it is possible to go to q0 or q1, therefore next(I0, 0) =
{q0,q1}. To move to q1 at t = 1, we must be at q0 at t = 0. The fol-
lowing condition must hold: to(I0, 0,q1, ts1) = I0(0,q0)∧ (⟨1,a⟩ ∨

⟨1,b⟩) = ⟨1,a⟩ ∨ ⟨1,b⟩. The encoding up to timestamp t = 2 is
obtained with I2 = mov(I0, 0, 2) and is shown in Table 1. We
consider the same event as in Ex. 3.5 at t = 1, e = {⟨a,⊤⟩, ⟨b,⊥⟩}.
Let M = memc(e, ts1) = [⟨1,a⟩ 7→ ⊤, ⟨1,b⟩ 7→ ⊥]. It is pos-
sible to infer the state of the automaton after computing only
I1 = mov(I0, 0, 1) by using sel(I1,M, 1), we evaluate:

eval(I1(1,q0),M) = ¬⟨1,a⟩ ∧ ¬⟨1,b⟩ = ⊥

eval(I1(1,q1),M) = ⟨1,a⟩ ∨ ⟨1,b⟩ = ⊤

We find that q1 is the selected state, with verdict ver(q1) = ⊤.

Proposition 4.6 (Soundness). Given a decentralized trace tr of
length n, we reconstruct the global trace e = ρ(tr) = e0 · . . . · en , we
have: ∆∗(q0, e) = sel(In ,Mn ,n), with:

In = mov([0 7→ q0 7→ ⊤], 0,n), and
Mn =

⊎2
t ∈[1,n]{memc(et , tst)}.

EHE is sound wrt the specification automaton; both will indicate
the same state reached with a given trace. Thus, the verdict is the
same as it would be in the automaton. The proof is by induction
on the reconstructed global trace. We first establish that both the
EHE and the automaton memories evaluate two similar expressions
modulo encoding with the same result. Then, starting from the
same state at lenghth n, we build the expression (for each encoding)
to reach the state at n + 1. Then we show that the expression (for
each encoding) is the only expression that evaluates to ⊤.

4.3 Reconciling Execution History
We also note that EHE provides interesting properties for decentral-
ized monitoring. Merging two EHEs of the same automaton with †∨

allows us to aggregate information from two partial histories. For
the same execution of the automaton and a timestamp t , if we have
two encodings I(t ,q) = e and I ′(t ,q) = e ′, then we know that
the automaton is in q at t iff either e or e ′ evaluates to ⊤ (Def. 4.4).
Therefore, the new expression e ′′ = e ∨ e ′ can be an effective way
to reconcile information from two encodings. The memory M can
be embedded in an expression e by simply using rw(e,M) (Def. 3.7).
Thus, by rewriting expressions and combining EHEs, it is possible
to reconcile multiple partial observations of an execution.

Example 4.7 (Reconciling information). We consider the specifi-
cation F(a ∧ b) (Fig. 2), and two components: c0 and c1 monitored
bym0 andm1 respectively. The monitors can observe the proposi-
tions a and b respectively and use one EHE each: I0 and I1 respec-
tively. Their memories are respectively M0 = [⟨1,a⟩ 7→ ⊤] and
M1 = [⟨1,b⟩ 7→ ⊥]. Table 2 shows the EHEs at t = 1. Constructing
the EHE follows similarly from Ex. 4.5. We show the rewriting for
both I0 and I1 respectively in the next two columns. Then, we show
the result of combining the rewrites using †∨. We notice initially
that since b is ⊥,m1 could evaluate ¬⟨1,a⟩ ∨ ⊤ = ⊤ and know that
the automaton is in state q0. However, form0, this is not possible
until the expressions are combined. By evaluating the combination
(⊥∨¬⟨1,b⟩)∨⊤ = ⊤,m0 determines that the automaton is in state
q0. In this case, we are only looking for expressions that evaluate
to ⊤. We notice that the monitorm1 can determine that q1 is not
reachable (since ⟨1,a⟩ ∧ ⊥ = ⊥) whilem0 cannot (⟨1,b⟩). This does
not affect the outcome, as we are only looking for one expression
that evaluates to ⊤, since both I0 and I1 are encoding the same
execution.

5

q0 q1

a ∧ b ⊤¬a ∨ ¬b

Figure 2: Representing F(a ∧ b)

Table 2: Reconciling information

t q I0 I1 †∨

0 q0 ⊤ ⊤ ⊤

1 q0 ⊥ ∨ ¬⟨1, b ⟩ ¬⟨1, a ⟩ ∨ ⊤ ⊤

1 q1 ⊤ ∧ ⟨1, b ⟩ ⟨1, a ⟩ ∧ ⊥ ⟨1, b ⟩

q00 q01

¬m1 ∧ a0

m1 ∧ a0

m1 ∧ ¬a0

¬m1 ∧ ¬a0 ⊤

q10q11 q12
b0

¬b0

⊤ ⊤

Figure 3: Representing F(a0 ∨ b0) (decentralized)

Since EHE is a dict mapping a pair in N × Q to an expression
in Expr , and since the combination is done using †∨, which is
idempotent, commutative and associative, it follows from Prop. 3.1
that EHE is a CvRDT. Two components receiving the same EHE and
merging them will be able to infer the same execution history of
the automaton.

Corollary 4.8. An EHE with operation †∨ is a CvRDT.

5 DECENTRALIZED SPECIFICATIONS
In this section, we shift the focus to a specification that is decentral-
ized. A set of automata represent various requirements for different
components of a system. In Sec. 5.1, we define the notion of a decen-
tralized specification and its semantics, and in Sec. 5.2, we tackle
the monitorability of such specification.

5.1 Decentralizing the Specification
To decentralize the specification, we consider a set of monitor labels
Mons = {m0, . . . ,mn−1}. Each monitor label mk is associated with
a specification automaton Ak (Definition 4.1) and a component
ck ∈ C (with k ∈ [0,n − 1]). However, the transition labels of
the automaton is restricted to either observations local to ck or
references to other monitors. Transitions are labeled overAtomsk =
Mons \ {mk } ∪ {ap ∈ AP | lu(ap) = ck }. This ensures that the
automaton is labeled with observations it can locally observe or
depends on other monitors.

Definition 5.1 (Monitor dependency). The set of monitor ids in an
expression e is denoted by dep(e).
dep(e) = match e with:
| id ∈ Mons →{id} | e1 ∧ e2 → dep(e1) ∪ dep(e2)
| ¬e → dep(e) | e1 ∨ e2 → dep(e1) ∪ dep(e2)

The dep function finds all monitors which the expression e ref-
erences by syntactically traversing it.

Example 5.2 (Decentralized specification). Figure 3 shows a decen-
tralized specification corresponding to the specification in Ex. 4.3.
It consists of 2 monitors m0 and m1, with automata A0 and A1
respectively. We consider two atomic propositions a0 and b0 which
can be observed by component c0 and c1 respectively. Monitor m0

(resp. m1) is attached to component c0 (resp. c1). A0 depends on
the verdict from m1 and only observations local to c0, while A1 is
only labeled with observations local to c1. Given e =m1 ∧ a0, we
have dep(e) = {m1}.

Semantics of the decentralized specification. The transition func-
tion of the decentralized specification is similar to the centralized
automaton with the exception of monitor ids.

Definition 5.3 (Semantics of the decentralized specification automa-
ton). Consider the monitor idmk , with the specification automaton
Ak , a state q ∈ Qk , a decentralized trace tr of length t with i ∈ [0, t].

∆′∗
k (q, tr, i, t) =

{
∆′∗
k (∆′

k (q, tr, i), i + 1, t) if i < t

∆′
k (q, tr, i) otherwise

∆′
k (q, tr, i) =

 q′ |
∃e : δk (q, e) = q′
∧ eval(e,M) = ⊤

if tr(i, ck) , ∅

q otherwise
M = memc(tr(i, ck), idt) †2

2⊎
mj ∈dep(e)

{[mj 7→ verj (qjf)]}

qjf = ∆′∗
j (qj0 , tr, i, t)

For a monitor mk , we determine the new state of the automaton
starting at q ∈ Qk , and running the trace tr from timestamp i to
timestamp t by applying ∆′∗

k (q, tr, i, t). To do so, we evaluate one
transition at a time using ∆′

k as would ∆∗
k with ∆k (see Def. 4.2). To

evaluate ∆′
k at any state q′ ∈ Qk , we need to evaluate the expres-

sions so as to determine the next state q′′. The expressions contain
atomic propositions and monitor ids. For atomic propositions, the
memory is constructed using memc(tr(i, ck), idt) which is based on
the event with observations local to ck . However, for monitor ids,
the memory represents the verdicts of the monitors. To evaluate an
id mj , the remainder of the trace starting from the current event
timestamp i is evaluated recursively on the automatonAj from the
initial state qj0 ∈ Aj . Then, the verdict of the monitor is associated
with mj in the memory.

Example 5.4 (Monitoring the decentralized specification). Con-
sider monitors m0 and m1 associated to components c0 and c1
respectively and the trace tr = [1 7→ c0 7→ {⟨a,⊥⟩}, 1 7→ c1 7→

{⟨b,⊥⟩}, 2 7→ c0 7→ {⟨a,⊥⟩}, 2 7→ c1 7→ {⟨b,⊤⟩}]. To evaluate
tr on A0 (from Fig. 3), we use ∆′∗

0 (q00 , tr, 1, 2). To do so, we first
evaluate ∆′

0(q00 , tr, 1). We notice that the expressions depend on m1,
therefore we need to evaluate ∆′∗

1 (q10 , tr, 1, 2). All expressions have
no monitor labels, thus we construct M1

1 = memc(⟨b,⊥⟩, idt) =
[b 7→ ⊥], and notice that eval(¬b,M1

1) = ⊤ and therefore it
can move to state q12 associated with verdict ⊥. Notice that ∆′

1(
∆′
1(q10 , tr, 1), tr, 2) = q12 with ver1(q12) = ⊥. We can construct

M1
0 = memc(⟨a,⊥⟩, idt) †2 [m1 7→ ⊥] = [a 7→ ⊥,m1 7→ ⊥].

We then have eval(¬m1 ∧ ¬a0,Mem1
0) = ⊤) and A0 is in state

(m0,q0). By doing the same for t = 2, we obtain Mem2
0 = [a 7→

⊥,m1 7→ ⊤], we then evaluate eval(m1 ∧ ¬a0) = ⊤. This indicates
that ∆′

0(∆
′
0(q00 , tr, 1), tr, 2) = q01 and the final verdict is ⊤.

Remark 1 (Compliance/Violation). Importantly, we do not de-
fine a global verdict for the system. We do not impose that a main
monitor be present, or that the monitors be organized in a tree or list

6

topology. We leave the choice of the topology and dependencies to the
algorithm in question.

5.2 Decentralized Monitorability
We next consider the monitorability of decentralized specifications
by introducing the notion of path expression.

Path expression. A path from a state qs to a state qe is expressed
as an expression over atoms. We define paths(qs ,qe) to return all
possible paths from qs to qe .

Definition 5.5 (Path expressions).

paths(qs ,qe) =
{
expr

���� ∃t ∈ N,∃expr : It (t ,qe) = expr
∧It = mov([0 7→ qs 7→ ⊤], 0, t)

}
The expression is derived similarly as would an execution in the

EHE (Def. 4.4). Instead of executing from the initial state q0, we start
from state qs and use a logical timestamp starting at 0 incrementing
it by 1 for the next reachable state.

Decentralized monitorability. Decentralized monitorability for
a given automaton Ak is determined by looking at the paths that
reach a state associated with a final verdict. However, since paths
depend on other monitors, then it must also extend recursively to
those monitors.

Definition 5.6 (Decentralized monitorability). A spec Ak is mon-
itorable, noted monitorable(Ak), iff ∀q ∈ QAk ∃qf ∈ QAk ∃ef ∈

paths(q,qf), such that (1) ef is satisfiable; (2) verk (simplify(qf)) ∈
B2; (3) ∀mj ∈ dep(ef): monitorable(Aj).

The first condition ensures that the path can be taken (i.e., there
exists a trace that satisfies it)6. The second condition ensures that
the state is labeled with a final verdict. And the third condition
ensures that the atomic propositions that depend on other monitors
can be evaluated. Additionally, q is said to be a monitorable state,
and if verk (qf) = ⊥ (resp. ⊤), then we say that q can be negatively
(resp. positively) determined. An automaton is monitorable iff we
can from any state reach a state that can output a final verdict.

Remark 2 (Monitoring Completeness). Verdicts must be even-
tually reported, so that they can be included in the memory to evaluate
the expressions with monitor ids. A memory with a missing verdict
generates the verdict ?, this could cause an expression to never evaluate
(see Def. 3.10). Monitorability guarantees that a path expression to a
final verdict can be evaluated. This however can require a timestamp
t much higher than the length of the current trace and it ensures that
at least one monitor will terminate. Therefore, ∆∗

k may not terminate.

6 ANALYSIS
We compare decentralized monitoring algorithms in terms of com-
putation, communication and memory overhead. We first consider
the parameters and the cost for the basic functions of the EHE. Then,
we adapt the existing algorithms to use EHE and analyze their be-
havior. We use se to denote the size necessary to encode e . For
example, sAP is the size needed to encode AP .

6This is ensured if the automaton is generated from LTL [4].

6.1 Data Structure Costs
Storing partial functions. Since memory and EHE are partial func-

tions, to assess their required memory storage and iterations, we
consider only the elements defined in the function. The size of a
partial function f , denoted | f |, is the size to encode each f (x) = y
mapping. We denote | dom(f)| the number of entries in f . The size
of each entry f (x) = y is the sum of the sizes |x | + |y |. Therefore
| f | =

∑
x ∈dom(f) |x | + | f (x)|.

Merging. Merging two memories or two EHEs, is linear in the
size of both structures in both time and space. In fact to construct
f ′ = f †op д, we first iterate over each x ∈ dom(f), check if
x ∈ dom(д), and if so assign f ′(x) = op(f (x),д(x)), otherwise
assign f ′(x) = f (x). Finally we assign f ′(y) = д(y) ∀y ∈ dom(д) :
y < dom(f). This results in | dom(f ′)| = | dom(f) ∪ dom(д)| which
is at most | dom(f)| + | dom(д)|.

Information delay. EHE associates an expression with a state for
any given timestmap. When an expression expr associated with a
state qkn for some timestamp tkn is ⊤, we know that the automaton
is inqkn at tkn. We callqkn a ‘known’ (or stable) state. Since we know
the automaton is in qkn, prior information is no longer necessary,
therefore it is possible to discard all t < tkn in I. We parametrize
the number of timestamps needed to reach a new known state from
an existing known state as the information delay δt . This can be
seen as a garbage collection strategy [28, 31] for the memory and
EHE.

EHE encoding. For the EHE data structure we are interested in
three functions: mov, eval, and sel7. Function mov depends on the
topology of the automaton, we quantify it using the maximum size
of the expression that labels a transition L, the maximum size of
outbound transitions from a state that share the same destination
state P , and the number of states in the automaton |Q |. From a
known state each mov considers all possible transitions and states
that can be respectively taken and reached, for each outbound
transition, the label itself is added. Therefore, the rule is expanded
by L for each P for each move beyond tkn. For each timestamp, we
need for each state an expression, the maximum size of the EHE is
therefore:

|Iδt | = δt |Q |

δt∑
1

LP = δ2t |Q |LP .

For a given expression expr, we use |expr| to denote the size
of expr, i.e., the number of atoms in expr. Given a memory M,
the complexity of function eval(expr,M) is the cost of simplify(
rw(expr,M)). Function rw(expr,M) looks up each atom in expr
in M and attempts to replace it by its truth-value. The cost of a
memory lookup isΘ(1), and the replacement is linear in the number
of atoms in expr. It effectively takes one pass to syntactically re-
place all atoms by their values, therefore the cost of rw is θ (|expr|).
However, simplify() requires solving the Minimum Equivalent Ex-
pression problem which is Σp2 -complete [7], it is exponential in the
size of the expression, making it the most costly function. |expr| is
bounded by δtLP . Function sel() requires evaluating every expres-
sion in the EHE. For each timestampwe need at most |Q | expressions,
and the number of timestamps is bounded by δt .
7verAt is simply a sel followed by a O (1) lookup

7

Memory. The memory required to storeM depends on the trace,
namely the amount of observations per component. We note that
once a state is known, observations can be removed, the number of
timestamps is bounded by δt . The size of the memory is then:

i+δt∑
t=i

|tr(c, t)| × (sN × sAP × sB2).

6.2 Analyzing Existing Algorithms
Overview. A decentralized monitoring algorithm consists of two

steps: setting up the monitoring network, and monitoring. In the
first step, an algorithm initializes the monitors, defines their con-
nections, and attaches them to the components. We represent the
connections between the various monitors using a directed graph
⟨Mons,E⟩ where E = 2Mons×Mons defines the edges describing the
sender-receiver relationship between monitors. For example, the
network ⟨{m0,m1}, {⟨m1,m0⟩}⟩ describes a network consisting of
two monitors m0 and m1 where m1 sends information to m0. In
the second step, an algorithm proceeds with monitoring, wherein
each monitor processes observations and communicates with other
monitors.

We consider the existing three algorithms: Orchestration, Mi-
gration and Choreography [8] adapted to use EHE. We note that
these algorithms operate over a global clock, therefore the sequence
of steps can be directly mapped to the timestamp. We choose an
appropriate encoding of Atoms to consist of a timestamp and the
atomic proposition (Atoms = N × AP). These algorithms are orig-
inally presented using an LTL specification instead of automata,
however, it is possible to obtain an equivalent Moore automaton as
described in [4].

Approach. A decentralized monitoring algorithm consists of one
or more monitors that use the EHE and memory data structures to
encode, store, and share information. By studying δt , we derive the
size of the EHE and the memory a monitor would use. Knowing the
sizes, we determine the computation overhead of a monitor, since
we know the bound on the number of simplifications a monitor
needs to make (δt |Q |), and we know the bounds on the size of
the expression to simplify (δtLP). Once the cost per monitor is
established, the total cost for the algorithm can be determined by
aggregating the costs per monitors. This can be done by summing
to compute total cost or by taking the maximum cost in the case of
concurrency following the Bulk Synchronous Parallel (BSP) [30]
approach.

Orchestration. The orchestration algorithm (Orch) consists in
setting up a main monitor which will be in charge of monitoring
the entire specification. However since that monitor cannot access
all observations on all components, orchestration introduces one
monitor per component to forward the observations to the main
monitor. Therefore for our setup, we consider the case of a main
monitor m0 placed on component c0 which monitors the specifica-
tion and |C| − 1 forwarding monitors that only send observations
to m0 (labeled mk with k ∈ [1, |C|]). We consider that the reception
of a message takes at most d rounds. The information delay δt is
then constant, δt = d. The number of messages sent at each round
is |C| − 1, i.e., the number of forwarding monitors sending their

observations. The size of the message is linear in the number of
observations for the component, for a forwarding monitor k , the
size of the message isMSk = |tr(t , ck)| × (sN × sAP × sB2).

Migration. The migration algorithm (Migr) initially consists in
rewriting a formula and migrating from one or more component to
other components to fill in missing observations. We call the mon-
itor rewriting the formula the active monitor. Our EHE encoding
guarantees that two monitors receiving the same information are
in the same state. Therefore, monitoring with Migration amounts
to rewriting the EHE and migrating it across components. Since
all monitors can send the EHE to any other monitor, the monitor
network is a strongly-connected graph. In Migr, the delay depends
on the choice of a choose function, which determines which compo-
nent to migrate to next upon evaluation. By using a simple choose
which causes a migration to the component with the atom with
the smallest timestamp, it is possible to view the worst case as an
expression where for each timestamp we depend on information
from all components, therefore |C| − 1 rounds are necessary to
get all the information for a timestamp (δt = |C| − 1). We parame-
trize Migration by the number of active monitors at a timestampm.
The presented choose in [8], chooses at most one other component
to migrate to. Therefore, after the initial choice ofm, subsequent
rounds can have at mostm active monitors. The initial choice of
active monitors is bounded bym ≤ |C|. Since at mostm − 1 other
monitors can be running, there can be (m − 1) merges. The size
of the resulting EHE ism × |Iδ

t | =m(|C| − 1)2 |Q |LP . In the worst
case, the upper bound on the size of EHE is (|C| − 1)3 |Q |LP . The
number of messages is bounded by the number of active monitors
m. The size of each message is however the size of the EHE, since
Migr requires the entire EHE to be sent.

Choreography. Choreography (Chor) presented in [5, 8] splits the
initial LTL formula into subformulae and delegates each subformula
to a component. Thus Chor can illustrate how it is possible to
monitor decentralized specifications. Once the subformulae are
determined by splitting the main formula, we adapt the algorithm
to generate an automaton per subformula to monitor it. To account
for the verdicts from other monitors, the set of possible atoms is
extended to include the verdict of a monitor identified by its id.
Therefore, Atoms = (N ×AP) ∪ (Mons ×N). Monitoring is done by
replacing the subformula by the id of the monitor associated with
it. Therefore, monitors are organized in a tree, the leafs consisting
of monitors without any dependencies, and dependencies building
up throughout the tree to reach the main monitor that outputs the
verdict. The information delay for a monitor is thus dependent on
its depth in the network tree. A monitor that is not monitorable will
never emit a verdict, therefore its depth is∞. A leaf monitor has no
dependencies, its depth is 1. In terms of communication, the number
of monitors generated determines the number of messages that are
exchanged. By using the naive splitting function (presented in [8]),
the number of monitors depends on the size of the LTL formula.
Therefore, we expect the number of messages to grow with the
number of atomic propositions in the formula. By denoting |E | the
number of edges between monitors, we can say that the number of
messages is linear in |E |. The size of the messages is constant, it is
the size needed to encode a timestamp, id and a verdict in the case

8

Table 3: Scalability of Existing Algorithms.

Algorithm δt # Msg |Msg |
Orchestration Θ(1) Θ(|C |) O (APc)
Migration O (|C |) O (m) O (m |C |2)

Choreography O (depth(0)) Θ(|E |) Θ(1)

of msgver , or only the size needed to encode an id in the case of
msgkill .

Discussion. We summarize the main parameters that affect the
algorithms in Table 3. This comparison could serve as a guide to
choose which algorithm to run based on the environment (architec-
tures, networks etc). For example, on the one hand, if the network
only tolerates short message sizes but can support a large number
of messages, then Orch or Chor is preferred over Migr. On the
other hand, if we have heterogeneous nodes, as is the case in the
client-server model, we might want to offload the computation
to one major node, in this scenario Orch would be preferable as
the forwarding monitor require no computation. This choice can
be further impacted by the network topology. In a ring topology
for instance, one might want to consider using Migration (with
m = 1), as using Orch might impose further delay in practice to
relay all information, while in a star topology, using Orch might
be preferable. In a more hierarchical network, Chor can adapt its
monitor tree to the hierarchy of the network.

7 THE THEMIS FRAMEWORK
THEMIS is a tool to facilitate the design, development, and analysis of
decentralized monitoring algorithms; developed using Java and As-
pectJ [19] (∼5700 LOC).8 It consists of a library and command-line
tools. The library provides all necessary building blocks to develop,
simulate, and instrument decentralized monitoring algorithms. The
command-line tools provide basic functionality to generate traces,
execute a monitoring run and execute a full experiment (multiple
parametrized runs).

The purpose of THEMIS is to minimize the overhead of designing
and assessing decentralized monitoring algorithms. THEMIS pro-
vides an API for monitoring and necessary data structures to load,
encode, store, exchange, and process observations, as well as ma-
nipulate specifications and traces. These basic building blocks can
be reused or extended to modify existing algorithms or design new
more intricate algorithms. To assess the behavior of an algorithm,
THEMIS provides a base set of metrics (such as messages exchanged
and their size, along with computations performed), but also allows
for the definition of new metrics by using the API or by writing
custom AspectJ instrumentation. These metrics can be used to as-
sess existing algorithms as well as newly developed ones. Once
algorithms and metrics are developed, it is possible to use existing
tools to perform monitoring runs or full experiments. Experiments
are used to define sets of parameters, traces and specifications. An
experiment is effectively a folder containing all other necessary
files. By bundling everything in one folder, it is possible to share
and reproduce the experiment. After running a single run or an
experiment, the metrics are stored in a database for postmortem

8The THEMIS framework is further described and demonstrated in the companion
tool-demonstration paper [13] and on its Website [14].

analysis. These can be queried, merged or plotted easily using third-
party tools. After completing the analysis, algorithms and metrics
can be tuned so as to refine the design as necessary.

8 EVALUATION AND DISCUSSION
We use THEMIS to compare adapted existing algorithms (Orch, Migr,
and Chor - Sec. 6) and validate the behavior of the EHE data structure.
We additionally consider a round-robin variant of Migr, Migrr and
use that for analyzing the behavior of the migration family of
algorithms as it has a predictable choose. We conduct a study to
confirm the analysis in Sec. 6 and explore the situations that best
suit the algorithms.

Experimental setup. We generate the specifications as random
LTL formulas using randltl from Spot [12] then converting the
LTL formulae to automata using ltl2mon [4]. We generate traces
by using the GeneratorTrace tool in THEMIS which generates syn-
thetic traces by creating random events using a normal probability
distribution. For all algorithms we considered the communication
delay to be 1 timestamp. That is, messages sent at t are available
to be received on t + 1. In the case of both Migration variants,
we set the active monitors to 1 (m = 1). For our experiment 200
traces of 100 events per component, we associate with each compo-
nent 2 observations. We vary the number of components between
3 and 5, and ensure that for each number we have at least 1,000
formulae that references all components. We were not able to ef-
fectively use a larger number of components since the formula
becomes sufficiently large that generating an automaton from it
becomes unfeasible. The generated formulae were fully constructed
of atomic propositions, there were no terms containing ⊤ or ⊥.9
When computing sizes, we use a normalized unit to separate the
encoding from actual implementation strategies, our assumptions
on the sizes is similar to the number of bytes needed to encode data
(for example: 1 byte for a character, 4 for an integer). We normal-
ized our metrics using the length of the run, that is, the number of
rounds taken to reach the final verdict (if applicable) or timeout,
as different algorithms take different number of rounds to reach a
verdict.

Monitoring metrics. The first considered metric is that of infor-
mation delay δt . δt impacts the size of the EHE and therefore the
computation, communication costs to send an EHE structure, and
also the memory required to store it. By considering our analysis
in Sec. 6, we split our metrics into two main categories: communi-
cation and computation. We consider communication using two
metrics: number of messages and data communicated. The number
of messages is the total messages sent by all monitors throughout
the entire run. The data communicated consists of the total size
of messages sent by all monitors throughout the entire run. Both
number of messages and the data transferred are normalized us-
ing the run length. The EHE structure requires the evaluation and
simplification of a boolean expression which is costly (see Sec. 4.2).
Thus, we count the number of simplifier calls as a measure of com-
putation required by the monitor. Alternatively, it can be seen as the

9To generate formulae with basic operators, string false=0,true=0,xor=0,
M=0,W=0,equiv=0,implies=0,ap=6,X=2,R=0 is passed to randltl.

9

number of formula evaluations conducted by the monitor. We mea-
sure simplifications per round as a normalized value, by taking the
total number of simplifications performed by all monitors through-
out the run and dividing by the run length. The simplifications
per round describes the total computations done by all monitors.
We introduce this metric to measure concurrency. Since monitors
can execute in parallel, we are interested in the monitor with the
most amount of simplifications to perform in a given round, since
it acts as a bottleneck for concurrency. In addition, to capture load
balancing, we introduce convergence where:

convergence =
1
n

n∑
t=1

(∑
c ∈C

(
stc
st

−
1
|C|

)2)
, with st =

∑
c ∈C

stc

At a round t , we consider all simplifications performed on all compo-
nents st and for a given component stc . Then, we consider the ideal
scenario where computations have been spread evenly across all
components. Thus, the ideal ratio is 1

|C |
. We compute the ratio for

each component (s
t
c
s t
), then its distance to the ideal ratio. Distances

are added for all components across all rounds then normalized
by the number of rounds. The higher the convergence the further
away we are from having all computations spread evenly across
components.

Results. We present the results in Table 4, we show the algorithm
followed by the number of components, and an average of our met-
rics across all runs. The column #S denotes the normalized number
of simplifications while #S/Mon denotes the normalized number of
simplifications per monitor. We notice that Orch maintains the low-
est delay, followed by Migrr and Chor. In addition, we notice that
Migrr has an average δt that increases with |C|. We note that Migrr
data transfer is an estimation of the size of the EHE, as we have one
active monitor sending the EHE per round. This gives us a good
estimate of the growth the size of EHE with |C| for Migr. The size
of EHE determines the computation required, we see that for higher
δt , #S increases. Since Chor is the only algorithm running multiple
monitors we can see that it effectively spreads the computation
across components, making its slowest monitor (#S/Mon) perform
a bit worse than Orch, but with reasonable scalability wrt |C|. On
the one hand, Migrr sends a small and balanced #Msgs that does
not depend on |C|, in exchange, its data transfer is much bigger
as it has to send the entire EHE. On the other hand, we observe
that both Orch and Chor maintain a smaller number of data than
Migrr but a higher #Msgs. We notice that in terms of data, Chor
outperforms Orch. This is consistent with the observation that the
size of messages for Chor is constant while, in the case of Orch, it
scales with the number of observations per component.

Discussion. The observed behavior of the simulation confirms
the initial analysis described in Sec. 6. We observe that the EHE
presents predictable behavior in terms of size and computation. The
delay presented for each algorithm indeed depends on the listed
parameters in the analysis. With the presented bounds on EHE, we
can determine and compare the algorithms that use it. Therefore,
we can theoretically estimate the situations where algorithmsmight
be (dis)advantaged.

Table 4: Decentralized Monitoring Metrics
Alg. |C | δt #Msgs Data #S #S/Mon Conv

Chor
3 2.37 2.02 18.05 15.27 6.63 0.18
4 2.49 2.54 22.62 18.22 6.79 0.20
5 2.37 3.08 27.18 21.29 6.95 0.22

Migr
3 1.02 0.36 49.46 4.80 4.80 1.00
4 1.38 0.41 128.26 5.67 5.67 1.00
5 2.28 0.57 646.86 9.40 9.40 1.00

Migrr
3 1.09 0.86 58.02 5.00 5.00 1.00
4 1.49 0.85 144.62 5.91 5.91 1.00
5 2.32 0.83 684.81 9.60 9.60 1.00

Orch
3 0.63 1.68 21.01 4.13 4.13 1.00
4 0.65 2.43 30.42 4.11 4.11 1.00
5 0.81 3.04 38.51 5.55 5.55 1.00

9 CONCLUSIONS AND FUTUREWORK
We present a general approach to monitoring decentralized specifi-
cations. A specification is a set of automata associatedwithmonitors
that are attached to various components. We provide a general de-
centralized monitoring algorithm defining the major steps needed
to monitor such specifications. In addition, we present the EHE
data structure which allows us to (i) aggregate monitor states with
strong eventual consistency, (ii) remain sound wrt the execution
of the monitor, and (iii) characterize the behavior of the algorithm
at runtime. We then map three existing algorithms: Orchestration,
Migration and Choreography to our approach using our data struc-
tures. We develop and use THEMIS to implement algorithms and
analyze their behavior by designing new metrics.

We can now explore new directions of decentralized monitoring.
One is to study algorithms that generate from a centralized specifi-
cation, an equivalent decentralized one. Another direction is the
design of new algorithms for combining monitors for specific parts
of the systems. One can now separate the problem of the topology
and dependencies of the monitors from the monitoring procedure.
That is, one can generate a decentralized specification that balances
computation to suit the system architecture, or optimize specific al-
gorithms for specific layouts of decentralized systems (as discussed
in Sec. 6). Moreover, one could consider creating new metrics for
THEMIS to analyze more aspects of decentralized monitoring algo-
rithms. New metrics would be automatically instrumented on all
existing algorithms and experiments could be easily replicated to
compare them. Finally, we shall consider new settings for runtime
enforcement [15]: (i) decentralized runtime enforcement of central-
ized specifications and (ii) (decentralized) runtime enforcement of
decentralized specifications.

REFERENCES
[1] Ezio Bartocci. 2013. Sampling-based Decentralized Monitoring for Networked

Embedded Systems. In Proceedings Third International Workshop on Hybrid Au-
tonomous Systems, HAS 2013, Rome, Italy, 17th March 2013. (EPTCS), Luca Bor-
tolussi, Manuela L. Bujorianu, and Giordano Pola (Eds.), Vol. 124. 85–99. DOI:
http://dx.doi.org/10.4204/EPTCS.124.9

[2] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Nor-
mann Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles
Reger, Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi
Zhang. 2017. First international Competition on Runtime Verification: rules,
benchmarks, tools, and final results of CRV 2014. International Journal on Soft-
ware Tools for Technology Transfer (2017), 1–40. DOI:http://dx.doi.org/10.1007/
s10009-017-0454-5

[3] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2015. Failure-aware Run-
time Verification of Distributed Systems. In 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS

10

http://dx.doi.org/10.4204/EPTCS.124.9
http://dx.doi.org/10.1007/s10009-017-0454-5
http://dx.doi.org/10.1007/s10009-017-0454-5

2015, December 16-18, 2015, Bangalore, India (LIPIcs), Prahladh Harsha and G. Ra-
malingam (Eds.), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
590–603. DOI:http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.590

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verifi-
cation for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4 (2011), 14. DOI:
http://dx.doi.org/10.1145/2000799.2000800

[5] Andreas Klaus Bauer and Yliès Falcone. 2012. Decentralised LTL Monitoring. In
FM 2012: Formal Methods - 18th International Symposium, Paris, France, August 27-
31, 2012. Proceedings (Lecture Notes in Computer Science), Dimitra Giannakopoulou
and Dominique Méry (Eds.), Vol. 7436. Springer, 85–100. DOI:http://dx.doi.org/
10.1007/978-3-642-32759-9_10

[6] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers.
2016. Challenges in Fault-Tolerant Distributed Runtime Verification, See [23],
363–370. DOI:http://dx.doi.org/10.1007/978-3-319-47169-3_27

[7] David Buchfuhrer and Christopher Umans. 2008. The Complexity of Boolean
Formula Minimization. In Automata, Languages and Programming, 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part I: Tack A: Algorithms, Automata, Complexity, and Games (Lecture Notes in
Computer Science), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.), Vol. 5125. Springer,
24–35. DOI:http://dx.doi.org/10.1007/978-3-540-70575-8_3

[8] Christian Colombo and Yliès Falcone. 2016. Organising LTL monitors over
distributed systems with a global clock. Formal Methods in System Design 49, 1-2
(2016), 109–158. DOI:http://dx.doi.org/10.1007/s10703-016-0251-x

[9] Sylvain Cotard, Sébastien Faucou, Jean-Luc Béchennec, Audrey Queudet, and
Yvon Trinquet. 2012. A Data Flow Monitoring Service Based on Runtime Verifi-
cation for AUTOSAR. In 14th IEEE International Conference on High Performance
Computing and Communication & 9th IEEE International Conference on Embedded
Software and Systems, HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27,
2012, Geyong Min, Jia Hu, Lei (Chris) Liu, Laurence Tianruo Yang, Seetharami
Seelam, and Laurent Lefèvre (Eds.). IEEE Computer Society, 1508–1515. DOI:
http://dx.doi.org/10.1109/HPCC.2012.220

[10] Volker Diekert and Martin Leucker. 2014. Topology, monitorable properties
and runtime verification. Theoretical Computer Science 537 (2014), 29 – 41. DOI:
http://dx.doi.org/10.1016/j.tcs.2014.02.052 Theoretical Aspects of Computing
(ICTAC 2011).

[11] Volker Diekert and Anca Muscholl. 2012. On Distributed Monitoring of Asyn-
chronous Systems. In Logic, Language, Information and Computation - 19th Inter-
national Workshop, WoLLIC 2012, Buenos Aires, Argentina, September 3-6, 2012.
Proceedings (Lecture Notes in Computer Science), C.-H. Luke Ong and Ruy J. G. B.
de Queiroz (Eds.), Vol. 7456. Springer, 70–84. DOI:http://dx.doi.org/10.1007/
978-3-642-32621-9_5

[12] Alexandre Duret-Lutz. 2013. Manipulating LTL formulas using Spot 1.0. In
Proceedings of the 11th International Symposium on Automated Technology
for Verification and Analysis (ATVA’13) (Lecture Notes in Computer Science),
Vol. 8172. Springer, Hanoi, Vietnam, 442–445. DOI:http://dx.doi.org/10.1007/
978-3-319-02444-8_31

[13] Antoine El-Hokayem and Yliès Falcone. 2017. THEMIS: A Tool for Decentralized
Monitoring Algorithms. In Proceedings of 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA’17-DEMOS), Santa Barbara, CA,
USA, July 2017. DOI:http://dx.doi.org/https://doi.org/10.1145/3092703.3098224

[14] Antoine El-Hokayem and Yliès Falcone. 2017. THEMIS Website. (2017). https:
//gitlab.inria.fr/monitoring/themis.

[15] Yliès Falcone. 2010. You Should Better Enforce Than Verify. In Runtime Verifi-
cation - First International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings (Lecture Notes in Computer Science), Howard Barringer, Yliès
Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore
Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.), Vol. 6418. Springer, 89–105.
DOI:http://dx.doi.org/10.1007/978-3-642-16612-9_9

[16] Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez. 2014. Efficient and
Generalized Decentralized Monitoring of Regular Languages. In Formal Tech-
niques for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1 Inter-
national Conference, FORTE 2014, Held as Part of the 9th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2014, Berlin, Ger-
many, June 3-5, 2014. Proceedings (Lecture Notes in Computer Science), Erika

Ábrahám and Catuscia Palamidessi (Eds.), Vol. 8461. Springer, 66–83. DOI:
http://dx.doi.org/10.1007/978-3-662-43613-4_5

[17] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. 2012. What can
you verify and enforce at runtime? STTT 14, 3 (2012), 349–382. DOI:http:
//dx.doi.org/10.1007/s10009-011-0196-8

[18] Yliès Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime
Verification. In Engineering Dependable Software Systems, Manfred Broy, Doron
a. Peled, and Georg Kalus (Eds.). NATO science for peace and security series,
d: information and communication security, Vol. 34. ios press, 141–175. DOI:
http://dx.doi.org/10.3233/978-1-61499-207-3-141

[19] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 - Object-
Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings (Lecture Notes in Computer Science), Jørgen Lindskov Knudsen
(Ed.), Vol. 2072. Springer, 327–353. DOI:http://dx.doi.org/10.1007/3-540-45337-7_
18

[20] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath Kannan,
Insup Lee, and Oleg Sokolsky. 1999. Formally specified monitoring of temporal
properties. In 11th Euromicro Conference on Real-Time Systems (ECRTS 1999), 9-11
June 1999, York, England, UK, Proceedings. IEEE Computer Society, 114–122. DOI:
http://dx.doi.org/10.1109/EMRTS.1999.777457

[21] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. J. Log. Algebr. Program. 78, 5 (2009), 293–303. DOI:http://dx.doi.org/
10.1016/j.jlap.2008.08.004

[22] Martin Leucker, Malte Schmitz, and Danilo à Tellinghusen. 2016. Runtime
Verification for Interconnected Medical Devices, See [23], 380–387. DOI:http:
//dx.doi.org/10.1007/978-3-319-47169-3_29

[23] Tiziana Margaria and Bernhard Steffen (Eds.). 2016. Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination, Applica-
tions - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part II. Lecture Notes in Computer Science, Vol. 9953.
DOI:http://dx.doi.org/10.1007/978-3-319-47169-3

[24] Amir Pnueli and Aleksandr Zaks. 2006. PSL Model Checking and Run-Time Ver-
ification Via Testers. In FM 2006: Formal Methods, 14th International Symposium
on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings (Lecture
Notes in Computer Science), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski
(Eds.), Vol. 4085. Springer, 573–586. DOI:http://dx.doi.org/10.1007/11813040_38

[25] Grigore Rosu and Klaus Havelund. 2005. Rewriting-Based Techniques for
Runtime Verification. Autom. Softw. Eng. 12, 2 (2005), 151–197. DOI:http:
//dx.doi.org/10.1007/s10515-005-6205-y

[26] Torben Scheffel and Malte Schmitz. 2014. Three-valued asynchronous distributed
runtime verification. In Twelfth ACM/IEEE International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2014, Lausanne, Switzerland,
October 19-21, 2014. IEEE, 52–61. DOI:http://dx.doi.org/10.1109/MEMCOD.2014.
6961843

[27] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004. Efficient
Decentralized Monitoring of Safety in Distributed Systems. In 26th International
Conference on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh,
United Kingdom, Anthony Finkelstein, Jacky Estublier, and David S. Rosenblum
(Eds.). IEEE Computer Society, 418–427. DOI:http://dx.doi.org/10.1109/ICSE.
2004.1317464

[28] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings (Lecture Notes in Computer Science), Xavier
Défago, Franck Petit, and Vincent Villain (Eds.), Vol. 6976. Springer, 386–400.
DOI:http://dx.doi.org/10.1007/978-3-642-24550-3_29

[29] Prasanna Thati and Grigore RoÅ§u. 2005. Monitoring Algorithms for Metric
Temporal Logic Specifications. Electronic Notes in Theoretical Computer Science
113 (2005), 145 – 162. DOI:http://dx.doi.org/10.1016/j.entcs.2004.01.029

[30] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103–111. DOI:http://dx.doi.org/10.1145/79173.79181

[31] Gene T. J. Wuu and Arthur J. Bernstein. 1986. Efficient Solutions to the Replicated
Log and Dictionary Problems. Operating Systems Review 20, 1 (1986), 57–66. DOI:
http://dx.doi.org/10.1145/12485.12491

11

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.590
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-319-47169-3_27
http://dx.doi.org/10.1007/978-3-540-70575-8_3
http://dx.doi.org/10.1007/s10703-016-0251-x
http://dx.doi.org/10.1109/HPCC.2012.220
http://dx.doi.org/10.1016/j.tcs.2014.02.052
http://dx.doi.org/10.1007/978-3-642-32621-9_5
http://dx.doi.org/10.1007/978-3-642-32621-9_5
http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/https://doi.org/10.1145/3092703.3098224
https://gitlab.inria.fr/monitoring/themis
https://gitlab.inria.fr/monitoring/themis
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/s10009-011-0196-8
http://dx.doi.org/10.1007/s10009-011-0196-8
http://dx.doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1109/EMRTS.1999.777457
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-319-47169-3_29
http://dx.doi.org/10.1007/978-3-319-47169-3_29
http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/11813040_38
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1109/MEMCOD.2014.6961843
http://dx.doi.org/10.1109/MEMCOD.2014.6961843
http://dx.doi.org/10.1109/ICSE.2004.1317464
http://dx.doi.org/10.1109/ICSE.2004.1317464
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/12485.12491

	Abstract
	1 Introduction
	2 Related Work
	3 Common Notions
	3.1 The dict Data Structure
	3.2 Basic Monitoring Concepts

	4 Centralized Specifications
	4.1 Preliminaries
	4.2 Execution History Encoding
	4.3 Reconciling Execution History

	5 Decentralized Specifications
	5.1 Decentralizing the Specification
	5.2 Decentralized Monitorability

	6 Analysis
	6.1 Data Structure Costs
	6.2 Analyzing Existing Algorithms

	7 The THEMIS Framework
	8 Evaluation and Discussion
	9 Conclusions and Future Work
	References

