
HAL Id: hal-01653620
https://hal.science/hal-01653620v1

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified Compilation of Linearizable Data Structures:
Mechanizing Rely Guarantee for Semantic Refinement

Yannick Zakowski, David Cachera, Delphine Demange, David Pichardie

To cite this version:
Yannick Zakowski, David Cachera, Delphine Demange, David Pichardie. Verified Compilation of
Linearizable Data Structures: Mechanizing Rely Guarantee for Semantic Refinement. SAC 2018 -
The 33rd ACM/SIGAPP Symposium On Applied Computing, Apr 2018, Pau, France. pp.1881-1890,
�10.1145/3167132.3167333�. �hal-01653620�

https://hal.science/hal-01653620v1
https://hal.archives-ouvertes.fr

Verified Compilation of Linearizable Data Structures∗

Mechanizing Rely Guarantee for Semantic Refinement

Yannick Zakowski David Cachera Delphine Demange David Pichardie
Univ Rennes / Inria / CNRS / IRISA

ABSTRACT
Compiling concurrent and managed languages involves imple-
menting sophisticated interactions between client code and
the runtime system. An emblematic runtime service, whose
implementation is particularly error-prone, is concurrent
garbage collection. In a recent work [31], we implement an
on-the-fly concurrent garbage collector, and formally prove
its functional correctness in the Coq proof assistant. The
garbage collector is implemented in a compiler intermediate
representation featuring abstract concurrent data structures.

The present paper extends this work by considering the
concrete implementation of some of these abstract concurrent
data structures. We formalize, in the Coq proof assistant, a
theorem establishing the semantic correctness of a compiling
pass which translates abstract, atomic data structures into
their concrete, fine-grained concurrent implementations.

At the crux of the proof lies a generic result establishing once
and for all a simulation relation, starting from a carefully
crafted rely-guarantee specification. Inspired by the work of
Vafeiadis [28], implementations are annotated with lineariza-
tion points. Semantically, this instrumentation reflects the
behavior of abstract data structures.

1. INTRODUCTION
Verified compilation is slowly becoming a reality. Comp-
Cert [21] is a realistic and fully verified C compiler. It is now
commercially available and makes possible the generation of
optimized code for highly critical applications, whereas in the
past compiler optimizations were often completely switched
off in this context [20]. The situation for managed languages,
that require a runtime environment including e.g. automatic
memory management, is quite different. Indeed, there is still
a long way to go before a realistic and fully verified compiler
becomes available, especially in a concurrent setting.

One major challenge in this landscape is the verification of
an executable runtime system for such languages and an
emblematic runtime service is garbage collection. In [31], we
recently presented a Coq formalization of a fully concurrent
garbage collector, where mutators never have to wait for the
collector. This work and other similar proof efforts [25, 10, 9,
7, 8, 11, 12] are important stepping stones towards a realistic,

∗This work was supported by Agence Nationale de la
Recherche, grant number ANR-14-CE28-0004 DISCOVER.
SAC 2018,April 09-13, 2018, Pau, France

verified garbage collector but none of these projects is ready
yet to provide an executable verified artifact.

Our approach in [31] is based on a dedicated intermediate
representation (IR) that features strong type guarantees,
dedicated support for abstract concurrent data structures,
and high-level iterators on runtime internals (e.g. objects,
thread ids). We have implemented a realistic implementa-
tion of Domani et al.’s GC algorithm [3] in this IR and use
its companion Rely-Guarantee logic to prove its functional
correctness. But in order to make this runtime service exe-
cutable, we need to provide a verified compiler for our IR.
The present paper is in line with this objective: we provide
a mechanized theorem to prove the soundness of compilation
passes implementing abstract concurrent data structures. Us-
ing this result, the correctness proof of runtime services can
then be propagated down to their low-level implementation.

To fit into a classical verified compiler infrastructure [21],
we need a correctness theorem for a compiler from a source
language with atomic data-structures, to a target language
where data-structures are implemented with fine-grained
concurrency. The standard theorem in the community proves
that the compiler preserves the behavior of source programs:
for any source program p,

obs(compile(p)) ⊆ obs(p) (1)

where obs denotes the observable behaviors of a program.

Fine-grained concurrency allows programmers to reduce syn-
chronization costs to a minimum but renders the program-
ming activity extremely subtle and error-prone, due to race
conditions. Experts who program fine-grained concurrent al-
gorithms generally resort to well-chosen data structures that
can be accessed using linearizable methods: even though the
implementation of these methods is by no means atomic, they
appear to the rest of the system to occur instantaneously.
Linearizability thus considerably helps abstraction: the pro-
grammer can safely reason at a higher-level, and assume an
abstract, atomic specification for these data structures.

Initially, linearizability was formally defined by Herlihy and
Wing [16]. In their seminal paper, they model system ex-
ecutions as sequences, or histories, of operation invocation
and response events, and a system is linearizable whenever
all valid histories can be reordered into sequential histories.
In this work, we rather consider an alternative formulation,
based on semantic refinement that is well aligned with the
standard correctness criterion in verified compilation [21].

Proving a statement like (1) is done by showing that the
target program compile(p) simulates the source program p:
for any execution of the target program, we must exhibit a
matching execution of the source program. While the defini-
tion of the matching relation is relatively intuitive, dealing
with the formal details can be cumbersome, and further,
proving that it is indeed maintained along the execution is
difficult. Hence, we would like to resort to popular program
verification techniques to lighten the proof process.

In [28], Vafeiadis proposed a promising approach that fits our
needs. It is based on Rely-Guarantee (RG) [18], a popular
proof technique extending Hoare logic to concurrency. In
RG, threads interferences are described by binary relations
on shared states. Each thread is proved correct under the
assumption that other threads obey a rely relation. The
effect of the thread must respect a guarantee relation, which
must be accounted for in the relies of the other threads. RG
allows for thread-modular reasoning, and hence removes the
need to explicitly consider all interleavings in a global fashion.
Now, RG alone does not capture the notion of a lineariz-
able method. So Vafeiadis proposes to extend RG to hybrid
implementations, i.e. fine-grained concurrent methods instru-
mented with linearization points that reflect the abstract,
atomic behavior of methods in a ghost part of the execution
state. The approach is elegant, but is not formally linked to
the standard notion of compiler correctness. Recently, Liang
et al. [22] improved on the work of Vafeiadis by expressing
the soundness of the methodology with a semantic refine-
ment. Their work undoubtedly makes progress in the right
direction. Unfortunately, their proof is not machine-checked.

To sum up, we provide a machine-checked semantic founda-
tion to the approach outlined in Vafeiadis’s PhD, and embed
it in a generic, end-to-end compiler correctness theorem.
More precisely, we make the following contributions:

• We integrate the notion of linearizable data structures
in a formally verified compiler. Correctness is phrased
in terms of a simple semantic refinement and avoids the
difficult, though traditional, definition of linearizability.

• Our proof is generic in the abstract data structures
under consideration, and in the source program using
them. The underlying simulation is proved once and
for all, provided that hybrid implementations meet a
certain specification.

• We express this specification in terms of RG reasoning,
so it integrates smoothly with deductive proof systems.

All theorems are proved in Coq, and available online [30].

2. CHALLENGES AND OVERVIEW
At the source level, we use a core concurrent language L]
that features abstract data structures with a set I of atomic
methods. We program a compiler compile〈I〉 ∈ L] → L,
which replaces the abstract data structures with their fine-
grained concurrent implementation in L. Our goal is to prove
that this compiler is correct, in the sense that it preserves
the observable behaviors of source programs, with a theorem
of the form

∀p ∈ L], obs(compile〈I〉(p)) ⊆ obs(p) (2)

Our main result is generic in the abstract data structures used
in L] and their implementation I. Here, we illustrate on a
simple pedagogical example what are the intrinsic challenges,
and briefly overview our technical contribution. A more
challenging example is described in Section 6.

2.1 Simple Lock Example
Suppose L] offers abstract locks, each providing two methods
I = {acquire, release}. At the level of L], an abstract lock
can be seen as a simple boolean value, with the expected
atomic semantics. At the concrete level, L, acquire and
release are implemented with the code in Figure 1. They
use a boolean field flag, denoting the status of the lock.
Releasing the lock simply sets the field to 0, while acquiring
it uses a compare-and-swap instruction (cas) to ensure that
two threads do not simultaneously acquire a shared lock.
Note that both methods could be executed concurrently by
two client threads.

def acquire () ::=
ok = 0;
do {

ok=cas(this.flag ,0,1)
} while (ok == 0);
return

def release () ::=
this.flag = 0;
return

Figure 1: Spinlock in L.

2.2 Semantic Refinement
Proving a theorem like (2) is done with a simulation: for any
execution of the target program, we must exhibit a matching
execution of the source program. Between L and L], the
simulation is however particularly difficult to establish.

We illustrate the situation with Figure 2. Execution steps

t tt t t t

t
L] L]

✓✓

t u t ut t u tu u t

u tL]

✓✓

u u u u u

u

L L

L

Figure 2: Intra and inter-thread matching step rela-
tions.

labeled with are those where the effect of a method in I
becomes visible to other threads, and thus determine the
behavior of other methods in I executed concurrently.

At the intra-thread level (Figure 2, top), we need to relate
several steps of a thread in the target program to a single
step in the source. The situation is even more difficult at
the inter-thread level (Figure 2, bottom): the interleaving
of threads at the target level (first u, then t in the example)

must sometimes be matched at the source level by another
interleaving (first t then u in the example). Indeed, it all
depends on which thread will be the first to execute its
step in the concrete execution. The matching step for a given
thread hence depends on the execution of its environment.

Our main result, that we present in Section 4, removes this
difficulty by establishing, under some hypotheses, a generic
simulation that entails semantic refinement. This is a meta-
theorem that we establish once and for all, independently of
the abstract data-structures available in L].

2.3 Rely-Guarantee for Atomicity
To prove the atomicity of linearizable methods, and establish
the simulation, we introduce an intermediate, proof-dedicated
language L[, that comes with an RG proof system.

L[provides explicit linearization point annotations, Lin(b),
to guide the proof. In the spirit of Vafeiadis’s methodology,
Lin(b) annotations have an operational effect: they trigger,
whenever condition b is met, the execution of the abstract
method in a ghost part of the state (they are equivalent
to skip if the condition is not met). Lin instructions are

what makes L[hybrid. Additionally, they allow to track
whether a thread has reached the linearization point or not,
thus helping the construction of our generic simulation. The
annotated spinlock code is shown in Figure 3.

def acquire () ::=
ok = 0;
do {

atomic〈ok=cas(this.flag ,0,1);Lin(ok==1)〉
} while (ok == 0);
return

def release () ::=
atomic〈this.flag = 0; Lin(true)〉;
return

Figure 3: Spinlock in L[.

Considering the intermediate language L[, our compiler is
in fact defined as compile = clean ◦ concretize. It first
transforms a source program p into concretize〈I〉(p)∈ L[
where abstract methods are implemented by hybrid, anno-
tated code, supplied by the programmer of the data-structure.
Then, a second compilation phase clean〈I〉 ∈ L[→ L takes
care of removing Lin instructions in the target program.

We prove in Coq that the compiler is correct, provided that
hybrid methods in I are proved correct w.r.t. an RG spec-
ification, RGspec, that we carefully define in terms of L[
semantics to prove:

RGspec (I) =⇒ ∀p ∈ L], obs(compile〈I〉(p)) ⊆ obs(p)

via the aforementioned simulation. We also embed in judg-
ment RGspec the requirements sufficient to show that Lin

instructions can be safely removed by the clean phase. This
ensures that, despite their operational nature, Lin instruc-
tions are only passively instrumenting the program and its
semantics.

2.4 Using our Result
The typical workflow for using our generic result is to (i) de-
fine the abstract data structures specification, i.e. their type,
and the atomic semantics of methods in I, (ii) provide a
concrete implementation, i.e. their representation in the heap
and a fine-grained hybrid implementation of methods, (iii) de-
fine a coherence invariant between abstract and concrete data
structures that formalizes the link between a concrete data
structure and its abstract view, (iv) define the rely and guar-
antee of each method, (v) prove the RG specification of each
method using a dedicated program logic1 and (vi) apply our
meta-theorem to get the global correctness result.

We have successfully used this workflow to prove the correct-
ness of the above spinlock example, as well as concurrent
buffers, a data structure we used [31] in our implementation
of a verified concurrent garbage collector.

3. LANGUAGE SYNTAX AND SEMANTICS
As explained in the previous section, this work considers
three different languages L], L[and L. To lighten the pre-
sentation, however, we will just assume one language, L[,
that includes all features, and keep in mind that source pro-
grams in L] do not include any linearization instrumentation,
while target programs in L do not contain abstract method
calls or linearization instrumentation.

L[is a concurrent imperative language, with no dynamic
creation of threads. It is dynamically typed, and features a
simplified object model: objects in the heap are just records,
and rather than virtual method calls, the current object – the
object whose method is being called – is an extra function
argument, passed in the reserved variable this. In the sequel,
Var is a set of variable identifiers, method names range over
m ∈ Methods, and field identifiers range over f ∈ Fields.

3.1 Values and Abstract Data Structures
We use the domain of values Val = Z + Ref + Null , where
Ref is a countable set of references. A central notion in the
language is that of abstract data structure. They are speci-
fied with an atomic specification. All our development and
our proofs are parameterized by an abstract data structure
specification. It could be abstract locks as in Section 2, bags,
stacks, or buffers as detailed in Section 6.

Definition 3.1. An abstract data structure is specified
by a tuple (A], I, J.K],P) where A] is a set of abstract objects;
I ⊆ Methods is a set of abstract methods identifiers, whose
atomic semantics is given by the partial map J.K] ∈ I →
(A] × Val) ↪→ (A] × Val), taking as inputs an object and
a value, and returning an updated object and a value; and
P ⊆ Fields reserves private field identifiers for the concrete
implementation of abstract methods in I.

Abstract objects in A] are the possible values that an in-
stance of a data structure can take. We use private fields
to express the property of interference freedom from Herlihy
and Shavit [15]. Namely, client code can only use public

1The program logic is a contribution that is out of the scope
of this paper, though we use it in our development.

<expr> e ::= n | null | x | e + e | - e | e mod n | . . .
<bexpr> b ::= true | e == e | e <> e | b || b | !b | . . .
<comm> c ::= • | assume(b) | print(e) | x = e

| x = y.f | x.f = y | x = new(f,. . . ,f)
| return(e) | x = y.m(z)
| c ; c | c + c | loop(c) | atomic 〈c〉

<comm>] c] ::= c | x =# y.m(z)

<comm>[c[::= c | Lin (b)

Figure 4: Language Syntax.

fields in Fields \P, and concrete implementations of abstract
methods in I use private fields only.

Example 3.1. In the spinlock example, the lock abstract
data structure specification is given by a set of abstract objects
A] = {Locked, Unlocked}, and an abstract methods set
I = {acquire, release}. Lock implementations use a single
private field P = {flag}. The atomic, abstract semantics of
lock methods are defined as

JacquireK](Unlocked, v) = (Locked,Null)

for any value v (only an Unlocked lock can be acquired), and

JreleaseK](l, v) = (Unlocked,Null)

for any input abstract lock l and value v.

3.2 Language Syntax
The syntax of the language is detailed on Figure 4. In the
sequel, we fix an arbitrary abstract data structure speci-
fication (A],I, J.K],P). The language provides constants
(n, null, true . . .), local variables (x, y, z . . .), and arithmetic
and boolean expressions (e, b). Regular commands (c) are
standard, and common to the three languages. They include
• (skip), an assume(e) statement, a print(e) instruction that
emits the observable value of e, variable assignment of an
expression, field reads and updates, record allocation, non-
deterministic choice (+), loops, and atomic blocks atomic

〈c〉. Concrete method calls are written x = y.m(z).

Some instructions are specific to a language level. In the
source language L], abstract method calls on a abstract
object are written x =# y.m(z). For any m ∈ I, such a call in
a L] program is compiled to a concrete call x = y.m(z) in the

L program. In L[, the Lin(b) instruction is used to annotate
a linearization point.

Finally, a client program is defined by a map from method
names in Methods \ I to their command, and a map from
thread identifiers to their command. In the sequel, we will
write m.comm for getting the command of method m, leaving
the underlying program implicit.

3.3 Language Semantics
For the sake of conciseness, we present here a partial view
of the semantics, and refer the reader to the formal develop-
ment [30] for full details2.

2In our formal development, we use a continuation-based
semantics to handle atomic blocks and method calls. This
has proven to lighten the mechanization of many proofs, by
removing any recursivity from the small step semantics.

We assume a standard semantics J·K for expressions, omitted
here. Abstract objects are stored in an abstract heap, ranged
over by h] ∈ H] = Ref → A]. At the concrete level,
abstract objects are implemented by regular, concrete objects,
living in a concrete heap h ∈ H = (Ref × Fields)→ Val . A
shared memory, ranged over by σ ∈ H] ×H is made of an
abstract heap and a concrete heap.

An intra-thread state ts = 〈m, c, l, ls〉 includes a current
method m, a current command c, a local environment l ∈
Lenv = Var → Val , and a linearization state ls ∈ LinState,
that we explain below. The intra-thread operational seman-
tics, partially shown in the top four rules of Figure 5, is a

transition relation · ·−→ · on intra-thread states. It is labeled
with observable events ranged over by o. An observable event
is either a numeric value or the silent event τ .

The print instruction (rule Print) is the only one that emits
an observable value, namely the value of the expression that
is printed. Neither the local state nor the shared memory
are modified by this instruction. Print instructions are only
allowed outside abstract methods implementations.

An abstract method call (rule Acall) x =# y.m(z) is executed
according to the abstract semantics JmK], and modifies only
the abstract heap.

Concrete method calls (rule Ccall) behave as expected, but
additionally manage the local linearization state. This lin-
earization state notably keeps track of whether the execution
of the current method is before its linearization point (Before)
or not (After). Initially, the linearization state is set to Nolin.
When control transfers to a method in I through a concrete
method call, the linearization state changes from Nolin to
Before (see rule Ccall). It switches to After when executing
a Lin instruction (rule LinTrue) when the linearization con-
dition b is true, and then back to Nolin on method return.
Linearization states are used in the simulation proof, and
instrument L[only.

At the L[level, the Lin instruction also accounts for the effect
on the abstract heap of concrete methods in I: it performs
the abstract atomic call JmK] to the enclosing method m,
updating the local environment and abstract heap.

The interleaving of threads is handled in rule Intl, with
relation (γ, σ)

o−→ (γ′, σ′) between global states (γ, σ), where
γ maps thread identifiers to thread local states and σ is a
shared memory. Mutual exclusion between atomic blocks is
ensured by the ¬inAtomic side condition.

Finally, program behaviors are defined on top of the inter-
leaving semantics, as expressed by the following definition.

Definition 3.2. The observable behavior of a program p,
written obs(p, σi), is either a finite trace of values emitted by
a finite sequence of transitions or a infinite trace of values
emitted by an infinite sequence of transitions, from an initial
shared memory σi.

4. MAIN THEOREM
In this section, we formalize our main result. We use the fol-
lowing notations and vocabulary. For a set A, an A predicate
P is a subset of A. An element a ∈ A satisfies the A predicate

Print
JeKl = v m 6∈ I

(〈m, print(e), l, ls〉, σ)
v−→ (〈m, •, l, ls〉, σ)

Acall
l(y) = r h](r) = a l(z) = v m′ ∈ I Jm′K](a, v) = (a′, v′)

(〈m, x=# y.m′(z), l, ls〉, (h], h))
τ−→ (〈m, •, l[x 7→ v′], ls〉, (h][r 7→ a′], h))

Ccall

l(y) = r l(z) = v l′ = [m′.this 7→ r, m′.arg 7→ v]
ls ′ = if m′ ∈ I then Before(r, v) else Nolin

(〈m, x = y.m′(z), l,Nolin〉, σ)
τ−→ (〈m′, m′.comm, l′, ls ′〉, σ)

LinTrue
JbKl = true h](r) = a m ∈ I JmK](a, v) = (a′, v′)

(〈m, Lin(b), l,Before(r, v)〉, (h], h))
τ−→ (〈m, •, l[x 7→ v′],After(r, v, v′)〉, (h][r 7→ a′], h))

LinFalse
JbKl = false

(〈m, Lin(b), l,Before(r, v)〉, (h], h))
τ−→ (〈m, •, l,Before(r, v)〉, (h], h))

Intl
γ(t) = ts (ts, σ)

o−→ (ts ′, σ′) ∀t′ 6= t, ¬inAtomic(γ(t′))

(γ, σ)
o−→ (γ[t 7→ ts ′], σ′)

Figure 5: Semantics (excerpt).

P , written a |= P , when a ∈ P . For two sets A and B, a
relation R is an A×B predicate. We use infix notations for re-
lations. State predicates are (H]×H×Lenv×LinState) pred-
icates, specifying shared memories and intra-thread states.
A shared memory interference is a binary relation on H]×H,
and is used for relies and guarantees. We refer to both state
predicates and shared memory interferences as assertions.

The rely-guarantee reasoning is done at the intermediate
level L[, on instrumented programs, more precisely on the
hybrid code of abstract methods implementations. Hence,
assertions specify properties about the concrete and abstract
heaps simultaneously.

Our work derives a compiler correctness result from a generic
rely-guarantee specification. Of course, this cannot be achieved
for an arbitrary RG specification, so we need to constrain
this specification. In the following, we explain exactly what
this specification looks like, and means.

4.1 Semantic RG Judgment
A hybrid method m must be specified with a semantic RG
judgment of the form R,G, I |=m {P} c {Q}, where P,Q, I
are state predicates, R and G are shared memory interfer-
ences, and c is the body of method m. State predicate I is
meant to specify the coherence invariant between abstract
objects and their representation in the concrete heap. It is
asked to be proved invariant separately (see Definition 4.4).
The RG judgment intuitively states that starting in a state
satisfying P and invariant I, interleaving c with an environ-
ment behaving as prescribed by R (written →∗R), leads to a
state satisfying Q. Additionally, this execution of c must be
fully reflected by guarantee G. This intuition, typical of RG
reasoning, is formalized by the first two items below.

Definition 4.1. Judgment R,G, I |=m {P} c {Q} holds
whenever:

1. The post-condition is established from pre-condition
and invariant:

(〈m, c, l, ls〉, σ)→∗R (〈m, •, l′, ls ′〉, σ′)
and (l, ls, σ) |= P ∩ I
implies (l′, ls ′, σ′) |= Q

2. Instructions comply with the guarantee:
(〈m, c, l, ls〉, σ)→∗R (〈m, c′, l′, ls ′〉, σ′)→ (〈m, c′′, l′′, ls ′′〉, σ′′)
and (l, ls, σ) |= P ∩ I
implies σ′ G σ′′

3. Linearization points are unique and non-blocking:
(〈m, c, l, ls〉, σ)→∗R (〈m, Lin(b), l′, ls ′〉, (h], h))
and (l, ls, σ) |= P ∩ I
and JbKl′ = true
implies their exist r, a, a′, v, v′,
such that h](r) = a

and JmK](a, v) = (a′, v′)
and ls ′ = Before(r, v)

The last condition above is novel, and more subtle than the
others. It captures a necessary requirement to ensure that
Lin instructions do not block programs (JmK] is defined), and
are unique (the linearization state is Before). This condition
is essential to ensure that we can clean up the Lin instrumen-
tation of hybrid programs, and that our semantic refinement
is not vacuously true.

4.2 Specifying Hybrid Methods
We now explain the specific RG judgment we require for
hybrid methods.

The above RG judgment involves state predicates and shared
memory interferences. In fact, we build them from elemen-
tary bricks, object predicates and object interferences, that
consider one object — one instance of a data structure — at
a time, pointed to by a given reference r ∈ Ref .

Definition 4.2. An object predicate Pr is a predicate on
pairs of an abstract object and a concrete heap: Pr ⊆ A]×H.
An object interference Rr is a relation on pairs of an abstract
object and a concrete heap: Rr ⊆ (A] ×H)× (A] ×H).

Example 4.1. The coherence invariant specifies that an
abstract Locked (resp. Unlocked) lock is implemented in
the concrete heap as an object whose field flag is set to 1

(resp. 0). It is formalized as the following object predicate:

ILockr , {(Locked, h) | h(r, flag) = 1}
∪ {(Unlocked, h) | h(r, flag) = 0}

Object guarantees for acquire and release express the effect
of the methods on the shared memory when called on a refer-
ence r. They are defined as the following object interferences.

Grrel , {((a, h1), (Unlocked, h2)) | h2 = h1[r, flag← 0]}

Gracq ,{((Unlocked, h1), (Locked, h2)) |
h1(r, flag) = 0 and h2 = h1[r, flag← 1]}

In Gracq, the assignment to flag is performed only if the cas

succeeds.
Finally, both acquire and release have the same object rely,
when called on a reference r: indeed, another thread could
call both methods on the same reference. So we define the
following object interference: Rrm , Grrel ∪ Gracq, for m ∈
{rel, acq}.

We now need to lift object predicates and object interfer-
ences to state predicates and shared-memory interferences to
enunciate the RG specifications of hybrid implementations.
The challenge here is twofold: make the specification effort
relatively light for the user, and, more importantly, suffi-
ciently control the specifications so that we can derive our
generic result.

An object predicate Pr is lifted to a state predicate P̂r by
further specifying that, in the abstract heap, r points to an
abstract object satisfying Pr:

P̂r = {(h], h, l, ls) | ∃a, h](r) = a and (a, h) |= Pr}

Similarly, in order to lift an object guarantee Gr to a shared
memory interference ŇGr, the reference r should point to an
abstract object in the abstract heap. Moreover, its effect on
this object should be reflected in the resulting abstract heap.
Formally:

ŇGr = {((h], h1), (h][r 7→ a2], h2)) |
∃a1, h](r) = a1 and (a1, h1) Gr (a2, h2)}

Lifting relies is a bit more subtle. When executing an hybrid
implementation m, one should account for two kinds of con-
current effects: the client code, and the rely of the method
itself. To model the client code effect, we introduce a public
shared memory interference, written Rpub , that models any
possible effect on the concrete heap, except modifying private
fields in P:

Rpub = {((h], h1), (h], h2)) |
∀r, f, f ∈ P ⇒ h1(r, f) = h2(r, f)}

As for the method’s rely Rr, we should consider that it
could occur on any abstract object present in the abstract

heap. Hence, a lifted rely R̃ includes (i) the client public
interference, and (ii) the method’s rely Rr quantified over
all r:

R̃ = Rpub∪{((h]1, h1), (h]2, h2)) | ∃r, a1, a2,
h]1(r) = a1
and h]2 = h]1[r 7→ a2]
and (a1, h1) Rr (a2, h2)}

Before we define the RG proof obligation asked of hybrid
method implementations, let us first recall the usual RG
definition of stability.

Definition 4.3. State predicate P is stable w.r.t. shared
memory interference R if ∀l, ls, σ1, σ2,,

(σ1, l, ls) |= P and (σ1R σ2) implies (σ2, l, ls) |= P

Now, we fix an invariant Ir. For a method m ∈ I, let Grm
and Rrm be the object guarantee and rely of m, as previously
illustrated in Example 4.1. An RG specification for m includes
an RG semantic judgment, and stability obligations:

Definition 4.4 (RG method specification). The RG
specification for method m ∈ I includes the three following
conditions:

• For all r ∈ Ref , R̃m, ŇGrm , Îr |=m {Pr} m.comm {Qr}

• For all r ∈ Ref , predicate Îr is stable w.r.t. R̃m

• For all r, r′ ∈ Ref , predicate Îr is stable w.r.t. ŊGr′m

In the above judgment, we impose the pre- and post-condition
Pr and Qr. Pr expresses that (i) r points to an abstract
object in the abstract heap, (ii) the linearization state is set
to Before and (iii) the reserved local variable this of method
m is set to r. Qr expresses that (i) the linearization state
is set to After, and (ii) the value virtually returned by the
abstract method (when encountering the Lin instruction)
matches the value returned by the concrete code. Intuitively,

stability requirements ensure that Îr is indeed an invariant
of the whole program.

4.3 Compiler Correctness Theorem
So far, we have expressed requirements on hybrid methods,
each taken in isolation. The last requirement we formulate
is the consistency between relies and guarantees of methods.
For a method m, to ensure that Rm is indeed a correct over-
approximation of its environment, we ask that Rm includes
any guarantee Gm′ , where m′ is a method that may be called
concurrently to m. This requirement is formalized by the
following definition.

Definition 4.5 (RG consistency). For all threads t, t′

such that t 6= t′, all methods m, m′ ∈ I and all r ∈ Ref ,
is called(t, m)∧is called(t′, m′)⇒ Grm′ ⊆ Rrm where is called(t, m)
indicates that m appears syntactically in the code of t.

Relying on predicate is called allows for accounting for data
structures used according to an elementary protocol (such
as single-pusher, single-reader buffers).

We finally package the formal requirements on hybrid imple-
mentations into the RGspec judgment and use it to state our
main result, establishing that the target program semanti-
cally refines the source program.

Definition 4.6. Let I = {m1 . . . , mn}. I satisfies RGspec,
written RGspec(I), if ∀ i ∈ [1, n], an RG method specification
is provided for mi, and RG consistency holds.

Theorem 4.1 (Compiler correctness). Let σi an ini-
tial shared memory satisfying the invariant Ir for all r ∈ Ref
allocated in it. If RGspec(I), then

∀p ∈ L], obs(compile〈I〉(p), σi) ⊆ obs(p, σi)

We emphasize that the client program p is arbitrary, modulo
some basic syntactical well-formedness conditions (e.g., no
private field is accessed in the client code, or methods in I
do not modify public fields).

Theorem 4.1 is phrased and proved w.r.t. an RG semantic
judgment. In our formal development, we have developed
a sound, syntax-directed proof system to discharge the RG
semantic judgment, and have successfully used this system
to prove the implementation of the spinlock, as well as the
concurrent buffer data structure.

5. PROOF OF THE MAIN THEOREM
Theorem 4.1 is proved by establishing, from the RGspec(I)
hypothesis, a simulation between the source program and
its compilation. Here, we use the terminology of backward
simulation, as is standard in the compiler verification com-
munity [21].

Definition 5.1. A relation ∼between states of L and L]
is a backward simulation from L] to L when, for any s1, s2
and s]1, if s]1 ∼s1 and s1

o−→ s2, then there exists s]2 such

that s]1
o−→
∗
s]2, and s]2 ∼s2.

Eliding customary constraints on initial and final states, such
a simulation entails preservation of observable behaviors
(Theorem 3 in [21]). We establish two backward simulations,

from L to L[and from L[to L], which we compose.

5.1 Leveraging RGspec(I)

The key point is to carry, within the simulation, enough
information to leverage RGspec(I). This is necessary for
both simulations, so we factorize the work by expressing
a rich semantic invariant I over the execution of the L[
program. To simplify its definition and its proof, I is built
as a combination of thread-local invariants.

For a thread t, the invariant It includes three kinds of infor-
mation. First, it ensures various well-formedness properties

of intra-thread states. Second, it demands that Îr, the co-
herence invariant, holds for all r. The third information
is more subtle. When executing a hybrid method m called

on a reference r, to leverage its specification R̃m, ŇGrm , Îr |=m

{Pr} m.comm {Qr}, we keep track, in It, that the state is

reachable from a state satisfying Îr and Pr. Recall that

Definition 4.1 uses the abstract semantics →R̃m
. When

defining It, we generalize →R̃m
into relation →Rt , where

Rt ,
⋂

m∈is called(t) R̃m. Rely Rt overapproximates interfer-
ences of threads concurrent to t, while being precise enough

to deal with any method m called by t, since Rt ⊆ R̃m.

We define I , {(γ, σ) | ∀t, (γ(t), σ) |= It}. To prove that I
holds on the interleaving semantics, we first prove that all
the It are preserved by the intra-thread steps. Besides, we
prove their preservation by other threads’ steps:

Lemma 5.1. Let γ, σ and t 6= t′ be such that (γ(t), σ) |=
It and (γ(t′), σ) |= It′ . If (γ(t′), σ)

o−→ (ts′, σ′), then
(γ(t), σ′) |= It.

5.2 Simulation Relations
For both compilation phases, we build an intra-thread, or
local, simulation that we then lift at the inter-thread level.
Both relations are defined using the same pattern: in a pair of
related states, the L[state satisfies It. It remains to encode
in the relation the matching between execution states.

For the first compilation phase, a whole execution of an hy-
brid method is simulated by a single abstract step, occurring
at the linearization point. We therefore build a 1-to-0/1
backward simulation.

Relation ∼][states that shared memories are equal on the

heaps domains in L]. Local environments are trickier to
relate. In client code, they simply are equal. During a hybrid
method call x = y.m(z), before the Lin point, the abstract

environment is equal to the environment of the L[caller.
After the Lin point, the only mismatch is on variable x,
which has been updated in L], but not yet in L[.

Proving that ∼][is a simulation follows the above three
phases. Steps by client code are matched 1-to-1 ; inside a
hybrid method, steps match 1-to-0 until the Lin point; the
Lin step is matched 1-to-1 ; after the Lin point, steps match
1-to-0 until the return instruction. At method call return,
we use RGspec(I) via It, and in particular Qr, to prove that
environments coincide on x again.

When simulating from L to L[, Lin instructions have been
replaced by a •. It is therefore a 1-to-1 backward simulation.
Recall that L semantics contains no LinState nor abstract
heap. Relation ∼[therefore only states the equality of local
environments and concrete heaps.

Proving this simulation is what makes the third item in
Definition 4.1 necessary. Indeed, we can match the • step in
the L program only if the Lin instruction in the L[program
is non-blocking.

The independent proof of the invariant simplifies the lifting
of simulations. Indeed, except for the part about It, that is
already proved invariant by other threads’ steps, relations
keep track of the same information for all threads. Hence,
their preservation by the interleaving essentially comes for
free.

6. CASE STUDY: CONCURRENT BUFFERS
This case study is taken from our verification project of a
concurrent mark-and-sweep garbage collector [31]. Describ-

next_read

next_write

data

nr
nw …

nr

nw

0
1

SIZE-1

next_read

next_write

data

nr
nw …

nw
0

SIZE-1

nr

Figure 6: Concrete buffers layout (examples). El-
ements contained in the buffer are colored in grey.
Example on the right shows how the array is popu-
lated circularly.

ing the full algorithm is out of the scope of this paper. Here,
we only give an idea of why and how buffers are used.

In this algorithm, application threads, a.k.a mutators, are
never blocked by the collector thread. They must therefore
participate to the marking of potentially live objects. Buffers,
so-called mark buffers in Domani et al.’s Java implementa-
tion [3], keep track of references to objects that are the roots
of the graph of objects that may be live. Each thread, in-
cluding the collector, owns a buffer. Only the owner of the
buffer can push on it, and only the collector can read and
pop from buffers.

In this section, we present abstract buffers and their fine-
grained implementation. We also briefly explain how we
express their correspondence in a coherence invariant, as
well as methods guarantees and relies, and how we encode
their usage protocol, which is crucial to their correctness.
Buffers are fully verified in our formal development [30]:
their implementation satisfies the RGspec predicate, and by
Theorem 4.1, any program using abstract buffers can be
semantically refined into a program in L.

6.1 Abstract Buffers
An abstract buffer is a queue of bounded size SIZE , that
we model by a list (of type list value). Below, we use the
usual lists constructors. A buffer is pushed on one end of the
list, and popped off from its other end. Buffers provide four
methods: isEmpty, top, pop, and push. Their respective
abstract semantics are3:

JisEmptyK](ab, v) = (ab, 1) if ab = nil

= (ab, 0) otherwise

JtopK](x ::ab, v) = (x ::ab, x)

JpopK](x ::b, v) = (b,Null)

JpushK](b, v) = (b++[v],Null) if |b|<SIZE − 1.

6.2 Fine-grained Implementation
The fine-grained implementation we prove is similar to that
of Domani et al. [3], except that we use bounded-sized buffers.
Buffers are objects with three fields (see Figure 6). Field data

contains a reference to an array of fixed size SIZE , containing
the elements of the buffer. Two other fields, next read and
next write, indicate the bounds, within the array, of the
effective content of the buffer. Field next read contains the
array index from which to read, while next write contains

3The input argument v is relevant only for method push.

def isEmpty () ::=
nr=this.next_read;
atomic 〈 nr=this.next_write; Lin(true) 〉;
return (nw==nr)

def top() ::=
nr=this.next_read;
nr=this.next_write;
assume(nr<>nw); // buffer not empty
d=this.data;
res=d[nr];
atomic 〈 Lin(true) 〉;
return res

def pop() ::=
nr=this.next_read;
nw=this.next_write;
assume (nr<>nw); // buffer not empty
nr=(nr+1) mod SIZE;
atomic 〈 this.next_read=nr; Lin(true) 〉;
return

def push(v) ::=
nw=this.next_write;
nr=this.next_read;
d=this.data;
d[nw]=v;
nw=(nw+1) mod SIZE;
assume (nr<>nw); // no buffer overflow
atomic 〈 this.next_write=nw; Lin(true) 〉;
return

Figure 7: Buffers in L[.

the index of the first free slot in the array.

A buffer is empty if and only if next_read and next_write

are equal. Pushing a value on a buffer consists in writing
this value in the array, at position next write, and then
incrementing next write. Conversely, popping a value from
a buffer is done by incrementing next read. To consult its
top value, one reads the array element at position next_read.
In fact, the data array can be populated in a modulo fashion
(see right example in Figure 6). The code for implementing
buffers is given in Figure 7, and follows the above principles.
Our core language does not include proper arrays, but we
encode them with appropriate macros. The code is blocking
when trying to pop on an empty buffer, or trying to push
on a full buffer, as is the case for the abstract version. This
is no limitation in practice: the size of buffers is chosen at
initialization time, and can be upgraded at will.

6.3 Invariant, Guarantees and Relies
The coherence invariant between an abstract buffer and its
concrete implementation essentially consists in that every
cell in the data array between next read and next write

matches, in order, the elements of the list representing the
abstract buffer – in particular, the number of valid cells in
the array must be equal to the length of the abstract buffer.

We express it as the following object predicate, where func-
tion range(s, e) computes the list of successive indices be-

tween two integers s and e, modulo SIZE .

IBuckr ⊆(list value)×H

IBuckr ,{(b, h) | b = b1 :: . . . ::bs s<SIZE

Separation(h, data)

range(nr, nw) = i1 :: . . . :: is

h(r, next write) = nw nw<SIZE

h(r, next read) = nr nr<SIZE

∀j ∈ {1, ..s}, h(h(r, data), ij) = bj }

The property Separation(h, f) states that all values of f fields
in concrete heap h are unique. In the definition of IBuckr,
this encodes the separation of arrays (all data field are dis-
tinct references), thus reflecting the ownership of buffers by
each thread.

Methods guarantees reflect each basic shared memory effect of
the methods (see [30] for details). Methods top and isEmpty

have no effect: their object guarantee Grtop and GrisEmpty is
the identity. Methods pop and push have been explained
informally previously. Their guarantee Grpop and Grpush also
reflect the effect on the abstract buffer, and this effect is
specified to occur atomically with the instruction annotated
by the Lin instruction (see Figure 7).

Finally, we express the usage protocol of single-writer, single-
reader by defining the respective rely of methods.

RrisEmpty , Grpush Rrpop , Grpush Rrtop , Grpush Rrpush , Grpop

With the above definitions, and using the general approach
we have illustrated on the lock in Section 4, we were able
to formally establish RGspec({isEmpty, top, pop, push}), and
then apply our generic refinement theorem, establishing the
correctness of the compiler specialized to buffers. We refer
the reader to our formal development [30] for the full details
of the proof.

7. RELATED WORK
The literature on linearizability verification is vast. Dongol
et al. [4] provide a comprehensive survey of techniques for
verifying linearizability w.r.t. the seminal definition of Her-
lihy [16]. Notably, a number of works use concurrent program
logics, most of them influenced by Jones’s rely-guarantee [18]
and O’Hearn’s Concurrent Separation Logic [24]. Both ideas
have been combined into logics like RGSep [29], SAGL [5],
and more recently Iris [19]. Another logic is worth mention-
ing, although not directly applied to linearizability: Sergey
et al. [26] provide a Coq framework to mechanically verify
fine-grained concurrent algorithms, based on the FCSL logic.
FCSL’s soundness is formally proved in Coq w.r.t. a deno-
tational semantics, but the shallow embedding of programs
in Coq makes the approach hard to use in compiler verifica-
tion. While the above logics have highly expressive powers,
they are not formally linked with observational refinement,
which is what we aim at. Filipović et al. [6] characterize
linearizability in terms of observable refinement, on top of
a non-operational semantics. Here, we want to express our
main result in terms of observable refinement directly.

Our work is inspired by the technique outlined in [28]. Here,
we use a simple rely-guarantee formulation: we argue it is

a good balance between the logic expressivity and its mech-
anization effort. Indeed, it is enough for implementing and
proving the concurrent garbage collector we verified in [31]:
our meta-theorem applies to the verified implementation of
the marking buffers for roots publishing, removing the need
for a shared shadow-stack [13, 1]. For a fine-grained imple-
mentation of the freelist, our methodology is also able to han-
dle Treiber’s stack [27]. More sophisticated data structures
exist that are less subject to contention, e.g. Hendler’s [14],
but external linearization points are left for future work.

The technique presented in [28] lacks a mechanized soundness
proof that would be suitable to a verified compiler infrastruc-
ture. Our work provides such a foundation. Liang et al. [23]
tackle a problem similar to ours. They define a simulation
parameterized by relies and guarantees, and compositionality
rules, to reason about program transformations. In [22], they
combine it with the technique in [28] to verify linearizability.
Though [22] is able to deal with external linearization points,
their proofs remain un-mechanized.

The work of Derrick et al. [2], formalized in the KIV tool,
is also closely related. Like us, they express linearizability
through thread-local proof obligations, establishing system-
atically inter-thread simulations. Our work differs in the
nature of the proof obligations: we choose to express them
in terms of rely-guarantee, so we can discharge them using
program logics.

Jagannathan et al. [17] propose an atomicity refinement
methodology for verified compilation. Their final theorem,
mechanized in Coq, is expressed as a behavior preservation,
but the proof methodology is completely different from the
one presented here. They provide compositional rules to
symbolically refine high-level atomic blocks into fine-grained
low-level code.

8. CONCLUSION
This work embeds the notion of linearizable data structures in
a compiler formally verified in Coq. As such, the present work
represents a mechanized soundness foundation for Vafeiadis’s
technique [28], phrased in terms of semantic refinement. To
achieve this result, we establish, starting from proof obli-
gations expressed in terms of rely-guarantee reasoning, a
generic backward simulation theorem. Its proof requires to
express subtle coherence invariants between abstract atomic
primitives and their fine-grained concurrent implementation.
The development size is close to 13kloc, an effort of one
person-year.

The present work is part of a larger project aiming at ver-
ifying concurrent compilation mechanisms such as garbage
collectors or dynamic allocators, and plugging them in a
verified compiler infrastructure. Such artifacts are notably
difficult to verify, and one needs to abstract from low-level
details when conducting their formal soundness proof. In
particular, the concurrent garbage collector we proved in [31]
is implemented in a dedicated program intermediate represen-
tation that features constructs facilitating the programming
and the proof of compiler services, such as introspection on
objects and high-level management of threads roots. Notably,
the collector and mutators threads share abstract concurrent
buffers to keep track of potentially live objects. The work pre-

sented here allows to propagate the formal soundness of the
collector down to its low-level, fine-grained implementation.

9. REFERENCES
[1] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek.

Accurate garbage collection in uncooperative
environments revisited. Concurrency and Computation:
Practice and Experience, 21(12), 2009.

[2] J. Derrick, G. Schellhorn, and H. Wehrheim.
Mechanically verified proof obligations for
linearizability. TOPLAS, 2011.

[3] T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant,
K. Barabash, I. Lahan, Y. Levanoni, E. Petrank, and
I. Yanover. Implementing an on-the-fly garbage
collector for Java. In Proc. of ISMM’00, 2000.

[4] B. Dongol and J. Derrick. Verifying linearisability: A
comparative survey. ACM Comput. Surv., Sept. 2015.

[5] X. Feng, R. Ferreira, and Z. Shao. On the relationship
between concurrent separation logic and
assume-guarantee reasoning. In Proc. of ESOP, 2007.

[6] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang.
Abstraction for concurrent objects. In Proc. of ESOP,
2009.

[7] P. Gammie, A. L. Hosking, and K. Engelhardt.
Relaxing safely: verified on-the-fly garbage collection
for x86-TSO. In Proc. of PLDI 2015, 2015.

[8] G. Gonthier. Verifying the safety of a practical
concurrent garbage collector. In Proc. of CAV, 1996.

[9] K. Havelund. Mechanical verification of a garbage
collector. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.

[10] K. Havelund and N. Shankar. A mechanized refinement
proof for a garbage collector, 1997. Unpublished report,
available at
http://havelund.com/Publications/gc-paper.ps.

[11] C. Hawblitzel and E. Petrank. Automated verification
of practical garbage collectors. In Proc of POPL, 2009.

[12] C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran.
Automated and modular refinement reasoning for
concurrent programs. In Proc. of CAV, 2015.

[13] F. Henderson. Accurate garbage collection in an
uncooperative environment. In Proc. of ISMM, 2002.

[14] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable
lock-free stack algorithm. In Proc. of SPAA, 2004.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2008.

[16] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. TOPLAS,
1990.

[17] S. Jagannathan, V. Laporte, G. Petri, D. Pichardie,
and J. Vitek. Atomicity refinement for verified
compilation. TOPLAS, 2014.

[18] C. B. Jones. Specification and design of (parallel)
programs. In IFIP, 1983.

[19] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen,
A. Turon, L. Birkedal, and D. Dreyer. Iris: Monoids
and invariants as an orthogonal basis for concurrent
reasoning. In Proc. of POPL, 2015.

[20] D. Kästner, X. Leroy, S. Blazy, B. Schommer,
M. Schmidt, and C. Ferdinand. Closing the gap – the
formally verified optimizing compiler CompCert. In
Proc. of SSS’17, 2017.

[21] X. Leroy. A formally verified compiler back-end. JAR,
pages 363–446, 2009.

[22] H. Liang and X. Feng. Modular verification of
linearizability with non-fixed linearization points. In
Proc. of PLDI, 2013.

[23] H. Liang, X. Feng, and M. Fu. Rely-Guarantee-based
simulation for compositional verification of concurrent
program transformations. TOPLAS, 2014.

[24] P. W. O’Hearn. Resources, concurrency, and local
reasoning. TCS, 2007.

[25] D. M. Russinoff. A mechanically verified incremental
garbage collector. Formal Aspects of Computing, 6(4),
1994.

[26] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized
verification of fine-grained concurrent programs. In
Proc. of PLDI, 2015.

[27] R. K. Treiber. Systems programming: Coping with
parallelism, 1986. Technical Report RJ 5118. IBM
Almaden Research Center.

[28] V. Vafeiadis. Modular Fine-Grained Concurrency
Verification. PhD thesis, University of Cambridge, 2007.

[29] V. Vafeiadis and M. J. Parkinson. A marriage of
Rely/Guarantee and separation logic. In Proc. of
CONCUR, 2007.

[30] Yannick Zakowski and David Cachera and Delphine
Demange and David Pichardie. Verified compilation of
linearizable data structures – formal development, 2017.
http://www.irisa.fr/celtique/ext/simulin/.

[31] Y. Zakowski, D. Cachera, D. Demange, G. Petri,
D. Pichardie, S. Jagannathan, and J. Vitek. Verifying a
Concurrent Garbage Collector using a Rely-Guarantee
Methodology. In Proc. of ITP, 2017.

http://havelund.com/Publications/gc-paper.ps
http://www.irisa.fr/celtique/ext/simulin/

	Introduction
	Challenges and Overview
	Simple Lock Example
	Semantic Refinement
	Rely-Guarantee for Atomicity
	Using our Result

	Language Syntax and Semantics
	Values and Abstract Data Structures
	Language Syntax
	Language Semantics

	Main Theorem
	Semantic RG Judgment
	Specifying Hybrid Methods
	Compiler Correctness Theorem

	Proof of the main theorem
	Leveraging RGspec(I)
	Simulation Relations

	Case Study: Concurrent Buffers
	Abstract Buffers
	Fine-grained Implementation
	Invariant, Guarantees and Relies

	Related Work
	Conclusion
	References

