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Abstract

We design a Hybrid High-Order method for elliptic problems on curved

domains. The method uses a cut cell technique for the representation of

the curved boundary and imposes Dirichlet boundary conditions using

Nitsche’s method. The physical boundary can cut through the cells in a

very general fashion and the method leads to optimal error estimates in

the H
1-norm.

1 Introduction

The Hybrid High-Order (HHO) method has been recently introduced in [6, 7].
The idea is to approximate the solution using cell-based and face-based un-
knowns. The cell unknowns can be eliminated locally in each mesh cell, leading
to a global problem coupling only the face unknowns. The HHO method is de-
vised from a local reconstruction operator and a stabilization operator coupling
the cell and face unknowns in each mesh cell. This leads to a discretization
method that supports general meshes (with polyhedral cells and non-matching
interfaces), is locally conservative, and delivers energy-norm error estimates of
order (k + 1) (and L2-norm error estimates of order (k + 2) under full elliptic
regularity) using polynomials of order k for the face unknowns and of order
l ∈ {k − 1, k, k + 1} for the cell unknowns.

The use of polyhedral meshes can simplify the meshing problem in many
situations. Nevertheless, in some cases it can still be convenient to avoid build-
ing meshes fitted to the domain boundary. This is typically the case when the
boundary changes during the computation, as in free-boundary problems or op-
timisation problems, or when the boundary is curved and high-order accuracy is
to be retained. In classical finite element methods, fictitious domain approaches
[8] where the computational mesh does not respect the domain boundary are
often efficient, but at the expense of accuracy. In order to improve the accuracy,
unfitted finite element methods were introduced [1, 9]. A well-known difficulty
for unfitted finite element methods is that the conditioning of the linear sys-
tem resulting from discretization has a strong dependence on the geometry of
the intersection of the physical boundary with the mesh cells. Unfavorably
cut cells, that is, cells having a small intersection with the physical domain,
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lead to ill-conditioning. In the case of H1-conforming methods, this problem is
typically solved by adding a penalty term that weakly couples the polynomial
approximation in adjacent cells [3]. When using discontinuous approximation,
another approach was proposed in [10] in the context of elliptic interface prob-
lems, where any unfavorably cut cell is merged with a neighboring cell having
a favorable cut. This local agglomeration procedure generally leads to meshes
having polyhedral cells.

In this work, we consider a (simple) elliptic PDE posed on an open, bounded,
Lipschitz set Ω′ in R

d with a non-homogeneous Dirichlet condition on Γ := ∂Ω′:

−∇·(κ∇u) = f, in Ω′, (1a)

u = gD on Γ. (1b)

Here f ∈ L2(Ω′), gD ∈ H
1
2 (Γ) and κ is a positive, piecewise constant coefficient.

We assume that Ω′ has a curved boundary Γ, and we want to avoid meshing Ω′

using cells with curved faces. One possible way to avoid this is to consider a
fictitious domain approach. We embed Ω′ into a larger polyhedron Ω that can
be meshed easily (by definition, a polyhedron is a finite union of simplices and
has therefore a piecewise planar boundary). This mesh of Ω can be composed of
cells having simple shapes (simplices, prisms, hexahedra), but can also contain
more general polyhedral shapes. Our goal is to devise a cut-cell HHO method
to approximate (1) using an unfitted mesh of the fictitious domain Ω. For the
imposition of the Dirichlet boundary condition, we use Nitsche’s method, and
robustness with respect to the cuts is ensured by using a local mesh agglom-
eration procedure reminiscent of that proposed in [10]. Owing to the local cell
agglomeration, the resulting mesh of Ω is generally of polyhedral type. The
present cut-cell HHO method and its analysis are adapted from the method
devised in [4] for elliptic interface problems. An alternative HHO method for
elliptic problems on curved meshes has been proposed recently in [2] using non-
linear mappings for the face unknowns and increasing the order of the reference
face polynomials.

An outline of the paper is as follows. In the next section, we present the
discrete framework, technical results, and the main assumptions. In Section 3,
we introduce the cut-cell HHO method. Finally, we present an error estimate
in Section 4.

2 Discrete setting

Let (Th)h>0 be a shape-regular family of matching meshes covering Ω exactly,
where the index h refers to the maximal diameter of the mesh cells. For sim-
plicity, we assume that the diffusion coefficient is piecewise constant on Th and
we let κT denote its value on T ∈ Th. The meshes can have polyhedral cells,
and the mesh cells are considered by convention to be open subsets of Rd. The
shape-regularity criterion for polyhedral meshes is that they admit a match-
ing simplicial sub-mesh that satisfies the usual shape-regularity criterion in the
sense of Ciarlet and such that each sub-cell (resp., sub-face) belongs to only
one mesh cell (resp., at most one mesh face) having uniformly the same diam-
eter. The shape-regularity of the mesh sequence is quantified by a parameter
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ρ ∈ (0, 1). In what follows, B(y, a) denotes the open ball with center y and
radius a. For a subset S ⊂ R

d, hS denotes the diameter of S.

2.1 Notation for unfitted meshes

For coherence of our notation, let us set Ω\Γ := Ω′. Let us define the partition

Th = T
\Γ
h ∪ T Γ

h ∪ T c
h , where the subsets

T
\Γ
h := {T ∈ Th | T ⊂ Ω\Γ}, (2a)

T Γ
h := {T ∈ Th | measd−1(T ∩ Γ) > 0}, (2b)

collect, respectively, the mesh cells inside the physical domain Ω\Γ and the mesh
cells cut by the physical boundary Γ. The mesh cells in T c

h do not play any role in
what follows so that discard them without loss of generality. Similarly, the mesh

faces are collected in the set Fh which is partitioned into Fh = F
\Γ
h ∪FΓ

h , where

F
\Γ
h collects the mesh faces inside the physical domain Ω\Γ and FΓ

h collects the
mesh faces cut by the physical boundary. For any mesh cell T ∈ T Γ

h , we define
T \Γ := T ∩ Ω\Γ and TΓ := T ∩ Γ. The boundary of T \Γ is decomposed as
∂T \Γ = (∂T )\Γ ∪ TΓ, where (∂T )\Γ := ∂T ∩ Ω\Γ (see Figure 2 below).

2.2 Admissible meshes

The cut-cell HHO method is to be deployed on meshes satisfying two assump-
tions. Assumption 2.1 means that the physical boudnary is well resolved by
the mesh; this assumption is quantified by a regularity parameter γ ∈ (0, 1).
Assumption 2.2 means that all the mesh cells are cut favorably by the physical
boundary; this property is quantified by a cut parameter δ ∈ (0, 1).

Assumption 2.1 (Resolving Γ). There is γ ∈ (0, 1) s.t. for all T ∈ T Γ
h , there is

a point x̂T ∈ R
d so that, for all s ∈ TΓ, ‖x̂T − s‖ℓ2 ≤ γ−1hT and d(x̂T , TsΓ) ≥

γhT where TsΓ is the tangent plane to Γ at the point s.

Assumption 2.2 (Cut cells). There is δ ∈ (0, 1) such that, for all T ∈ T Γ
h ,

there is x̃T ∈ T \Γ so that B(x̃T , δhT ) ⊂ T \Γ.

Let T̃h be an initially given mesh from a shape-regular sequence of (polyhe-
dral) meshes. It is shown in [4, Lemma 6.1] that the Assumption 2.1 is satisfied
provided T̃h is fine enough. To ensure that the Assumption 2.2 is also satisfied,
we identify the mesh cells in T̃ Γ

h (with obvious notation) on the boundary for
which the assumption fails and agglomerate them with neighboring elements
satisfying the assumption. For all T ∈ T̃h, we define the set of elements with
non-empty intersection with T as ∆(T ) := {T ′ ∈ T̃h | T ∩T ′ 6= ∅}. The agglom-
eration procedure is as follows:

1. Partition T̃ Γ
h into T̃ ko

h ∪ T̃ ok
h so that T̃ ∈ T̃ ok

h iff there is xT̃ ∈ T̃ s.t. the

ball B(xT̃ , δ0hT̃ ) is in T̃ ′ = T̃ ∩ Ω′, whereas T̃ ∈ T̃ ko
h otherwise.

2. For all T̃ ∈ T̃ ko
h , we choose a neighboring mesh cell N(T̃ ) so that

N(T̃ ) ∈ (T̃ ok
h ∪ T̃

\Γ
h ) ∩∆(T̃ ). (3)

It is shown in [4] that this set is nonempty if the mesh T̃h is fine enough
and if the initial cut parameter δ0 is small enough.
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3. Let N(T̃ ko
h ) be the collection of all the cells in T̃ ok

h ∪ T̃
\Γ
h that have been

selected at least once in Step 2. For all T̃ ♯ ∈ N(T̃ ko
h ), we define the

agglomerated cell T̃ ♯ ∪ {T̃ ∈ T̃ ko
h | N(T̃ ) = T̃ ♯}.

4. We collect the agglomerated cells in T̃ agglo
h and define the new mesh

Th :=

(

(T̃ ok
h ∪ T̃

\Γ
h ) \N(T̃ ko

h )

)

∪ T̃ agglo
h . (4)

It is shown in [4] that the new mesh Th is still shape-regular (with possibly
a smaller value of the parameter ρ), still satisfies the Assumption 2.1 (with
possibly a smaller parameter γ), and additionally satisfies the Assumption 2.2
(with possibly a parameter δ smaller than δ0).

2.3 Trace inequalities

The following two trace inequalities, which are crucial for the robustness of the
error estimate (20) (see below), hinge on Assumptions 2.1 and 2.2. For a proof,
we refer the reader to [4, Lemma 3.3 and 3.4].

Lemma 2.1 (Multiplicative trace inequality). There are cmtr > 0 and θmtr ≥ 1,
depending on ρ and γ, such that, for all T ∈ T Γ

h , there is x̌T ∈ T so that, for

all v ∈ H1(T †) with T † = B(x̌T , θmtrhT ),

‖v‖L2(∂T\Γ) ≤ cmtr

(

h
− 1

2

T ‖v‖L2(T †) + ‖v‖
1
2

L2(T †)
‖∇v‖

1
2

L2(T †)

)

. (5)

Lemma 2.2 (Discrete trace inequality). Let l ∈ N, l ≥ 0. There is cdtr,

depending on l, ρ, and δ, such that, for all T ∈ T Γ
h , and all v ∈ P

l
d(T

\Γ),

‖v‖L2(∂T\Γ) ≤ cdtr h
− 1

2

T ‖v‖L2(T\Γ). (6)

3 The cut-cell HHO method

In this section, we describe the cut-cell HHO method for the ficitious domain
problem. Let k ≥ 0 be the polynomial degree for the face unknowns; the
polynomial degree for the cell unknowns is (k + 1). For any mesh cell T ∈ Th,
the set F∂T is the collection of the faces of T . Whenever T ∈ T Γ

h , the set

F
\Γ
∂T = {F \Γ = F ∩ Ω\Γ | F ∈ FT , measd−1(F

\Γ) > 0} is the collection of the
faces and cut faces of T that partition the boundary (∂T )\Γ.

3.1 Uncut cells

Let T ∈ T
\Γ
h . The local unknowns form a pair composed of one polynomial

of order (k + 1) in T and a piecewise polynomial of order k on ∂T . The local
unknowns are generically denoted as

v̂T = (vT , v∂T ) ∈ P
k+1
d (T )× P

k
d−1(F∂T ) =: X̂T , (7)

with P
k
d−1(F∂T ) = "F∈F∂T

P
k
d−1(F ). The placement of the discrete unknowns

for the uncut cells is illustrated in Figure 1.
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Figure 1: Uncut hexagonal cell. Left: k = 0; Right: k = 1. Each dot symbolizes
one degree of freedom (not necessarily a pointwise evaluation).

We define the following local bilinear form for all v, w ∈ H1(T ):

aT (v, w) =

∫

T

κT∇v·∇w. (8)

There are two ingredients to devise the local HHO bilinear form. The first one
is a reconstruction operator. Let v̂T = (vT , v∂T ) ∈ X̂T . Then, we reconstruct
a polynomial rk+1

T (v̂T ) ∈ P
k+1
d (T ) by requiring that, for all z ∈ P

k+1
d (T ), the

following holds true:

aT (r
k+1
T (v̂T ), z) = aT (vT , z)−

∫

∂T

κT∇z·nT (vT − v∂T ), (9)

where nT is the unit outward-pointing normal to T (rk+1
T (v̂T ) is uniquely up to

an additive constant; one way to fix the constant is to prescribe
∫

T
rk+1
T (v̂T ) =

∫

T
vT ). The second ingredient is the stabilization bilinear form defined so that,

for all v̂T , ŵT ∈ X̂T ,

sT (v̂T , ŵT ) = κTh
−1
T

∫

∂T

Πk
∂T (vT − v∂T )(wT − w∂T ), (10)

where Πk
∂T denotes the L2-orthogonal projector onto the piecewise polynomial

space P
k
d−1(F∂T ). Finally, the local HHO bilinear and linear forms to be used

when assembling the global discrete problem are as follows: For all v̂T , ŵT ∈ X̂T ,

â
\Γ
T (v̂T , ŵT ) = aT (r

k+1
T (v̂T ), r

k+1
T (ŵT )) + sT (v̂T , ŵT ), (11a)

ℓ̂
\Γ
T (ŵT ) =

∫

T

fwT . (11b)

3.2 Cut cells: fictitious domain problem

Let T ∈ T Γ
h . We use capital letters to denote a generic function V ∈ H1(T \Γ).

The unit outward-pointing normal to Γ is denoted n. We define the following
Nitsche bilinear form for all V,W ∈ H1(T ′):

nT (V,W ) =

∫

T ′

κT∇V ·∇W −

∫

TΓ

{

(κT∇V ·n)W + (κT∇W ·n)V − η
κT

hT

VW

}

,

(12)
where the user-specified parameter η is such that η ≥ 4c2dtr where cdtr results
from the discrete trace inequality (6) with polynomial degree l = k (this follows
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Figure 2: Cut hexagonal cell. The physical domain Ω\Γ (red/light grey) is
located below the curved boundary Γ so that (∂T )\Γ is composed of two faces
and two cut faces. Left: k = 0; Right: k = 1. Each dot symbolizes one degree
of freedom (not necessarily a pointwise evaluation).

using standard arguments for the stability of Nitsche’s method, see [4, Lemma
5.1]). The local HHO unknowns are

V̂T = (VT , V∂T ) ∈ X̂T := P
k+1
d (T \Γ)× P

k
d−1(F

\Γ
∂T ), (13)

where P
k
d−1(F

\Γ
∂T ) is the piecewise polynomial space of order k on (∂T )\Γ based

on the (sub-)faces in F
\Γ
∂T ; note that we do not introduce discrete unknowns on

TΓ. The placement of the discrete HHO unknowns in the cut cells is illustrated
in Figure 2.

As for the uncut cells, there are two key ingredients to devise the local
HHO bilinear form: reconstruction and stabilization. Let V̂T ∈ X̂T . Then,
we reconstruct a polynomial Rk+1

T (V̂T ) ∈ P
k+1
d (T \Γ) by requiring that, for all

Z ∈ P
k+1
d (T \Γ), the following holds true:

nT (R
k+1
T (V̂T ), Z) = nT (VT , Z)−

∫

(∂T )\Γ
κT∇Z·nT (VT − V∂T ). (14)

It follows from the stability of Nitsche’s method that Rk+1
T (V̂T ) is uniquely

defined by (14) up to an additive constant; one way to fix the constant is to
prescribe

∫

T\Γ R
k+1
T (V̂T ) =

∫

T\Γ VT . Concerning stabilization, we set for all

V̂T , ŴT ∈ X̂T ,

sT (V̂T , ŴT ) = κTh
−1
T

∫

(∂T )\Γ
Πk

(∂T )\Γ(VT − V∂T )(WT −W∂T ), (15)

where Πk
(∂T )\Γ

denotes the L2-orthogonal projector onto the piecewise polyno-

mial space P
k
d−1(F

\Γ
∂T ). Finally, the local HHO bilinear and linear forms are as

follows: For all V̂T , ŴT ∈ X̂T ,

âΓT (V̂T , ŴT ) = nT (R
k+1
T (V̂T ), R

k+1
T (ŴT )) + sT (V̂T , ŴT ), (16a)

ℓ̂ΓT (ŴT ) =

∫

T\Γ

fWT +

∫

TΓ

gDφT (WT ), (16b)

with φT (WT ) = −κT∇WT ·nΓ + ηκTh
−1
T WT .

3.3 The global formulation

To formulate the global discrete problem, we introduce the sets T̂h := T
\Γ
h ∪

{T ∩ Ω\Γ | T ∈ T Γ
h } and F̂h := F

\Γ
h ∪ {F ∩ Ω\Γ | F ∈ FΓ

h }, and we set

X̂h := "T∈T̂h
P
k+1
d (T ) × "F∈F̂h

P
k
d−1(F ). (17)
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Let V̂h ∈ X̂h. For all T ∈ T
\Γ
h , we denote v̂T = (vT , v∂T ) ∈ X̂T the components

of V̂h attached to the uncut cell T . For all T ∈ T Γ
h , we denote V̂T = (VT , V∂T ) ∈

X̂T the components of V̂h attached to the cut cell T . The global discrete problem
then reads as follows: Find Ûh ∈ X̂h s.t.

âh(Ûh, Ŵh) = ℓ̂h(Ŵh), ∀Ŵh ∈ X̂h, (18)

with

âh(V̂h, Ŵh) =
∑

T∈T
\Γ
h

â
\Γ
T (v̂T , ŵT ) +

∑

T∈T Γ
h

âΓT (V̂T , ŴT ), (19a)

ℓ̂h(Ŵh) =
∑

T∈T
\Γ
h

ℓ̂
\Γ
T (ŵT ) +

∑

T∈T Γ
h

ℓ̂ΓT (ŴT ), (19b)

where â
\Γ
T (·, ·) and ℓ̂

\Γ
T (·) are defined by (11) for all T ∈ T

\Γ
h and âΓT (·, ·) and

ℓ̂ΓT (·) are defined by (16) for all T ∈ T Γ
h .

4 Main result: error estimate

We now state our main result on the error analysis. The proof follows by
adapting the arguments of [4, Thm. 5.9].

Theorem 4.1 (Error estimate). Assume that u ∈ Hk+2(Ω\Γ), k ≥ 0, is the

solution to (1). Let Ûh ∈ X̂h solve (18). Then, the following bound holds true:

∑

T∈T
\Γ
h

‖∇(u− uT )‖
2
T +

∑

T∈T Γ
h

‖∇(u− UT )‖
2
T\Γ

+
∑

T∈T Γ
h

h−1
T ‖gD − UT ‖

2
TΓ . h2(k+1)|u|2Hk+2(Ω\Γ). (20)
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