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Sequence Covering for Efficient Host-Based
Intrusion Detection

Pierre-Francois Marteau, Member, IEEE,

Abstract—This paper introduces a new similarity measure, the covering similarity, that we formally define for evaluating the similarity
between a symbolic sequence and a set of symbolic sequences. A pair-wise similarity can also be directly derived from the covering
similarity to compare two symbolic sequences. An efficient implementation to compute the covering similarity is proposed that uses a
suffix tree data-structure, but other implementations, based on suffix array for instance, are possible and possibly necessary for
handling large scale problems. We have used this similarity to isolate attack sequences from normal sequences in the scope of
Host-based Intrusion Detection. The experiment we have carried out on two well-known benchmarks in the field, in view of the results
provided by state of the art methods, demonstrates the efficiency and usefulness of the proposed approach.

Index Terms—Intrusion Detection ; Anomaly Detection; Sequence Covering Similarity; Sequential Data Mining

1 INTRODUCTION

NTRUSION Detection Systems (IDS) are more and more

heavily challenged by intrusion scenarii developed by
nowadays hackers. The number of reported intrusion in-
cidents has dramatically increased during the last few years
with very serious consequences for organizations, compa-
nies and individuals. As an example, the Troyan horse
TINBA (which stands for TINy BAnker) has targetted with
apparent success the worldwide banking system during the
last three years [1], [2], [3]. The detection of zero day attacks
(attacks that have never been detected before) is even more
challenging since no pattern or signature characterizing this
kind of attack can be used to identify it. Furthermore,
with the development of the IoT, the rate of production
of sequences of system calls, i.e. sequential data used to
access, manage, or administrate connected equipments, is
exploding. Hence, the need to develop and use efficient
intrusion detection algorithms that can identify, isolate and
handle suspicious patterns in sequential information flows
is evermore pressing with time.

This paper addresses the detection of (unknown) anoma-
lies in symbolic sequential data with a specific focus on
sequences of system-calls in the scope of intrusion detection.

Our main contribution is the description of an efficient
algorithm (SC4ID, which stands for Sequence Covering For
Intrusion Detection) based on the concept of a so-called
optimal-covering of a sequence by a subset of subsequences
extracted from a predefined set of sequences. We show that
this algorithm is efficient, at least in terms of accuracy and
response time to isolate attack sequences that have never
been observed (zero day settings). Indeed, as its implemen-
tation is based on generalized suffix-trees (or suffix arrays),
it requires a relatively large memory overhead.

The second section of this paper briefly reports the main
related works. We detail the SC4ID algorithm in the third
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section and evaluate it in the fourth section on two distinct
sequence of system call benchmarks.

2 CONTEXT AND RELATED WORKS

In a broad sense we address anomaly detection in sequential
data [4] while focusing on intrusion detection in cyber-
physical systems. Intrusion [5] refers to possible security
breaches in (cyber-)systems, namely malicious activity or
policy violations. It covers both intrusions per se, i.e. attacks
from the outside, and misuse, i.e. attacks from within the
system. An intrusion detection system (IDS) is thus a device
that monitors a system for detecting potential intrusions.
The IDS will be referred to as NIDS if the detection takes
place on a network and HIDS if it takes place on a host
of a network. Furthermore, we distinguish i) signature-
based IDS approaches, that detects attacks by looking for
predefined specific patterns, such as byte sequences in net-
work packets, or known malicious sequences of instruction
used by malware, to ii) anomaly-based intrusion detection
systems that were primarily introduced to detect unknown
attacks (zero day attacks).

In this work we address exclusively host intrusion
detection through anomaly-based approaches. Since
pioneering Forrest’s work [6] most of HIDS (at least in the
UNIX/LINUX sphere) exploit system call sequences' as
their primary source of information. Generally, sequences
of system calls are represented as sequences of integer
symbols, for which the order of occurrence of the symbol
is of crucial importance. Numerous work and surveys have
been published in the area of anomaly detection in the
scope of intrusion detection, see [7] [8], [9] for a recent
study. If we narrow down the area of interest to anomaly
detection in sequential data, four avenues for handling
symbolic sequences are mainly followed:

1. ”A system call is the programmatic way in which a computer
program requests a service from the kernel of the operating system
it is executed on” [Wikipedia]
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window-based approaches [10] are quite popular since
a fixed size window allows for a wide range of statistical,
knowledge based and machine learning techniques to apply
straightforwardly. A fixed-size window is first defined, then
progessively slides along the tested sequence. Each window
(basicaly a fixed-size subsequence) is in general represented
by a feature vector. Then, models such as the one class
Support Vector Machine [11], Multi Layer Perceptron and
Convolutional Neural Networks [12] are used to provide a
score for deciding whether an anomaly is present or not.

In this framework, an aggregation of each window (that
is sliding all along the sequence) scores is necessary to get a
global decision at the sequence level. The prediction score
is used to detect and locate the position of the anomalies
inside the test sequence if any.

(global) kernel-based approaches [13] process each
sequence as a whole and a pair-wise sequence kernel
(string kernel) is used to provide the sequence space with a
similarity measure. The k-Near-Neighbor rule, or any of the
so-called kernel machine methods can then be applied to
model the 'normal” clusters and isolate ‘anomalies’. These
approches have their roots in Bioinformatics [14] (Smith
and Watermans), (BLAST) [15] and Longest Common
Subsequence (LCS) or Longest Similar Subsequence [16]
[17]. Such methods do not seem to outperform window-
based approaches and are in general much more costly in
term of algorithmic complexity.

Generative approaches, essentially Hidden Markov
Models (HMM) [18] [19] [20], Conditional random Fields
[21] [22] or Recurrent Neural Networks (RNN, LSTM,
etc.) [23] [24] have been used with apparent success on
various intrusion detection tasks, such as payload analysis
or Network Layer Intrusion Detection or HIDS. However,
choice for parameters such as the order of the Markovian
dependency, number of hidden variables, etc, is often the
result of a compromise to avoid over-fitting, and long term
dependency is not necessarily easily modeled.

Language based approaches have been proposed
initially to extract very simple n-gram features to enhance
a vector space model similar to the one used in text
mining [25], [26]. Recently, a much ambitious model
has been proposed that intends to enact phrases and
sentences, hence a language, from sequences of system
calls [27]. Nevertheless, these approaches suffer from the
combinatorics explosion. When simple n-grams models
are used (with n lower than 5 or 7) the size of the vector
space model is very high (several millions of dimension)
and in general the lack of available data to train the model
limits its accuracy. In the case of Creech et al. approach [27],
the combinatorics is much more higher with an estimated
feature space dimension of 10'6 which makes this model
intractable for common hardware.

The approach we present below relates to the kernel-
based family. Each sequence is thus considered as a whole,
whatever its length is. All the specificity and novelty of the
method relies on a quite simple similarity measure, that we
call covering similarity. To our knowledge, this similarity

2

measure has not been proposed yet for sequence compar-
ison, specifically in the context of intrusion detection. It is
defined to evaluate how much a sequence is close to a set
of supposedly mormal” sequences. A simple threshold is
used to decide whether an unknown sequence is ‘normal’ or
should be considered as an anomaly. The main advantages
of our approach are:

e apart from a decision threshold, it is parameter free, in
particular it does not rely on a window size,

e it is incremental and can be setuo ‘on-line’,

« it allows to locate abnormal area in long sequences,

« it supports a very efficient instance selection scheme to

iteratively improve the 'normal” model, without over-

loading it with unnecessary instances,

it is quite efficient compared to other machine learning

based models and scale well comparing to classical

sequence alignment kernel (which, in general, are at

least in O(n?) complexity) such as string kernels, the

Longest Common Subsequence or the Smith and Wa-

terman similarity, thanks to the suffix trees and suffix

arrays data structures on which the implementation of

our algorithm relies to.

3 THE SC4ID ALGORITHM

The overall principle of the SC4ID algorithm, depicted in
algorithm 1, is very simple. Given a set of sequences con-
sidered as normal sequences, S, and a threshold ¢ € [0;1],
SC4ID evaluates the similarity of an unknown sequence s
with the elements of S according to a similarity measure
7 (s,5). If this similarity is above the threshold o then the
sequence s is considered as normal, otherwise it will be
considered as an anomaly.

The specificity of the algorithm lies in the way similarity
(s, 5) is defined. We introduce hereinafter some defini-
tions and notation to detail the formal definition of this
similarity measure.

3.1 Definitions and notation

Let ¥ be a finite alphabet and let ¥* be the set of all
sequences (or string) define over X.

Let S C X* be any set of sequences, and let Ss,; be
the set of all subsequences that can be extracted from any
element of S Uyex {a}. We denote by .#(Ssy) the set of
all the multisets? that we can compose from the elements of
Ssub'

¢ € M(Ssup) is called a partial covering of sequence
s € X iif

1) all the subsequences of ¢ are also subsequences of s,

2) indistinguishable copies of a particular element in c
correspond to distinct occurrences of the same subse-
quence in s.

If ¢ € M (Ssup) entirely covers s, meaning that we can
find an arrangement of the element of c that covers entirely
s, then we will call it a full covering for s.

Finally, we call a S-optimal covering of s any full
covering which is composed with a minimal number of

2. A multiset is a collection of elements in which elements are allowed
to repeat; it may contain a finite number of indistinguishable copies of
a particular element.
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subsequences, basically it is composed with the minimum
number of subsequences in S, that are required to com-
pose a S-maximal covering of s.

Let c5(s) be a S-optimal covering of s.

We define the covering similarity measure between se-
quence s and set S as

|s| = lez(s)[ +1
5]

F(s,8) = @
where |c§(s)| is the number of subsequences composing
a S-optimal covering of s, and |s| is the length of sequence s.

Note that in general c§(s) is not unique, but since all
such elements have the same cardinality, |c(s)|, 7 (s, S) is
well defined.

Properties of .7 (s, S):

1) if s is a subsequence element of S5, then .7 (s,5) =1
is maximal.

2) in the worse case, the S-optimal covering of s has
a cardinality equal to |s|, meaning that it is com-
posed only with subsequences of length 1. In that case,
S(s,8) = ﬁ is minimal.

Notice that the covering similarity between a sequence
and a set of sequences as defined in Eq. 1 allows for the
definition of a covering similarity measure on the sequence
set itself. For any pair of sequences s1, sy it is defined as
follows

1
Fseq(s1,82) = 5 (L (51, {52})) + S (52, {s1}) @)
where . is defined in Eq. 1.

Algorithm 1: SC4ID

input : S C ¥*, a set of sequences

input : s € ¥*, a test sequence

input : o € [0, 1], a threshold value

output: a decision value: 'normal’ or ‘anomaly’

Get a S-optimal covering of s;
Evaluates .#(s, S) according to Eq. 1;
if .7 (s,5) > o then return'normal’ ;
else return’anomaly’;

BWON =

As an example, let us consider the following case:

s1 =10,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]
s2 = [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
S = {s1, 82}

s3 =[0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]
s4 =[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]

The S-optimal covering of s3 3 is of size 2, hence

S (s3,8) = 1852+ = 13/16, and the S-optimal covering
of s4 * is of size 8, leading to .7 (s4, 5) = 183+ = 9/16.

3.([0,0,1,1][0,0,1,1],[0,0,1,1][0,0,1,1]) is a S-optimal covering of s3
4.([0,1],[0,1],[0,1],[0,1],[0,1],[0,1],[0,1],[0,1]) is a S-optimal covering
for s4

3

The main challenge for the SC4ID algorithm is to evalu-
ate efficiently .#(s, S) for sufficiently large S and relatively
long sequences s such as to be able to process common se-
quences of system calls. This essentially requires an efficient
way to get S-optimal coverings for tuples (s, S) constructed
from general sequence of system calls.

3.2 Finding a S-optimal covering for any tuple (s, .S)
The brute-force approach to find a S-optimal covering for a
sequence s is presented in algorithm 2. It it an incremental
algorithm that, first, finds the longest subsequence of s
that is contained in Sy, and that starts at the beginning
of s. This first subsequence is the first element of the S-
optimal covering. Then, it searches for the following longest
subsequence that is in S, and that starts at the end of
the first element of the covering, adds it to the covering in
construction, and iterate until reaching the end of sequence
5.

Algorithm 2: Find a S-optimal covering for s

input : S C X*, a set of sequences
input : s € X*, a test sequence
output: ¢, a (S-optimal) covering for s

continue <— True;

start <— 0;

ct—0;

while continue do

end <— start +1;

while end < |s| and s[start : end] € Sgy do
L end +— end + 1;

¢ — c* U {s[start : end — 1]};

if end = |s| then continue <— False;

10 start +— end;

NS Ul R WN -

o @®

11 return c;

Proposition 3.1. Algorithm 2 outputs a S-optimal covering for
sequence s.

Proof. i) First we notice that since all the subsequences of
length 1 constructed on ¥ are included into S, algorithm
2, by construction, necessarily outputs a full covering of s
(meaning that s is entirely covered by the subsequences of
the covering provided the algorithm).

ii) Second we notice that, for all s; and s; in ¥* such
that s; is a subsequence of s9, and any S C ¥*, |c5(s1)] <
5 (s1)]-

We finalize the proof by induction on n, the cardinality
(the size) of the coverings.

The proposition is obviously true for n = 1: for all
sequence s for which a covering of size 1 exists (meaning
that s is a subsequence of one of the sequences in S5),
algorithm 2 finds the S-optimal covering that consists of s
itself.

Then, assuming that the proposition holds for n, such
that n > 1 (IH), we consider a sequence s that admits a
S-optimal covering of size n + 1.

Let s = s1 + 51, be the decomposition of s according to
the full covering provided by algorithm 2, where s, is the
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prefix of the covering (first element) and 3; the remaining
suffix subsequence (concatenation of the remaining covering
elements). + is the sequence concatenation operator. Simi-
larly, Let s = s} + 57, be the decomposition of s according
to a S-optimal covering of s. Necessarily, s], which is also
a prefix of s, is a subsequence of s; (otherwise, since sj
is in Ssyp, algorithm 2 would have increased the length of
51 at least to the length of s7). Hence, 35; is a subsequence
of 37 and, according to ii), |c5(51)| < |c5(57)| = n. This
shows that 5, is a sequence that admits a S-optimal cover-
ing, c4(51), of size at most equal to n. According to (HI),
algorithm 2 returns such an optimal covering for 5;. This
shows that the covering {s1} U ¢§(51) that is returned by
algorithm 2 for the full sequence s, is at most of size n + 1,
meaning that it is actually a S-optimal covering for s of size
n + 1. Hence, by induction, the proposition is true for all n,
which proves the proposition. O

3.3 Algorithmic complexity and implementation con-
siderations

The brute-force algorithm 2, similarly to many algorithms
in the field of information indexing and retrieval, faces two
difficulties when the size of the data (the size of S and the
average length of the sequences) increases, namely memory
consumption and response time. These two aspects cannot
be solved simultaneously and require finding a compro-
mise.

The main computing effort for algorithm 2 is located
in the second part of the test (at line 6), which consists in
checking whether the subsequence s[start : end] belongs
to the set of subsequences Sg,;, associated to S. As we
have to iterate along the sequence s to successively obtain
the elements of its covering, algorithm 2 would require
searching O(|s|) subsequences.

Indeed, a straightforward improvement of the brute-
force algorithm can be achieved. Instead of iterating along
the sequence s to find successively the elements of its cover-
ing, this improvement implements a dichotomic (or binary)
search to locate the extremities, that we call breaks, of the
subsequences that compose the covering. This improvement
is described below in algorithms 3 and 4.

The improved search algorithm has a computational
complexity that is upper bounded by O(k-log(|s|)) times the
cost of an individual membership search, where k = c%(s)
is the size of a S-optimal covering for s. Note that, if the
size, k, of the covering is of the same order of magnitude
than the length of s, then the “improved’ algorithm would
in fact require more time than the brute-force one. Hence the
improvement is only achieved when the size of the covering
is significantly smaller than the length of the covered sub-
sequence, which is the case in general, except for abnormal
sequences that we are aiming to isolate. Such sequences are
expected to be rare, and, in principle, we could accept the
extra computing cost if we effectively achieve to separate
them from the flow of numerous normal sequences that need
to be processed.

3.3.1 Hash table implementation

If response time is favored and memory space not a prob-
lem, then one can implement a hash table that stores all

4

the subsequences of S (more precisely the elements of S,)
and, doing so, we will be able to know if a subsequence is
a member of Sy, in O(1) time complexity. Hence, the time
complexity to find the S-optimal covering for a sequence s
of average size n will be O(n) for this implementation.

In the other hand, if the average length of the sequences
in S is n, then, the space required to store all the elements
of Sgup is expressed in O(n? - |S|).

This could be feasible for small size problems. However,
for long sequences, e.g. an average length of 10° elements,
and large S, e.g. 106 sequences, we need to store 0(1016)
subsequences in the hash table which is not feasible in
practice on common hardware.

3.3.2 Suffix tree and suffix array implementations

For medium to large size problems, we need to limit drasti-
cally the space consumption.

Algorithm 3: Find the first break location in s
between positions ¢, and ¢,

1 Function breakDichoSearch(s, ty, te, S)

input : s € X*, a test sequence

input : 1, < t. < |s]|, the index segment in which
looking for the break

input : S C ¥*, a set of sequences

output: ¢, the searched breaking index position

2 | t— [(ts +te)/2);

3 if t =ty and sty : t.] € Seup then

4 ‘ return t+1

5 else

6 L return t

7 if s[ty : t] € Sgup then

8 \ return breakDichoSearch(s, t, t., S);

9 else
10 L return breakDichoSearch(s, t, t, S);

Algorithm 4: Find using a binary search a S-optimal
covering for s

input : S C X*, a set of sequences
input : s € X*, a test sequence
output: c*, a S-optimal covering for s

continue <— True;
start <— 0;
ct —0;
while continue do
t +— breakDichoSearch(s, start, |s|, Ssup);
c* +— c* U{s[start : t — 1]};
if t = |s| then continue «— False;
start <— t;

@ N Ul R W N -

return c*;

o

Comparatively to a hash table implementation, a gen-
eralized suffix tree implementation [28] [29] would reduce
the memory requirement to O(n - |S|), although, in general,
with a large proportionality constant (typically 10 to 100 in
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practice), and an increase of the computational complexity
for searching for a subsequence (O(m), where m is the
length of the subsequence that is searched).

In comparison, suffix arrays [30], and specifically its
enhanced implementation [31], is a space-efficient data-
structure that reduces the memory consumption without
loosing (too much) on the response time. As they are cache
friendly, a suffix array can in practice allow to handle
much larger sequence sets than a suffix tree and is much
easier to parallelize. A suffix array provides the search for a
subsequence with O(m + log(n - N)) time complexity.

In our current implementation we gave priority to speed
rather than memory consumption, while trying to run our
algorithm on common harware. Hence we adopted a gen-
eralized suffix tree implementation in Python® that we have
modified to cope with sets of sequence of integers (each
integer corresponding to a system call) instead of sets of
strings. The sequence datasets, described below, that we
have used for our experiment fit easily in a generalized
suffix tree.

4 EXPERIMENT

We evaluate the SC4ID algorithm on two well-known sys-
tem call datasets provided respectively by the University
of New Mexico (UNM) [32] and the Australian Centre for
Cyber Security, refer to as ADFA-LD [33]. We have selected
these two datasets because i) their use by the research
community covers a wide time span (1998-2013) and ii)
numerous results have been reported using these datasets in
various settings, which allows for confronting our findings
to the state of the art.

4.1 The UNM dataset

For our first experiment, we have considered the sendmail
system call traces from the relatively old UNM dataset
[10]. These synthetic data were collected at UNM on Sun
SPARCstations running unpatched SunOS 4.1.1 and 4.1.4
with the included sendmail. We have adopted the setting
described in [34], basically 68 unique process traces in the
normal dataset (uniqueness is to ensure that none sequence
appears simultaneously in the train and validation subsets)
and 13 process traces in the abnormal dataset (we have kept
the 3 duplicated attack sequences in this set).

The experimental protocol for this data set is as follows :

1) initialization: select randomly 10% of the normal data
to build the 'normal’ model, i.e. the initial set of normal
data, S, from which the covering similarity will be
evaluated.

2) Evaluation: for each of the remaining normal and attack
sequences, s , evaluate the covering similarity .7 (s, S).
Then rank the normal data according to their similarity
score. Finally evaluate the ROC curve and assessment
metrics.

3) From the previously ranked normal data, select the
normal sequence with the worse similarity score,
57, and update the normal model with training set
S := S U{s™}. Then loop in step 2 until 50% of the

5. Python implementation of Suffix Trees and Generalized Suffix
Trees, https:/ / github.com/ptrus/suffix-trees

normal data is used in training.

Fig. 1 presents the histogram of the covering similarity
values (left column) for the ‘'normal’ (blue) and “attack’ (red)
data, the ordered similarity values in increasing order (mid-
dle column) for the ‘'normal’ (blue dotted line) and attack
data (red, plain line) and the ROC curve (right column).
In this figure, the top row corresponds to a situation for
which 10% of the normal data has been randomly selected
for training, the middle raw when the initial 10% of training
data has been enriched using 12% of the remaining normal
data corresponding to the lowest covering similarity scores,
and finally, the bottom row corresponds to an enrichment
of the initial 10% training data using 28% of the remaining
normal data. From top to bottom, we show that the model
improves its capacity to separate attack data from normal
data: the AUC value that is initially .81, reaches .94 when
22% of the 'normal’ data is used as training and 1.0 when
38% of the 'normal’ data is used as training. In the middle
column, we see that the similarity scores for the normal
data progressively tangent the 1 constant curve (maximal
similarity value), while, for the attack data, it stays globally
much lower, although is increases slightly when the size of
the training set increases.

Figure 2 presents for this experiment the AUC value
obtained by the algorithm as the enrichment of the train-
ing data increases. 5 different runs have been carried out,
each one being initialized by randomly drawing 10% of
the normal data. The grey area corresponds to the +1/-1
standard deviation, and the blue dotted line is the average
curve. We can see on this figure that the SC4ID algorithm
improves quite rapidly until reaching a perfect separation
of the normal and attack data when 38% of the normal
data is used, what ever the initialization is. This is a major
and very promising result, since the instance selection that
is performed directly from the covering similarity scores is
working particularly well on the UNM data.

4.2 The ADFA-LD dataset

The second experiment involves a much more recent bench-
mark dataset for HIDS, designed by the Australian Centre
OF Cyber Security (ACCS). According to the authors, the
ADFA-LD dataset [27], [33] has been designed to reflect
modern hacking techniques, while using modern patched
software as its backbone. It is composed with a train set
composed with 833 normal sequences, a validation set
composed with 4373 normal sequences and a set of 746
attack sequences partitioned in 6 categories referred to as
HydraFTP, Hydra-SSH, Adduser, Java-Meterpreter, Meter-
preter and Webshell.

Similarly to the UNM experiment, the experimental pro-
tocol for this data set is as follows :

1) initialization: select the 833 sequences of the normal
train data to build the ‘'normal’ model, i.e. the initial set
of normal data, S, against which the covering similarity
will be evaluated.

2) Evaluation: for all the remaining normal and all attack
sequences, s, evaluate the covering similarity (s, S).
Then rank the normal data according to their similarity
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Fig. 1. UNM dataset: histogram of the covering similarity distributions ..(s, S) (left column), ranked covering similarity .#.(s, S) (middle column),
ROC curves (right column), when 10% (top row), 22% (middle row) and 38% (bottom row) of the normal data is used for training.

scores. Finally evaluate the ROC curve and assessment
metrics.

3) From the previously ranked normal data, select 100
sequences of normal data with the worse similarity

score, Sio0, update the normal model S := S U Sigo
and loop in step 2 until 50% of the normal data is used
in training.

When only the 833 normal train sequences are used
to train SC4ID, one get the histogram of similarity scores
given in top of Fig. 3. A red peak of maximal similarity
(1.0) exists, meaning that some attack data (actually 32

sequences) are exact subsequences of the 833 normal train
data. When we remove these 32 attack sequences, one notice
a smaller remaining red peak with high covering similarity
close to 1.0. This peak corresponds to 11 attack sequences
that have a covering of size 2, i.e. that are composed with
two subsequences that belongs to the set of training data.

This situation for which attack sequences can be exact
subsequences of normal data is a bit surprising and one
may wonder how this can be possible. We do not have
investigated the nature of such subsequences and do not
argue further about a potential mix-up between attack and
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Fig. 2. UNM dataset: AUC curves as a function of the size of the training
set in percent for 5 distinct runs. The average curve is shown in dotted
line. The grey filled area shows the +1/-1 std curves.

normal sets. Rather, we take the opportunity to highlight an
obvious limitation of SC4ID: it is completely blind to this
kind of situation. Complementary approaches are required
to address specifically this issue if any.

Fig. 4 presents the histogram of the covering similarity
values (left column) for the ‘'normal’ (blue) and “attack’ (red)
data, the ordered similarity values in increasing order (mid-
dle column) for the 'normal’ (blue dotted line) and attack
data (red, plain line) and two ROC curves (right column):
the black plain line curve corresponds to the situation where
all the attack data is kept, the blue dotted line corresponds
to the situation where the 32 attack sequences that are exact
subsequences of the 833 normal train data are removed. In
this figure, the top row corresponds to the situation where
only the 833 normal train sequences are used for training,
the middle raw when the initial 833 sequences have been
enriched using 500 sequences of the remaining normal data
and having the lowest covering similarity, and finally the
bottom row corresponds to a an enrichment of the initial 833
train sequences using the 1000 sequences of the remaining
normal data having the lowest covering similarity. From top
to bottom, we show that the model improves its capacity
to separate attack data from normal data: the AUC value
that is initially .84/.88, reaches .93/.97 when 500 normal
sequences have been added to the initial training data and
.96/99 when 1000 normal sequences have been added to the
833 initial training set. Similarly to what we have observed
for the UMN dataset, in the middle column, we see that the
similarity score for the normal data progressively tangents
the 1 constant curve, while, for the attack data, it stays
globally much lower, although is increases slightly.

Fig. 5 presents for this experiment the AUC values
for the algorithm as the enrichment of the training data

16 |

14 1

12

10

00 02 04 06 08 10
Covering similarity distributions: normal (blue), anomaly (red)

16 |

14 1

12

10

0.0 0.2 04 06 08 10
Covering similarity distributions: normal (blue), anomaly (red)

Fig. 3. Histogram of the covering similarity for normal validation data
(blue), and attack data (red). Top: all the attacks are considered, notice
the red pick with maximal similarity, 1.0, corresponding to attacks that
are exact subsequences of the train sequences. Bottom: the same
histogram when the 32 attacks with covering similarity equal to 1.0 are
removed. Notice the remaining small peak of high similarity close to 1.0
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Fig. 4. ADFA-LD dataset: histogram of the covering similarity distributions .#.(s,.S) (left column), ranked covering similarity .#.(s, S) (middle
column), ROC curves (right column), when 833 normal data (top row), 833 + 500 normal data (middle row) and 333 + 1000 normal data (bottom

row) is used for training.

increases. We can see on this figure that the SC4ID algo-
rithm improves rapidly until reaching an almost perfect
separation (when the attacks that are subsequences of the
train data have been removed) of the normal and attack
data when 1400 normal data have been used to enrich the
initial 833 training set. Here again, the instance selection that
is performed directly from the covering similarity scores
is working particularly well. Nevertheless, we notice after
adding 1400 sequences that the algorithm is a little less
efficient with a AUC value that drops from .975/.998 to

.971/.992. The explanation is that a remaining few attacks
(precisely the 11 sequences mentioned earlier that have a
covering of size 2 when using only the 833 train sequences)
become subsequences of some of the lastly added normal
subsequences to train set. The similarity for these few
attacks reaches the maximal value, namely 1.0, and they
cannot be separated anymore, hence a lower AUC value.
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Fig. 5. ADFA-LD dataset: AUC curves as a function of the number
of normal data added to the initial training set. The black plain line
correspond to the situation for which the sequences of attacks which are
an exact subsequence of a normal data have been removed. The blue
dotted line corresponds corresponds to the case where no sequence of
attacks has been removed.
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Fig. 6. Elapsed time in second during each steps of the enrichment
procedure for the UNM (dotted black line) and ADFA-LD (plain blue line)
datasets.

4.3 Runtime consideration

Fig. 6 presents the elapsed time in second for each itera-
tion of the enrichment process carried out for the UNM
(dotted curve) and ADFA-LD (plain curve) datasets. Each
step of this process involves the construction of a suffix
tree based on the train (normal) data, S, and the extraction
of the S-optimal coverings for the validation (normal) and
attack data. These curves have been obtained on a Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz laptop running an
Ubuntu 16.10 release. Notice that between two successive
tests, the train data increases by one sequence for the
UNM dataset and 100 sequences for the ADFA-LD dataset;
conversely the validation (normal) dataset is reduced by
one sequence and 100 sequences respectively. Hence, as the
enrichment increases, the number of S-optimal coverings to
extract decreases.

We observe that the elapsed time is quite stable, around
450 seconds, for the UNM dataset and rather independent
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of the enrichment step. Ror the ADFA-LD dataset (which is
much larger in size than UNM dataset), It varies around an
average of about 900 seconds with a large standard devia-
tion (about 100 sec.). From the analysis of the logs collected
during our experiments, we found that i) the time required
to construct the suffix tree is marginal, ii) the elapsed time
progressively shifts from the extraction of the coverings
for the validation normal sequences to the extraction of
the coverings for the attack data. This is due partly to the
fact that the number of normal validation data to evaluate
decreases, but also because the extraction is becoming much
easier for the normal data because the size of the covering
becomes very small in average as the enrichment progresses
(similarity scores tangent the maximal similarity score for
normal data).

Due to the variability in length of the sequences that
are added to the train data, it is difficult to go deeper
into this analysis. Nevertheless, these curves show that, i)
for the various configurations corresponding to each step
of the enrichment process, the extraction of the S-optimal
coverings is bounded in time and ii) the two addressed
problems are processed in a quite reasonable elapsed time.

5 DISCUSSION AND CONCLUSION

The UNM dataset, although relatively old and somehow
outdated, gives a general view of the capability of the SC4ID
algorithm to separate normal data from attacks sequences.
The fact that the first results highlighted on the UNM
dataset are still observable on a much recent and reputed
difficult benchmark such as the ADFA-LD dataset is partic-
ularly promising. In both cases, the instance selection ability
of SC4ID allows for rapidly improving the separability of at-
tack sequences from the normal ones. When the train data is
sufficiently representative of the normal activity expressed
in terms of system call sequences, the algorithm achieves a
quasi perfect separation. We have shown that, if this perfect
separation is not obtained on the ADFA-LD dataset, this is
because some attack sequences actually correspond exactly
to some subsequences of the normal sequences that are used
to train the model. If this kind of overlap is suppressed then
one can expect a perfect separability as show in Fig. 5.

To give some hints about how SC4ID compares with the
state of the art methods that have been tested on the ADFA-
LD dataset, we report hereinafter the results we found in
the recent literature:

In [35] bag of words and vector space model with #f and
tf-idf weightings were used. Authors report a bit less than
80% in accuracy for a false positive rate of 30%.

In [36] a one-cass SVM has been evaluated using a fea-
ture vector composed with n-grams of length 5. The authors
report an average accuracy of 70% at a False Positive Rate
of about 20%.

In [37] a 10 fold cross-validation supervised classification
(which is a much easier task than the anomaly detection task
we are considering in this work, since attack data is used to
train the classifiers) has been conducted. Authors report a
AUC=0.93 for the best tested method (k-nn with k=3), using
an ‘enhanced’ vector space model with n-grams (n=2,3,4,5).

In [24], an ensemble deep learning approach (LSTM) has
been evaluated. Authors report an AUC value of 0.928 for an
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aggregating method that is somehow questionable, and an
AUC value of 0.859 for a classical voting ensemble method.
This implies that for a single LSTM model, the AUC value
would be at most .86.

In [27] a combinatorics ‘semantic” approach has been set
up. It requires enumerating all phrases of 5 words with
gaps, each word consisting of any subsequence (of any
length) extracted from the train data (we estimate at about
6.10'6 the number of such phrases). The authors, actually
the designers of the ADFA-LD dataset, report an AUC = .95
after several weeks of computing effort.

In [38], authors have proposed to reduce system call
traces by applying trace abstraction techniques. The ap-
proach consists mainly to reduce the size of the alphabet, by
using meta-symbols, i.e. subsets that partition the alphabet.
Authors report a 12.69% false positive rate for a 100% true
positive rate when using a HMM model.

This shows that the SC4ID algorithm is quite compet-
itive, as far as enough normal training data is used. Its
main advantages compared to the previously mentioned
approaches are:

i) it is parameter free, except for the decision threshold
0. Hence no assumption need to be made on the data,
no windowing, no maximal length for the n-grams that
are taken into account, no hidden architecture (HMM,
LSTM) need to be defined, no meta parameters (SVM,
RF) need to be tuned, etc.

ii) It is incremental: the elements of the covering are pro-
gressively discovered and never modified afterwards.
Hence the algorithm can be easily setup for an on-line
exploitation.

iii) The covering similarity is a very efficient measure that
can (and should) be used to decide if a given normal
sequence should be part of the training data or not.
Basically, when a lot of normal data is available, which
is actually the case in the HIDS application scope, it
offers a data selection scheme with a stop condition that
can be easily set up according to the middle columns of
Fig. 1 and 4. When the ranked normal similarity curve
tangent the 1-constant horizontal line, SC4ID will not
improve furthermore its capability to isolate abnormal
data, abnormality being clearly defined in the context
of the considered set of normal data.

iv) its applicability, in particular, it runs easily on common
hardware for medium size problems.

However, we have pointed out a limitation of the SC4ID
algorithm: it cannot separate sequences that are exact subse-
quences of the training set. Of course, one may challenge, in
the context of anomaly detection, whether it makes sense
to consider that a subsequence of a normal sequence is
possibly abnormal. Any algorithm that exploits historical
data to provide a regressive or predictive scoring would also
fail to correctly handle such situation.

As a perspective, we can expect a speed up of the algo-
rithm when trace abstraction techniques, such as described
in [38], are used to reduce system call traces. This speed-
up, hopefully, could potentially be obtained without losing
(too much) on the accuracy. Parallelization of the algorithm
is also an issue that can be addressed, in particular in the
context of a suffix array implementation.
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Finally, one may ask whether the covering similarity is
able to offer some useful solutions in other domain such as
bioinformatics, sequence mining (clustering, classification),
etc. In particular, the pair-wise similarity defined in Eq. 2
could be tested in various context, to evaluate the robustness
and generality aspect of the concept of sequence covering.
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