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Direct Wavefront Measurement of Terahertz Pulses
Using Two-Dimensional Electro-Optic Imaging

Mathilde Brossard, Harsono Cahyadi, Mathias Perrin, Jérôme Degert,
Eric Freysz, Takeshi Yasui, and Emmanuel Abraham

Abstract—We report on the development of a wavefront sensor
for terahertz pulses using a direct two-dimensional electro-optic
imaging system composed of a ZnTe crystal and a CMOS camera.
By measuring the phase variation of the terahertz electric field in
the crystal plane, we are able to reconstruct the terahertz (THz)
wavefront in order to determine the optical aberrations of the
optical system. Associated with deformable mirrors or specifically
designed optics, the sensor will open the route to terahertz adaptive
optics.

Index Terms—Optical aberrations, sensor, terahertz (THz),
wavefront.

I. INTRODUCTION

FROM the emergence of photonics technology, it has been
forever essential to characterize and control the wavefront

of optical beams, characterized by the surface of equiphase of
the electromagnetic field, in order to determine the optical aber-
rations and optimize the performances of the optical systems.
This can be accomplished for instance with the well-known
Shack–Hartmann sensor which can locally measure the wave-
front slopes of an incoming optical beam [1]. At present, in the
visible and near-infrared spectral region, commercially avail-
able wavefront sensors can measure the optical aberrations and,
associated with adaptive optics systems, they are able to cor-
rect these defaults in a wide variety of applications including
astronomy, ophthalmology, and microscopy.

In the terahertz (THz) spectral domain, it is still challenging
to measure the spatial profile and wavefront of a THz beam
due to the lack of effective THz two-dimensional (2-D) detec-
tors. However, the wavefront characterization of THz beams is
essential to optimize the spatial resolution or illumination uni-
formity of THz imaging systems, developed for a large variety of
applications such as security and defense, nondestructive test-
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ing of industrial materials, food and pharmaceutical industry,
communications, or cultural heritage [2]. Wavefront analysis
of THz pulses is also mandatory for the control of far-field
intensity distribution of time-domain spectrometers or to in-
crease the peak power of intense terahertz sources and optimize
the beam focalization of scanning THz time-domain imaging
systems.

Previous studies were oriented toward the measurement of
THz wavefronts for both continuous wave and pulsed sources.
In 2008, Bitzer et al. determined the beam profiles of THz
pulses after passing through a hyper-hemispherical silicon lens
[3]. They observed an asymmetric spatiotemporal electric field
dynamic at the focus of the lens attributed to a distortion of the
incident THz wavefront. However, they did not measure the THz
wavefront, but only the THz beam profile. Moreover, their indi-
rect and time-consuming method used a xy-scanning system in
order to determine point-by-point the beam profile. In 2012, Cui
et al. proposed the first THz wavefront measurement associated
with a Hartmann sensor and indirect xy-scanning method, de-
tecting the radiation with a pyroelectric sensor [4], [5]. The same
year, Richter et al. presented a similar arrangement with a 2-D
detection consisting in a microbolometer camera [6]. However,
their method cannot be applied with short THz pulses produced
by femtosecond laser pulses owing to the low sensitivity of the
thermal incoherent detector. Another aperture scanning device
was proposed in 2013 to characterize the THz beam propa-
gation in a time-domain spectrometer [7]. Associated with a
Hartmann mask, it has been used to produce 2-D image of the
THz wavefront. More recently, we proposed the wavefront char-
acterization of THz pulses using a Hartmann sensor associated
with a 2-D electro-optic (EO) imaging system [8]. We quanti-
tatively determined the deformations of planar and converging
spherical wavefronts using the modal Zernike reconstruction
least-squares method. Nevertheless, our indirect method uses a
mask which limits the beam transmission and requires an initial
calibration or reference measurement.

In this paper, we propose a new direct method for the
wavefront measurement of THz pulses. The principle of our
measurement is as follows. It is well known that spatiotem-
poral profiles of THz transient electric fields can be directly
determined through EO sampling in a nonlinear crystal [9].
By varying the time delay between a short optical laser probe
pulse and the THz pulse, EO sampling can record the spatial
dependence of the full (amplitude and phase) THz electric field,
ETHz, in the crystal plane. Then, from the phase variation of
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Fig. 1. Experimental setup of the direct THz wavefront sensor using 2-D EO
imaging.

ETHz in this plane, we will demonstrate that a simple procedure
makes it possible to determine the equiphase surface that is the
wavefront.

II. EXPERIMENTAL DETAILS

For the demonstration of the method, broadband THz pulses
were generated by optical rectification of amplified femtosec-
ond laser pulses (800 nm, 1 mJ, 150 fs, 1 kHz repetition rate) in
a 1 mm-thick ZnTe crystal with a clear aperture of 25 mm. The
collimated THz beam is sent into another 1 mm-thick ZnTe crys-
tal for collinear EO detection with a time-delayed femtosecond
laser probe pulse, reflected by the front left face of the crys-
tal (see Fig. 1). There, owing to the Pockels effect, the spatial
distribution of the broadband THz electric field ETHz(x, y) mod-
ifies the polarization distribution of the probe beam [9], whose
intensity is finally captured by a 232 × 232 pixels CMOS cam-
era (1000 fps) after passing through an analyzer and a lens
that images the crystal plane. For a given time delay t be-
tween the THz and the probe pulses, the system is able to
provide a 2-D (x-horizontal and y-vertical directions) image
at 800 nm corresponding to the distribution of the THz electric
field ETHz(x, y, t) at the crystal position. This image can be
obtained with a 500 Hz acquisition rate, thanks to the synchro-
nization with the optical chopper, the laser repetition rate, and a
dynamic subtraction method [10]. However, signal-to-noise ra-
tio higher than 100 usually requires an averaging time of 0.5 s.
By changing the time delay between the THz and probe pulses,
it is possible to record the temporal evolution of the THz electric
field ETHz(x, y, t). Thanks to this THz imaging system, we will
demonstrate that we are able to fully analyze the spatial distri-
bution of the THz electric field at the crystal position and finally
determine the THz wavefront and extract the optical aberrations.

III. RESULTS

A. Analysis of a Convergent THz beam

First, to implement our method, we introduced a plano-
convex THz lens (f = 100 mm focal length) at e = 65 mm
before the ZnTe crystal. This configuration provides a converg-
ing spherical THz beam at the crystal position with a theo-
retical R = (f ′ − e) + (πw2

0 )2/(Λ2(f ′ − e)) = 38 mm radius
of curvature at 1 THz assuming an incident Gaussian beam

Fig. 2. Analysis of a convergent THz beam. (a) ETHz(x, y) for a t = 0 ps
time delay between the THz and laser probe pulses, from [8]. (b) Amplitude and
phase of the complex electric field ETHz(Ω), calculated for the central pixel of
the image presented in (a).

Fig. 3. Convergent THz beam. Amplitude (a) and relative phase (b) of
ETHz(x, y, Ω = 1 THz) in the ZnTe crystal plane. (c) Evolution of the rela-
tive phase along the horizontal black line indicated in (b).

and a w0 = 1 mm beam-waist at the wavelength Λ = 300 μm.
Fig. 2(a) displays the distribution of the converging spherical
THz electric field, ETHz(x, y), for a t = 0 ps time delay be-
tween the THz and laser probe pulses. This result is taken from
[8]. However, in this paper, the THz wavefront reconstruction
was made with the insertion of a Hartmann mask, whereas in the
present work, we will show that a direct analysis of the 2-D EO
imaging will provide the THz wavefront without any prior cali-
bration. In Fig. 2(a), the central blue circle indicates a negative
value of ETHz, whereas the red ring is for a positive one, indicat-
ing the focusing of the THz beam at the crystal position. Then,
by changing the time delay t between the THz and probe pulses,
we can record a set of 2-D EO transversal images representing
the time-dependent amplitude ETHz(x, y, t), which is in fact a
3-D matrix whose analysis will provide us all the information
we need for the wavefront reconstruction. The recording time of
the whole 3-D matrix composed of 256 images is about 2 min.
It is clear that, for every pixels of the camera, i.e., for every x
and y positions, it is possible to plot the corresponding temporal
waveform ETHz(t). Then, through a Fourier transformation of
the temporal data, it is possible to calculate the amplitude and
the phase of the complex electric field ETHz(Ω), where Ω is the
THz frequency [see Fig. 2(b)]. The THz spectrum extends from
0 to 3 THz with an expected linear dependence of the phase.

From the data presented in Fig. 2, it is straightforward to
plot the amplitude and the phase of ETHz(x, y,Ω) for every
pixels of the camera, as shown for Ω = 1 THz in Fig. 3(a) and
(b), respectively. For the sake of simplicity, the phase map at
1 THz plotted in Fig. 3(b) does not represent the absolute phase
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Fig. 4. Analysis of a convergent THz beam at 1 THz. (a) Reconstructed
wavefront. (b) Amplitude of the Zernike coefficients. The dashed vertical black
lines indicate the noise level or measurement accuracy. a1 : y-tilt , a2 : x-tilt,
a3 : astigmatism 45, a4 : defocus, a5 : astigmatism 0/90, a6 : vertical trefoil, a7 :
y-coma, a8 : x-coma, a9 : oblique trefoil, a10 : oblique quadrafoil, a11 : oblique
2nd astigmatism , a12 : spherical aberration, a13 : vertical 2nd astigmatism, a14 :
vertical quadrafoil.

of the beam, but the relative one with a zero value arbitrary
fixed at the center. Moreover, in the following of the paper, we
will restrict our analysis to 1 THz but this latter can be easily
generalized to every other frequency within 0–3 THz spectral
range, emphasizing the ability of our sensor to characterize
broadband THz pulses. Next, the final reconstruction of the THz
wavefront at the crystal position will simply use the values of the
relative phase of ETHz(x, y,Ω), represented by the phase map
image in Fig. 3(b), as follows. First, we select a pixel (x0 , y0),
e.g., the center of the phase map image, and we note the phase
value φ0(x0 , y0) at this position. Then, except if the wavefront
is perfectly planar without any optical aberrations, all the other
pixels in the phase map image must have a different phase value.
However, for every pixel position (x, y), it is simple to calculate
the distance Δz(x, y) along the propagation axis for which the
phase shift Δφ = 2πΔz/Λ will provide a new phase value being
exactly φ0 . The distribution of the resulting Δz(x, y) values will
design a new specific 3-D map, which will exactly correspond
to the equiphase surface, demonstrating that our method is able
to reconstruct the 3-D THz wavefront surface for every pixels
of the camera.

To evaluate the accuracy of the method, we have to deter-
mine the minimal phase shift we can measure. Fig. 3(c) shows
the evolution of the relative phase along the horizontal black
line indicated in Fig. 3(b). The amplitude of the point-to-point
fluctuations of the phase provides the minimum phase shift Δφ
we can measure. For Ω = 1 THz, we found Δφ = 100 mrad,
which corresponds to a minimum wavefront deformation of
(ΔφΛ)/(2π) = 5 μm, i.e., Λ/60. This wavefront measurement
accuracy is comparable to standard commercial wavefront sen-
sors designed for visible and infrared radiation.

First, the method is tested for the convergent THz beam,
previously described in Figs. 2 and 3. Fig. 4(a) shows the re-
constructed wavefront in the crystal plane with a quasi-spherical
deformation from the center to the edge of the THz beam. The
colored scale indicates the local wavefront deformation in μm.
However, the precise observation of this surface indicates that
the wavefront is not only governed by a single defocus but

also by other optical aberrations since the surface does not
exhibit a perfect circular symmetry. To quantify these aber-
rations, the standard method consists in developing the wave-
front surface W (x, y) onto a linear combination of the Zernike
polynomials [11]

W (x, y) =
∑

i

aiZi(x, y) (1)

where ai represents the amplitudes of the polynomial Zi , each
polynomial corresponding to one specific optical aberration.
Fig. 4(b) represents the amplitude of the 14 first Zernike poly-
nomials. The main observation is obviously the strong defocus
a4 = 350 μm (1.17Λ at 1 THz). To compare this value to the
theoretical R = 38 mm radius of curvature of the THz beam at
the sample position, we can assume a perfect spherical wave-
front (i.e., ai = 0,∀i �= 4) and writes

W (r) =
r2

2R
= 2

√
3a4ρ

2 (2)

where r = (x2 + y2)1/2 and ρ = r/α. The parameter α is a nor-
malization factor since the Zernike polynomials are defined for
a maximum circular aperture with ρ = 1. In our measurement,
we have α = 8.5 corresponding to a 17 mm beam diameter.
From (2), we calculate R = 30 mm which is about the theoreti-
cal value. The 20% deviation can be attributed to the imperfect
spherical wavefront. Fig. 4(b) can actually quantify these ad-
ditional aberrations with a x-tilt a2 = 38 μm and a spherical
aberration a12 = −15 μm. All the other aberrations are of the
order of the measurement accuracy (5 μm), indicated by the
dashed vertical black lines in the figure, and cannot be strictly
considered as relevant in this experiment.

B. Analysis of an x-Tilted THz Beam

After this first demonstration of validity of the method with
a spherical wavefront, we removed the focusing lens before the
detection crystal and intentionally horizontally tilted the THz
beam with respect to the laser probe beam so that these two
beams interact noncollinearly in the crystal. The angle between
the two beams has been precisely measured to be θ = 3.9 mrad.
We introduced this precise tilt because it constitutes another
optical aberration that we can finely control, providing another
test to verify the validity of our method. According to the relation

W (r) = r tan θ = 2a2ρ (3)

the x-tilt parameter we introduced in the crystal plane is then
a2 = 90 μm. Fig. 5 shows the reconstructed wavefront and the
amplitudes of the corresponding Zernike coefficients. As ex-
pected, the major optical aberration is the horizontal x-tilt with
a calculated value a2 = 86 μm very close to the actual tilt we in-
tentionally introduced. This additional test validates once again
our wavefront reconstruction method using 2-D EO imaging.

C. Analysis of a Planar THz Beam

Finally, a third experiment has been performed in order to
determine the optical aberrations of the collimated THz beam
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Fig. 5. Analysis of a x-tilted THz beam at 1 THz. (a) Reconstructed wave-
front. (b) Amplitude of the Zernike coefficients. The dashed vertical black lines
indicate the noise level or measurement accuracy.

Fig. 6. Analysis of a planar THz beam at 1 THz. (a) Reconstructed wave-
front. (b) Amplitude of the Zernike coefficients. The dashed vertical black lines
indicate the noise level or measurement accuracy.

generated by optical rectification in the first ZnTe crystal. If the
incident pump laser beam is supposed to have a planar wave-
front, as illustrated in Fig. 1, a planar THz wavefront is also
expected. Using our reconstruction procedure, Fig. 6 shows the
wavefront and the amplitudes of the corresponding Zernike co-
efficients. Clearly, the THz wavefront is not exactly planar even
if all optical aberrations are smaller than 20 μm (Λ/15). Besides
the x- and y-tilts, which are dependent on the angle between
the probe and THz beams, the main optical aberration is the
0/90 astigmatism (a5 = −9 μm). This measurement is impor-
tant since it indicates that the THz beam is not perfectly planar.
Further investigations may concern the wavefront measurement
of the incoming pump laser beam onto the ZnTe crystal using a
commercially available wavefront sensor in order to determine
if the THz wavefront deformation arises from the laser beam
itself or from the THz generation process in the crystal.

D. Comparison With the Hartmann Method

As explained in the introduction, we also recently demon-
strated the wavefront characterization of THz pulses using a
Hartmann sensor associated with the similar a 2-D EO imaging
system [8]. For this paper, the experimental setup was exactly the
same as here, except that a Hartmann mask was inserted 10 mm
before the detection crystal. Consequently, the THz wavefront
was determined in the plane of the mask instead of the plane
of the crystal, as it is the case for the present work. Therefore,
if we want to compare the measurement presented in this pa-

Fig. 7. Analysis of a convergent THz beam at 1 THz. (a) Zernike coefficients
with the Hartmann method. (b) Zernike coefficients with the direct method.

per to that of [8], we need to propagate the THz electric field
10 mm before the crystal in order to reconstruct the THz wave-
front at the same position. To this end, we have implemented a
beam propagation method [12] to compute the field distribution
at the position z2 , from the knowledge of the amplitude and
phase of the field distribution at the position z1 = z2 + 10 mm.
The relationship between both scalar fields is computed using
the Helmholtz equation in free space to obtain

E(x, y, z2) = F−1

[
E(kx, ky , z1) exp

(
k2

x + k2
y

2ik0
(z1 − z2)

)]

(4)
where E(kx, ky , z1) is the Fourier transform of E(x, y, z1),
with ki the wave vectors and the symbol F−1 denotes the in-
verse Fourier transform. Note that the knowledge of both the
amplitude and phase of the electric field at the position z1 is
necessary to back-propagate the field and compute E(x, y, z2).
Based on the precedent equation, a freely available MATLAB
program has been computed in order to propagate the THz waves
[13]. This procedure makes it possible to compare both meth-
ods. However, we want to stress again that, the direct method we
propose in the present paper only relies on the phase distribution
of the THz electric field.

Let us recall that the Hartmann mask used in [8] consists of
a 1-mm thick metallic plate with 9 by 9 circular holes (1 mm
diameter with 2 mm periodicity in the horizontal and vertical di-
rections). The accuracy of the Hartmann method depends on the
design of the mask (distance between two holes and size of the
holes). In our case, we estimated that the accuracy was equal to
(Λ/35) which is less precise than the direct measurement method
proposed in this paper. In the case of the spherical convergent
THz beam, we can see in Fig. 7 that the Zernike coefficients
we obtain for the two methods are in good agreement. First, the
amplitude of the defocus term is similar with a4 = 270 μm with
the Hartmann mask and a4 = 310 μm with the direct method
associated with the back propagation of 10 mm. Note that the de-
crease of a4 , i.e., the increase of the radius of curvature, from the
position z1 to the position z2 , is consistent with the convergent
spherical THz wave. Both methods also indicate similar ampli-
tudes for x-tilt and spherical aberration. Only the direct method
is able to measure the 45 astigmatism with a3 = −9 μm, since
the value is lower than the accuracy of the Hartmann method,
indicated by the dashed vertical black lines in the figure. It is
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also important to notice that the Hartmann method measures the
local slopes of the wavefront, which is finally calculated after
integration of the data and application of a least-squares method
[11]. Here, on the contrary, we directly measure the equiphase
surface of the THz beam, which constitutes the wavefront.

IV. CONCLUSION

In conclusion, by means of 2-D EO imaging of THz wave-
forms and subsequent calculation of the phase variation of the
THz electric field, we were able to determine the wavefront with
a precision of Λ/60, without any prior reference measurement.
We believe that our THz wavefront analyzer could provide an
effective tool to control the generation of pulsed THz sources.
Another interesting application concerns the association of the
sensor with deformable mirrors in order to open the route to
THz adaptive optics.
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