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We investigated theoretically water evaporation from concentrated supramolecular mixtures, such
as solutions of polymers or amphiphilic molecules, using numerical resolutions of a one dimensional
model based on mass transport equations. Solvent evaporation leads to the formation of a concen-
trated solute layer at the drying interface, which slows down evaporation in a long-time scale regime.
In this regime, often referred to as the falling rate period, evaporation is dominated by diffusive mass
transport within the solution, as already known. However, we demonstrate that, in this regime, the
rate of evaporation does not also depend on the ambient humidity for many molecular complex
fluids. Using analytical solutions in some limiting cases, we first demonstrate that a sharp decrease
of the water chemical activity at high solute concentration, leads to evaporation rates which depend
weakly on the humidity, as the solute concentration at the drying interface slightly depends on the
humidity. However, we also show that a strong decrease of the mutual diffusion coefficient of the
solution enhances considerably this effect, leading to nearly independent evaporation rates over a
wide range of humidity. The decrease of the mutual diffusion coefficient indeed induces strong con-
centration gradients at the drying interface, which shield the concentration profiles from humidity
variations, except in a very thin region close to the drying interface.

I. INTRODUCTION

Water evaporation from binary molecular complex
fluid solutions (polymers, amphiphilic molecules, etc.) is
a common feature of many different experimental situa-
tions ranging from the drying of water-borne polymeric
coatings to spray-drying in food engineering [1]. For am-
bient conditions and slow drying, water in the solution is
at equilibrium with its vapor at the liquid-gas interface,
and evaporation is driven by the vapor mass transfer to-
wards the surrounding air, see Fig. 1 for the case of the
drying of a thick film [2, 3]. For low volatile solvents such
as water at ambient conditions, the rate of evaporation
from the drying interface takes then the following form:

ρVev = k(ci − c∞), (1)

where ρ is the density of liquid water, k a mass trans-
fer coefficient (m/s), ci the water vapor concentration at
the interface, and c∞ the water vapor concentration in
the surroundings [2, 3]. For the slow drying configura-
tions considered here, we assume isothermal conditions.
At early time scales and for dilute solutions, the low so-
lute concentration within the bulk fluid hardly affects the
water chemical activity, leading thus to:

ρVev = kcsat(1− ae), (2)
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where csat (kg/m3) is the concentration at saturation of
water in the vapor phase for pure water, and ae the hu-
midity of the ambient air [2, 3]. In this regime, also
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FIG. 1. Evaporation of a thick film. Water evaporation from
the liquid binary mixture induces a receding of the drying
interface at a rate Vev (m/s). Colors code for the solute con-
centration within the fluid, whereas the grayscale codes for
the mass transfer within the gas phase. ξ ∼ D0/Vev is the
typical scale of the evaporation-induced concentration polar-
ization layer, ci the water vapor concentration at the drying
interface, c∞ the water concentration in surrounding ambient
air, and ϕi the solute concentration within the fluid at the
drying interface.

known as the constant rate period in the context of poly-
mer coatings [4–6], the evaporation rate is nearly con-
stant, and depends on both the ambient humidity (term
ae) and mass transfer within the gas phase (term k). Wa-
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ter evaporation, in turn, drives also a receding of the dry-
ing interface, at a rate Vev owing to mass conservation.
The receding of the interface consequently concentrates
the non-volatile solutes at the air-solution interface in a
layer of thickness ξ ∼ D0/Vev, where D0 is the solute
diffusivity in the dilute regime, see Fig. 1. Such a layer,
also known as the concentration polarization layer in the
field of membrane science [7], arises from the competition
between diffusion and the displacement of the interface,
a common feature of many different processes such as
ultra-filtration or drying.

In the following, we focus on experimental situations
for which the polarization layer remains smaller than the
total thickness H of the solution, i.e. H � D0/Vev. Such
a regime is not only key for understanding the drying of
sessile drops [8–10] or of thick films [11, 12], but also for
investigating evaporation-driven water transport through
concentrated supramolecular solutions [13, 14] (see be-
low). At long time scales, accumulation of solutes in the
polarization layer also affects the water chemical activity
at the air/fluid interface, and the latter is now at equi-
librium with air saturated with water at a concentration
ci = a(ϕi)csat, where ϕi is the solute concentration at
the drying interface, and a(ϕi) the corresponding water
chemical activity. Solute accumulation thus slows down
the drying kinetics as the evaporation rate now follows:

ρVev = kcsat(a(ϕi)− ae). (3)

In this regime, also known as the falling rate period in the
field of polymer coatings [4–6], ϕi increases asymptoti-
cally towards ϕ? given by the local chemical equilibrium
a(ϕ?) = ae, and Vev → 0 leading to a broadening of the
concentrated layer as the latter evolves as ξ ∼ D0/Vev.
In this long time scales regime, the evaporation rate does
not depend anymore on mass transfer within the vapor
phase, but only on solute diffusion through the polariza-
tion layer [4–6]. One still nevertheless expects that the
ambient humidity plays a role on the drying kinetic, as ae
sets the limiting concentration ϕ? at the drying interface.

However, Roger et al. investigated recently the drying
of aqueous solutions of amphiphilic molecules exhibiting
self-assembled phases at high solute concentrations, for
mimicking the biological complexity of water evapora-
tion through mammalian skins [13, 14]. Strikingly, their
experiments demonstrated that evaporation rates from
such complex fluids do not depend on the humidity (at
long time scales and on a wide range ae = 0–0.95), as also
observed for real mammalians skins. Their main inter-
pretation, strengthened by in-situ observations, relies on
the nucleation and growth of a thin concentrated phase
at the drying interface, leading to the conclusion that
self-assembly is possibly a key ingredient to explain this
humidity-insensitive regime [15].

In the present work, we show actually that evapora-
tion rates do not depend on the ambient humidity ae
(on a wide range) in the falling rate regime, for complex
fluids such as solutions of polymers or surfactants, in-
dependently on any phase transition. Surprisingly, such

a result has not been demonstrated theoretically to the
best of our knowledge, despite the large amount of pre-
viously reported theoretical investigations, probably be-
cause such works mainly focused on the description of
thin film drying [4–6]. We demonstrate in the following,
using both numerical simulations of mass transport equa-
tions and analytical solutions in some limiting cases, that
evaporation rates are nearly humidity-insensitive when
two ingredients are encountered: (1) a sharp decrease
of the water chemical activity at high solute concentra-
tion, and/or (2) a strong decrease of the mutual diffusion
coefficient of the aqueous solution at high solute con-
centration. These features are commonly encountered
for solutions of polymers and amphiphilic molecules thus
emphasizing the significance of this result for processes
involving water transport within complex fluids.

To demonstrate this result, we will consider for simplic-
ity the case of a binary mixture composed of a volatile
solvent and a non-volatile solute, and we will focus more
precisely on the model experiments shown schematically
in Fig. 2. The solution is confined within a long cap-
illary (length H) with an open end from which solvent
evaporates, and is connected to a reservoir at the op-
posite end. We will also consider two different experi-
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FIG. 2. Uni-directional drying of a binary mixture within a
capillary (length H). Top: solvent evaporation at a rate Vev

induces a flow which enriches the tip with solutes (colors code
for the solute concentration). ϕ0 is the concentration imposed
at the inlet of the capillary, ae the ambient humidity. (a) and
(b) Two different experimental configurations. (a) Growing
concentration polarization layer, i.e. fixed concentration ϕ0

in the reservoir: solutes accumulate continuously within the
capillary (see inset). (b) Steady concentration polarization
layer obtained when imposing ϕ0 = 0 in the reservoir after a
delay time ∆T , see inset.

mental configurations, see Fig. 2(a) and (b). In the first
case, the reservoir contains solutes at a volume fraction
ϕ0 > 0, and evaporation continuously concentrates the
non-volatile solutes up to the tip of the capillary. This ge-
ometry exactly corresponds to the experiments reported
in Ref. [14]. This case of uni-directional drying, is a com-
mon model for many other drying configurations: sus-
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pended or confined drops [16, 17], pervaporation in mi-
crofluidic geometries [18], as well as a strictly equivalent
model of solvent evaporation from quiescent thick films
with a moving interface in the regime H � D0/Vev, see
Fig. 1, Sec. II and appendix A.

In the second configuration, solutes contained within
the reservoir at a concentration ϕ0 > 0 are replaced
by pure water after a delay time ∆T , i.e. ϕ0 = 0 for
T > ∆T . The solutes previously trapped within the cap-
illary reach a steady concentration gradient, see Fig. 2(b).
This steady configuration may be relevant for describ-
ing many different experimental cases, such as (i) the
steady water transport through a polymer coating, an
important issue in the field of waterproofing coatings
for instance, (ii) evaporation-induced steady water trans-
port through hydrogel-based membranes [19], or even
(iii) through mammalian skins as suggested recently [14].
These examples may be also key to describe evaporation
from soft contact lenses [20], or from any other biological
tissue exposed to air, such as eye’s cornea for instance.
These last examples may however involve contributions
not taken into account in the model developed later (e.g.
elastic effects [11, 12]), and we will briefly discuss these
issues in our conclusion as future research perspectives.

We will in the following investigate the role of the am-
bient humidity on the steady evaporation rate, for a con-
stant volume of solutes trapped within the capillary, de-
fined as:

Ψ =

∫ ∞
0

ϕ(X) dX , (4)

where ϕ(X) is the steady solute volume fraction profile.
The volume of solutes Ψ trapped within the capillary de-
pends directly on ∆T and on the initial concentration ϕ0

during the feeding stage. This second configuration corre-
sponds to water transport driven by evaporation through
a steady concentration polarization layer, thus main-
tained by the competition between evaporation-induced
convection and molecular diffusion. Note also that the
two configurations described above are fundamentally
different, as no steady regime is reached in the first con-
figuration, see Fig. 2(a).

II. THEORETICAL MODELING OF
UNIDIRECTIONAL DRYING

A. Transport equations for a binary mixture

We consider a binary mixture composed of a volatile
solvent and a non-volatile solute, and we define V1 and
V2 the solute and the solvent velocities respectively. For
simplicity, we also assume additivity of the volumes, i.e.
1/ρ = w/ρ01 + (1 − w)/ρ02, where ρ0i are the densities of
the pure solute and solvent, ρ the density of the mixture,
and w the solute mass fraction. In the reference frame
of the volume-averaged velocity defined as V = ϕV1 +
(1 − ϕ)V2, mass conservation equations for the solvent

and the solutes are [2]:

∂Tϕ+ V.∇ϕ = ∇(D(ϕ)∇ϕ) , (5)

∇.V = 0 , (6)

where D(ϕ) is the mutual diffusion coefficient of the mix-
ture (also called collective diffusion coefficient in the field
of colloidal dispersions).

In the geometry displayed in Fig. 2, we assume that the
only flow within the capillary is due to water evaporation
(e.g. no buoyancy-driven flows, no Marangoni flows at
the tip, etc.), and that concentrations are homogeneous
across the transverse dimensions of the capillary, allowing
us to reduce Eqs. (5) and (6) to one dimensional equa-
tions only. By convention, the evaporation rate Vev is
positive for evaporation. With the axis defined in Fig. 2,
mass conservation (6) results in a uniform flow of veloc-
ity:

V = −Vev , (7)

within the capillary, from the reservoir up to its tip. We
also assume, as done classically, see also above Eq. (3),
that Vev is given by:

Vev = (a(ϕi)− ae) J , (8)

where a(ϕ) is the solvent chemical activity, ae the ambi-
ent humidity (for non aqueous solvents, ae = 0 a priori),
and ϕi = ϕ(X = 0) is the concentration at the inter-
face. J > 0 (m/s) is a coefficient which depends on mass
transfer in the gas phase [3], and it corresponds to the
evaporation-induced flow in the case of pure water and
for ae = 0. The term a(ϕi)−ae accounts for the diminu-
tion of the evaporation driving force due to the decrease
of the solvent chemical activity at the interface. This
evaporation-driven flow convects in turn the solute con-
tained in the reservoir up to the channel tip where they
accumulate. The solute concentration profile within the
channel follows Eq. (5) which reduces to the 1D equation:

∂Tϕ+ V ∂Xϕ = ∂X(D(ϕ)∂Xϕ) , (9)

where V is the drying-induced flow (m/s) within the cap-
illary.

In the above equations, we have assumed implicitly lo-
cal thermodynamic equilibrium conditions, thus discard-
ing evaporation-induced glass transition as observed for
some polymeric systems [11, 12, 21], and other possible
kinetic effects such as the nucleation and growth of crys-
tallites. However, the model given by Eqs. (8-9) can be
used to describe binary systems exhibiting self-assembled
phases, still within the assumption of local thermody-
namic equilibrium, providing that proper continuity con-
ditions are applied at the phase boundaries, see for in-
stance Ref. [22] in a similar context.

B. Dimensionless model

We first define D(ϕ) = D0D̂(ϕ) with D̂(ϕ → 0) → 1.
As mentioned above, our analysis focuses on the regime
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H � D0/Vev, and the geometry can be described by
a semi-infinite medium. Therefore, we did not use the
length H to make equations dimensionless, but rather
the relevant scale D0/J to define the following unitless
dimensions:

x = X/(D0/J) and t = T/(D0/J
2) . (10)

The above 1D transport equations become:

∂tϕ = v∂xϕ+ ∂x(D̂(ϕ)∂xϕ) , (11)

v = a(ϕi)− ae , (12)

where v = Vev/J = −V/J . The non-volatility of the
solute imposes the following boundary condition at the
air/solution interface:

ϕi v + D̂(ϕi)(∂xϕ)x=0 = 0 , (13)

and we assume a semi-infinite medium:

ϕ(x→∞, t) = ϕ0 , (14)

corresponding to a fixed concentration at the opposite
inlet of the capillary at any time t. The initial condition
is:

ϕ(x, t = 0) = ϕ0 . (15)

C. Empirical laws for a(ϕ) and D(ϕ)

The drying kinetics a priori depends on thermody-
namic parameters (a(ϕ), ae), on mass transport within
the liquid phase (D(ϕ)), but also on the transport in the
vapor phase (J). We consider, in the following, binary
mixtures for which a(ϕ → 1) → 0 and D(ϕ) decreas-
ing (possibly strongly) for ϕ → 1. These features are
indeed common for a wide range of experimental binary
mixtures, including particularly solutions of polymers,
copolymers and amphiphilic molecules [6, 17–19, 23–27].
As shown later, our results do not depend strongly on
the exact shapes of a(ϕ) and D(ϕ), and we will thus take
empirical formulae for a given system to capture the key
features of the drying dynamics for most of binary molec-
ular complex fluids.

More precisely, we compiled different sets of measure-
ments of both a(ϕ) and D(ϕ) for poly(vinyl alcohol)
(PVA) aqueous solutions [6, 19]. These precise mea-
surements obtained at 25◦C using different techniques
(time-resolved measurements of sorption kinetics, micro-
interferometric methods) and for different commercial
grades, lead to very close data sets which are well-fitted
by the following relations:

log10D(ϕ) = a4ϕ
4 + a3ϕ

3 + a2ϕ
2 + a1ϕ+ a0, (16)

with [a4; a3; a2; a1; a0] =
[−13.65; 17.47;−8.97; 1.12;−10.29], and

a(ϕ) = (1− ϕ) exp(ϕ+ χϕ2) , (17)

χ(ϕ) = 3.94− 3.42(1− ϕ)0.09 . (18)

The latter relation corresponds to the solvent activity in
a polymer solution within the framework of the Flory-
Huggins theory, and χ(ϕ) is the binary Flory-Huggins
interaction parameter [24].

These two relations are displayed in Fig. 3, and we will
use them as representative empirical laws for many other
complex fluids.
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FIG. 3. Properties of the binary system PVA/water. (a)
Chemical water activity and (b) mutual diffusion coefficient,
see Eqs. (16–18) and Refs. [6, 19] for the corresponding mea-
surements. Inset of (b): normalized mutual diffusion coef-

ficient D̂(ϕ) (black line), and piecewise constant D̂(ϕ) (red
line, see text).

III. STEADY POLARIZATION LAYER

We first consider for simplicity the configuration shown
in Fig. 2(b). It corresponds to a steady situation obtained
when the concentration ϕ0 at the inlet has been set at
ϕ0 = 0 after a delay time, see the inset of Fig. 2(b). After
a transient, solutes reach a steady concentration profile
where solute convection exactly balances diffusion. From
Eqs. (11,13), the concentration profile then follows:

0 = vϕ+ D̂(ϕ)∂xϕ , (19)

where v is given by Eq. (12). We will investigate in the
next section the dependence of the drying rate v along
with the humidity ae, while keeping constant the volume
of solute Ψ trapped within the capillary, see Eq. (4). We
further define the unitless volume of solutes as:

ψ =

∫ ∞
0

ϕ(x) dx , (20)

and we will consider constant ψ values in the following.
As shown below, the volume of solutes ψ governs both
the evaporation rate and the extent of the polarization
layer. The assumption of a semi-infinite medium, i.e.
H � D0/Vev with real units, thus sets a maximal value
for ψ which depends on H.



5

A. General case: non-constant a(ϕ) and

non-constant D̂(ϕ)

We first consider the most general case corresponding
to non-constant a(ϕ) and D(ϕ), and given by the empir-
ical formulae (16–18) displayed in Fig. 3. We solved the
non-linear equation Eq. (19) with v = a(ϕi)− ae for sev-
eral humidities ae, and for several ψ values, see appendix
B for details. We will consider ψ � 1 leading to evapo-
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FIG. 4. Steady polarization layer: non-constant a(ϕ) and

non-constant D̂(ϕ). (a) Steady profiles ϕ(x) for ψ = 15 and
several ambient humidity ae (0: cyan; 0.2: blue; 0.4: red; 0.6:
black; 0.8: green; 0.9: magenta). Insert: same data but at low
x. (b) Concentration gradient at the interface −(∂xϕ(x))x=0

vs. ae (◦, left axis), and concentration at the interface ϕi vs.
ae (�, right axis), for ψ = 15. The solid line is the theoretical
curve ϕ? vs. ae with a(ϕ?) = ae.

ration rates v � 1, owing to the significant decrease of
the chemical activity at the drying interface. As shown
in Fig. 4(a) for the case ψ = 15, the profiles almost col-
lapse on a single curve for ambient humidities ae ≤ 0.9
except in a narrow region of small x as shown in the in-
set. The data shown in Fig. 4(b), −(∂xϕ)x=0 vs. ae, help
to reveal the strong concentration gradient at the inter-
face for ae → 0 (over 4 decades for ae ranging from 0.95
to 0). Fig. 4(b) also shows that the concentration at the
interface ϕi is close to ϕ? given by a(ϕ?) = ae, indicating
thus that the evaporation rates are indeed small for such
large ψ value.

The corresponding evaporation rates v are shown
against the ambient humidity ae in Fig. 5(a) for ψ = 15.
As pointed out in the introduction, the evaporation rates
are nearly constant over a wide range of ae (relative de-
crease ' 2% for ae = 0–0.9, ψ = 15). Fig. 5(b) also shows
the calculated evaporation rates v for ae = 0, vs. 1/ψ.
These data show that for ψ > 1, evaporation rates are
very well-fitted by v ' ϕc/ψ with ϕc = 0.48, suggesting
possibly that simple analytical expressions can be found
to explain why evaporation rates are insensitive to ae.

With real units, the evaporation rate follows Vev '
D0ϕc/Ψ independently of the humidity (Ψ being the di-
mensionalized volume of solutes trapped in the capillary)
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FIG. 5. (a) Steady evaporation rate v vs. ae. � : case D̂(ϕ)
given by Eq. (16) for ψ = 15, see also the corresponding
profiles in Fig. 4. The thick dark line is v = ϕc/ψ with ϕc =

0.48. �: case D̂(ϕ) = 1 for ψ = 15. The solid line is the
theoretical prediction v = ϕ?/ψ with a(ϕ?) = ae. The dashed
line is the case expected for a pure solvent i.e. v = 1−ae. (b)

Steady evaporation rate v at ae = 0 vs. 1/ψ for the case D̂(ϕ)
given by Eq. (16). The solid line is the best fit by v = ϕc/ψ
with ϕc = 0.48.

and of the transport in the vapor phase (term J). Water
evaporation however still depends on diffusion in the liq-
uid phase (term D0) and as shown later, the exact value
ϕc accounts for the specific shape of D(ϕ).

We unveil below the role played by both D̂(ϕ) and a(ϕ)
on the very small dependence of v with ae, using analyt-
ical solutions obtained for simple expressions of D̂(ϕ).

B. Role of the activity only: case D̂(ϕ) = 1

In this case, concentration profiles are easily calculated
from Eq. (19) with the constraint given by Eq. (20), lead-
ing to the exponential decay:

ϕ(x) = ψv exp(−vx) . (21)

For ψ � 1, one should have v � 1 to get a finite con-
centration at the interface, and thus ϕi = ψv ' ϕ? with
ϕ? given by a(ϕ?) = ae. In that regime, the evaporation
rate thus follows

v ' ϕ?

ψ
, (22)

(Vev ' D0ϕ
?/Ψ with real units). The water/PVA case is

shown in Fig. 5(a) for ψ = 15 and assuming D̂(ϕ) = 1.
Symbols are the direct solutions of ψv = ϕi with Eq. (12)
and the solid line is the theoretical approximation (22).
With the assumption of a constant mutual diffusion co-
efficient, evaporation rates are weakly sensitive to the
humidity variations (relative variations of < 20% over
ae = 0–0.8 for ψ = 15).

Indeed, a sharp decrease of the chemical activity at
high solute concentrations (see Fig. 3(a)) leads to ϕ? '
1 over a large humidity range (see Fig. 4(b)). A weak
dependance of the evaporation rate follows, because of
Eq. (22). Nevertheless, the results reported in Fig. 5 show
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that the variations of D with ϕ are key to understand the
extremely small variations of the evaporation rate along
with ae.

C. Role of the mutual diffusion coefficient:
non-constant a(ϕ) and piecewise constant D̂(ϕ)

To capture the role played by the variation of the mu-
tual diffusion coefficient with the solute concentration,
we solve analytically the steady case Eq. (19) using a

piecewise constant function for D̂(ϕ). More precisely, we
chose:

D̂(ϕ) = 1 for ϕ < ϕc

D̂(ϕ) = d for ϕ > ϕc

}
(23)

with d < 1, as shown in the inset of Fig. 3(b). We also
consider humidities ae < a(ϕc) and large ψ values for
which the concentration at the drying interface reaches
ϕi > ϕc. Integration of Eq. (19) in this simple configu-
ration leads to the following concentration profile:

ϕ(x) = ϕi exp(−vx/d) for x < xc , (24)

ϕ(x) = ϕc exp(−v(x− xc)) for x > xc . (25)

The concentration field continuity imposes xc =
(d/v) log(ϕi/ϕc). Integrating Eqs. (24-25) from x = 0
to infinity and using the definition of ψ (Eq. (20)) yields:

v =
ϕc + d(ϕi − ϕc)

ψ
. (26)

In the general case, ϕi and v are obtained by solving nu-
merically the set of algebraic equations (12,26). For large
ψ, Eq. (12) can be replaced by ϕi ' ϕ?, and Eq. (26) di-
rectly gives the evaporation rate v. As expected, Eq. (22)
is recovered for d = 1. For d� 1, Eq. (26) reduces to:

v ' ϕc
ψ
, (27)

where v no longer depends on ϕ?. We show in the follow-
ing that this crude model based on a piecewise constant
D(ϕ) can be used to explain most of the features of more
general cases.

The case d → 0 corresponds to the existence close
to the drying interface of a layer of vanishing thickness
xc ' (d/v) log(ϕ?/ϕc) with a diverging concentration
gradient at the interface: (∂xϕ)x=0 ' −ϕ?v/d, from
Eq. (24). For larger x values, i.e. x > xc, concentration
profiles collapse on a master curve, whatever the value of
the humidity, with a smaller concentration gradient on
a scale 1/v � xc, see Eq. (25). These behaviors were
also observed for the PVA case studied in section III A
(Fig. 4). Furthermore, an equivalence between the sim-
plified model and this more realistic case can be found
by fitting ϕc in Eq. (27) from the curve v vs. 1/ψ of
Fig. 5(b) (PVA case with ae = 0). We get ϕc ' 0.48.
For the PVA case, this specific value corresponds approx-
imately to the concentration below which all the profiles

collapse at large x, whatever the value of the humidity
ae, see Fig. 4(a).

We can now draw a simple picture to explain why evap-
oration rates are nearly insensitive to variations of ae in
this steady configuration. Concentrations at the inter-
face reach ϕi ' ϕ? for ψ � 1, and the profiles display
strong concentration gradients at the interface, owing to
the very small mutual diffusion coefficient. Concentra-
tions thus drop from ϕ? to values ϕ ≤ ϕc on a very thin
layer (0–xc), and the contribution of this strong gradient
to the total amount of solutes trapped within the capil-
lary is negligible, see Eq. (20). The value of the ambient
humidity only plays a role on this thin layer through
ϕ? and xc. For the remaining part of the profile (i.e.
x ≥ xc), mutual diffusion coefficient is almost constant
(D0 with real units in the simple model). Concentration
profiles in this region are solutions of a diffusion problem
with constant diffusivity and concentration ϕc imposed
at x = xc. When xc is very small, this is almost equiv-
alent to imposing ϕc at x = 0. The effect of humidity
then drops out, because ϕc is a material property, hence
independent of ambient conditions.

Practically, vanishing diffusivity (d→ 0) is not strictly
required to get evaporation rates nearly insensitive to am-
bient humidity. Indeed, assuming for instance d = 0.1,
ϕc = 0.5 and ϕi ' ϕ? (as expected for large ψ) in
Eq. (26), v only decreases of ' 3% over ae = 0–0.8. This
weak variation comes indeed from two superimposed ef-
fects: (i) the small variation of the concentration at the
interface ϕi along with the humidity (due to the sharp
variation of a(ϕ) vs. ϕ at high solute concentration),
and (ii) a small mutual diffusion coefficient at high so-
lute concentration (presence of a thin layer with a high
concentration gradient at the drying interface).

IV. GROWING POLARIZATION LAYER (ϕ0 > 0)

We now turn to the time-dependent case described
schematically in Fig. 2(a). In this regime, concentra-
tion in the reservoir is ϕ0 � 1, and solutes continu-
ously accumulate within the capillary. At early stages,
the drying-induced flow convects solutes at the tip of
the capillary where they accumulate in a region of size
ξ ∼ 1 (ξ ∼ D0/Vev with real units). At longer time scales
however, concentration at the tip is expected to increase
asymptotically towards ϕ?, given by a(ϕ?) = ae, leading
to a slowing down of the evaporation rate (because of
Eq. (12)), and thus of the convective flux −(ϕv). One
thus expects a broadening of the concentrated layer as
the latter evolves as ξ ∼ D0/Vev, and we will mainly fo-
cus in the following on this long-time scales regime. Note
again that the assumption of a semi-infinite medium, i.e.
H � D0/Vev see above, imposes a limiting time scales
for our description which depends on H, as the evap-
oration rate Vev is expected to slow down continuously
at long time scales. Note also that this time-dependent
case is strictly analogous to the drying of quiescent thick
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films, as for instance studied in Ref. [28]. One can in-
deed show using an appropriate change of variables, that
Eqs. (11–12) along with the boundary and initial con-
ditions (13–15) corresponds to the modeling of solvent
evaporation from a thick film, see appendix A.

A. General case: non-constant a(ϕ) and

non-constant D̂(ϕ)
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FIG. 6. Growing polarization layer: non-constant a(ϕ) and

non-constant D̂(ϕ). (a): ϕ(x) vs. x for several times t = 103;
104, 105 and 106 (ae = 0.4, ϕ0 = 0.01) for the water/PVA
case. The inset displays the same data rescaled against x/

√
t,

ϕ? is given by a(ϕ?) = 0.4. (b) Concentration gradient at the
interface −(∂xϕ(x))x=0 vs. t (left axis), and concentration at
the interface ϕi vs. t (right axis)

We used a commercial finite elements software, Com-
sol Multiphysics, to solve numerically the transport
equations (11–12) with the boundary and initial condi-
tions (13–15), assuming the empirical formulae (16–18)

for a(ϕ) and D̂(ϕ) (see Fig. 3). Comsol Multiphysics is
based on the Galerkin method. We used quadratic La-
grange elements and BDF solver.

Figure 6 displays some concentration profiles com-
puted for ae = 0.4 and ϕ0 = 0.01 at long time scales
(t > 1000). In this time-dependant case, concentration
reaches ϕi ' ϕ? given by a(ϕ?) = ae for t > 1000. Con-
centration profiles then widen over time, and again with
steep concentration gradients at the interface (which ulti-
mately decrease owing to the decrease of the evaporation
rate). Concentration profiles almost collapse on a single
curve when plotted against x/

√
t suggesting that a self-

similar profile approximates the calculated solutions in
this long-time scale regime.

The corresponding temporal evolution of the evapora-
tion rate v is shown in Fig. 7(a) for various humidities.
At early stages, v ' 1−ae as the solute concentration at
the interface does not modify strongly the water chemical
activity (the so-called constant rate regime). At longer
time scales, evaporation rates collapse on a master curve
regardless of the value of the humidity. In this asymp-
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FIG. 7. Evaporation rate v vs. t for several ambient humidi-
ties ae (0: cyan; 0.2: blue; 0.4: red; 0.6: black; 0.8: green).

(a) water/PVA general case, (b) case D̂(ϕ) = 1. The circles
are simple estimates of the onset of the falling rate period as-
suming constant D(ϕ) and v = 1−ae at early time scales, see
text and appendix C for details. The insets display the same
data in a log-log plot. The black lines show the behaviors
v ∼ 1/

√
t.

totic regime, the log-log plot in Fig. 7(a) helps to reveal
that the evaporation rate decreases as

v ' α√
t
, (28)

as also reported by Roger et al. for water/surfactant
solutions, in an experimental configuration close to the
one studied here [14].
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FIG. 8. Prefactor α vs. ambient humidities ae. α is esti-
mated from the evaporation rate in the asymptotic regime
using Eq. (28), i.e. v ' α/

√
t; ◦: water/PVA case, �:

case D̂(ϕ) = 1. The thin line is the theoretical prediction
Eq. (30). The thick line is the prediction given by Eq. (32)
with ϕc ' 0.48.

Figure 8 displays the prefactor α fitted from the data
v vs. t at long time scales using Eq. (28), and against ae.
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α is extremely insensitive to the variations of ae (varia-
tions below < 0.1% over the range ae = 0–0.9) suggesting
again that humidity does not play any role (at long time
scales) on the evaporation kinetics, even in this time-
dependent configuration. To unveil again the role played
by both the shape of the solvent chemical activity a(ϕ)

and that of the mutual diffusion coefficient D̂(ϕ), we turn

to simple expressions of D̂(ϕ).

B. Role of the activity only: case D̂(ϕ) = 1

To emphasize the role played by the activity only, we
solved Eqs. (11–12) with the boundary and initial condi-

tions (13–15), but assuming D̂(ϕ) = 1.
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FIG. 9. Growing polarization layer: non-constant a(ϕ) and

D̂(ϕ) = 1. (a): ϕ(x) vs. x for several times t = 103; 7.9×103,
6.3×104 and 5×105 (ae = 0.4, ϕ0 = 0.01. The inset displays
the same data rescaled against x/

√
t, ϕ? is given by a(ϕ?) =

0.4. (b) Concentration gradient at the interface −(∂xϕ(x))x=0

vs. t (left axis), and concentration at the interface ϕi vs. t
(right axis)

Figure 9 shows some concentration profiles ϕ(x) for
ae = 0.4 and ϕ0 = 0.01 at different times. As for the pre-
vious case, the concentration at the tip increases asymp-
totically towards ϕ? given by a(ϕ?) = ae, and the solute
gradient then widens over time. However, these profiles
differ significantly from those reported in Fig. 6, as the
concentration gradients at x = 0 remain moderate. For
t > 1000, concentration profiles almost collapse over the
whole x range onto a single curve when plotted against
x/
√
t.

Figure 7(b) shows the calculated evaporation rates for
different ambient humidities ae. At long time scales, all
the dynamics seem to collapse on a single curve in this
log-log plot. Again, the evaporation rate decreases over
time and follows Eq. (28) apparently regardless of the
humidity. Figure 8 however reports the fitted α values
against the humidity ae. α decreases slightly of ' 10%
over the range ae = 0–0.8.

In appendix C, we provide analytical estimates of the
onset tc of the falling rate period using simple arguments

assuming D̂(ϕ) = 1. These calculations yield

tc =
ϕ? − ϕ0

(1− ae)2ϕ0
, (29)

plotted together with the evaporation rates as a function
of time in Fig. 7(a) and (b) (circles). This comparison
helps us to reveal that these simple calculations yield
correct estimates of the transition between the constant
and the falling rate periods in the case D̂(ϕ) = 1, but that
the decrease of the evaporation rate occurs slightly earlier
in the case of a non-constant D̂(ϕ). This suggests that
the mutual diffusion coefficient plays a role in shifting
slightly the onset of the falling rate period.

To account for the results displayed in Fig. 8, we look
for an analytical solution in this long-time scales regime,
after replacing the boundary condition (12) by ϕi = ϕ?,
as already done in section III B for the steady prob-
lem. The derivation of a self-similar solution based on
the variable u(x, t) = x/2

√
t is detailed in appendix D.

Equation (D9) gives the concentration profiles, classically
expressed with erf functions. With the approximation
ϕ0 � 1, the evaporation rate reads

v ' α√
t

=

√
ϕ?

2ϕ0t
. (30)

which fits correctly the values from the numerical solu-
tions (see the thin line in Fig. 8).

Remarkably enough, applying a first order series ex-
pansion to the exact solution (D9) at u(x, t)→ 0 yields:

ϕ(x, t) = ϕ0 + (ϕ? − ϕ0) exp [−v(t)x] , (31)

which is very similar to the steady problem solution
(21). This shows that the humidity insensitive regime
is mainly driven by a balance between advection and dif-
fusion (RHS terms of Eq. (11)), as for the steady polar-
ization layer, see Sec. III.

As for the steady polarization layer (Sec. III), the small
decrease of the evaporation kinetics with the increasing
humidity (α term in Eq. (30)) is only due to the abrupt
variation of the chemical activity at high solute concen-
tration. Note also that the sensitivity to humidity is
weaker in the time-dependent case as v ∝ √ϕ?, whereas
v ∝ ϕ? in the steady case. This leads for instance to
variations of α of ' 10% only over the humidity range
ae = 0–0.8, without any variation of the mutual diffu-
sion coefficient. Note again that sharper decrease of the
chemical activity with ϕ would have thus produced more
constant evaporation kinetics regardless of ae. Neverthe-
less, the results displayed in Fig. 8 suggest again that the
decrease of the mutual diffusion coefficient at high con-
centration plays a major role to explain why the evapo-
ration dynamics are almost independent of ae.

C. Role of the mutual diffusion coefficient:
non-constant a(ϕ) and piecewise constant D̂(ϕ)

We looked for a self-similar solution of Eqs. (11,13–15)

with the simplified model of D̂(ϕ) (23) and the bound-
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ary condition ϕi = ϕ?. The derivation is detailed in
appendix D. With the assumptions ϕ0 � 1 and d � 1,
the evaporation rate reads:

v '
√

ϕc
2ϕ0t

. (32)

This simple prediction looks like Eq. (30) with the sub-
stitution ϕ? → ϕc. Figure 8 compares this theoretical
prediction with the numerical results, using the value
ϕc ' 0.48 derived from the steady polarization layer in-
vestigated in Sec. III C, and demonstrates that the agree-
ment is very good.

The evaporation rate Eq. (32) corresponds to the solu-
tion of a diffusion problem with a constant diffusivity and
the concentration ϕc imposed at the drying interface. As
for the steady polarization layer, the major part of the
liquid phase is shielded from the gas phase by a thin layer
of liquid with a large concentration gradient. We there-
fore conclude that the same mechanisms are acting in
both steady and growing polarization layer.

V. CONCLUSIONS AND DISCUSSIONS

In the present paper, we have investigated theoretically
the one-dimensional water transport induced by evapo-
ration from a molecular mixture. At long time scales,
solute concentration at the drying interface tends to its
equilibrium value, i.e. ϕi → ϕ?, and the evaporation
driving force asymptotically drops to zero. In this regime,
evaporation rates are small and the overall water trans-
port is mainly dominated by diffusion within the liquid
phase, as already known. In this paper we show that,
for some complex fluids, evaporation rates are humidity-
insensitive in a wide range of humidity, unlike expected.

This result comes from two superimposed effects.
First, the sharp decrease of the water chemical activ-
ity at high concentrations (as observed for instance for
polymer solutions) leads to small variations of ϕ? along
with ae, and thus to small variations of the corresponding
evaporation rate. This feature is specific to the case of
molecular mixtures only, and we do not expect similar ob-
servations for colloidal dispersions for instance. Indeed,
uni-directional drying of dispersions may also induce the
formation of (porous) non-volatile aggregates at the dry-
ing interface, but they do not not in turn affect the chem-
ical activity of the solvent, and hence evaporation rates,
see e.g. [29–31]. In the case of molecular binary mix-
tures, the decrease of the mutual diffusion coefficient of
the mixture at high concentration is key to explain why
evaporation rates are remarkably independent of ae over
a wide humidity range, see for instance Fig. 8. The basic
mechanism is the following. The strong decrease of D(ϕ)
induces a steep concentration gradient at the drying in-
terface. The concentration profile thus reaches values for
which the mutual diffusion becomes again close to D0, at
positions x close to the drying interface (ϕ = ϕc at x = xc

in our model with a piecewise constant D̂(ϕ)). The re-
maining part of the profile, which contributes mainly to
the value of the evaporation rate, is therefore shielded
from the humidity variations which only play a role on
this thin layer. This is the key interpretation provided
by Roger et al. in the context of water transport through
self-assembled concentrated phases to explain why evap-
oration rates are insensitive to ae [14]. Surprisingly, de-
spite (i) an extensive survey of the abundant literature
concerning notably the drying of polymeric films, and (ii)
the simplicity of the above theoretical description, such a
regime has never been discussed theoretically to the best
of our knowledge.

Note that Roger et al. used the concept of permeability
instead of mutual diffusion to interpret their result. Mu-
tual diffusion actually results from an interplay between a
thermodynamic factor taking into account the variation
of the chemical activity along with the concentration,
and a mobility factor related to the relative transport so-
lutes/solvent [32]. In the context of molecular mixtures,
D(ϕ) is often written as:

D(ϕ) = −M(ϕ)
∂ ln a(ϕ)

∂ϕ
, (33)

where M(ϕ) is a mobility factor, which takes for instance
the following form in the field of colloidal dispersions:

M(ϕ) = −ϕk
η

kBT

vm
, (34)

where k is the water permeability through the colloidal
dispersion, η the water viscosity, T the absolute tem-
perature, and vm the molecular volume of water, see
e.g. Ref. [33]. For self-assembled phases of surfactants,
permeability (or equivalently the mobility factor) may
decrease strongly within a phase owing to its specific tex-
ture [34]. This may thus lead to the conclusion that the
humidity-insensitive evaporation-driven water transport
is related to self-assembly. However, we showed in the
present work that such a regime is also expected for any
binary mixture, independently of any phase transition,
when its mutual diffusion coefficient decreases at high
concentration. Note finally that the decrease of D(ϕ)
may not be extremely strong, as a sharp decrease of the
water chemical activity also contributes significantly to
this effect.

In the model investigated above, we have assumed lo-
cal thermodynamic equilibrium conditions. Our model
may thus apply to a wide range of experimental situ-
ations including for instance the drying of polymer so-
lutions when no evaporation-induced glass transition oc-
curs, or water transport through self-assembled phases of
surfactants (without including the nucleation and growth
steps of the latter). However our model, and particu-
larly the steady configuration shown in Fig. 2(b), may
also apply to some extent to the description of one di-
mensional drying-induced water transport through cross-
linked dilute hydrogels. One can indeed derive similar
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equations providing elastic contributions to the water
chemical activity and to the mutual diffusion coefficient
are negligible, disregarding non-Fickian mass transport,
and taking into account properly the one dimensional
swelling of the network, see for instance Ref. [19], and
also Refs. [11, 12, 35] for some investigations of the gen-
eral case. We hope in a near future to investigate such
an issue in more details, and particularly the role of the
humidity. For non-negligible elastic contributions for in-
stance, the phenomenology described above, particularly
in Fig. 2, may not apply, as elastic effects may induce
the growth of a (permeable) gel phase at a critical con-
centration [11, 12]. We hope as a research perspective
to evaluate the significance of these elastic effects with
respect to the mechanisms unveiled above. Such exper-
imental cases may indeed be relevant for a wide range
of experimental situations including for instance drying-
induced water transport through biomaterials or through
soft contact lenses [20].

Appendix A: Unidirectional drying vs. thick film
drying

We consider the 1D drying of a motionless thick liquid
film. The liquid gas interface initially stands at height
Y = 0, then decreases due to the volume loss induced by
evaporation, see Fig. 10. The solvent global mass balance
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FIG. 10. Schematic view of the drying of a quiescent thick
film.

reads:

dYi
dT

= J(a(ϕi)− ae) , (A1)

where Yi is the interface position, and ϕi the solute con-
centration at the interface. Within the volume, the solute
volume fraction verifies:

∂Tϕ = ∂Y (D(ϕ)∂Y ϕ) for Y > Yi . (A2)

We use the dimensionless units defined in Eq. (10) to get
the following equations:

dyi
dt

= a(ϕi)− ae , (A3)

∂tϕ = ∂y(D̂(ϕ)∂yϕ) for y > yi . (A4)

Considering the motion of the liquid-gas interface at a
velocity dyi/dt, the non-volatility of the solute results
in:

ϕi
dyi
dt

+ (D̂(ϕ)∂yϕ)y=yi = 0 . (A5)

Assuming that the liquid film is thick enough to be
considered as a semi-infinite medium yields the second
boundary condition:

ϕ(y →∞, t) = ϕ0. (A6)

The initial condition is:

ϕ(y, t = 0) = ϕ0 for y > 0. (A7)

One recovers strictly Eqs. (11–15) from the above model
describing the drying of a quiescent thick film by using
the change of variable:

x = y(x, t)− yi(t) , (A8)

and with the relation v = dyi/dt. These two problems
are thus strictly equivalent.

Appendix B: Numerical resolution of Eq. (19)

Our aim is to compute the solution of Eq. (19) for a
fixed ψ value given by Eq. (20), and with v given by
Eq. (12). We proceeded as follows. We used the solver
ode113 (Matlab) to compute the solutions of the first
order ordinary differential equation Eq. (19) for a given
humidity ae, and for many different boundary conditions
ϕ(x = 0) increasing in a logarithmic way from ϕj=1 =
ϕ? − 0.5 to ϕj=N = ϕ? − ε with ε = 10−5 and N = 100
typically. To describe correctly the strong concentration
gradient at the interface, each solution is calculated on a
logarithmic x scale.

For each solution with boundary condition ϕ(x = 0) =
ϕj , we then calculate the total amount of solute ψj us-
ing Eq. (20). The relation ψj vs. ϕj allows us to esti-
mate precisely using a linear interpolation, the boundary
condition ϕ(x = 0) which leads to a given ψ value, e.g.
ψ = 15 for the cases shown in Fig. 4.

Appendix C: Simple estimates of the onset of the
falling rate period

Our first aim is to derive an analytical approximation,
at early time scales, of the solutions of Eqs. (11-12) with
boundary conditions given by Eqs. (13-14) and initial
condition Eq. (15).

At early stages, concentration profiles follow ϕ(x, t)�
ϕ?, a(ϕ) ' 1, D̂(ϕ) ' 1, and the evaporation rate given
by Eq. (12) is nearly constant, v ' 1 − ae. The 1D
transport equation Eq. (11) can be thus written as

∂tϕ = −∂xj , (C1)
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with the non-dimensionalized solute flux j = −(1−ae)ϕ−
∂xϕx. Using Eq. (C1), it is straightforward to demon-
strate that the flux follows in turn

∂tj = (1− ae)∂xj + ∂2xj . (C2)

After a transient, the concentration process tends to
an asymptotic regime for which the flux is stationary
∂tj = 0, still assuming a dilute solution ϕ(x, t) � ϕ?.
This steady flux can be estimated using Eq. (C2) and
the boundary conditions Eqs. (13-14) which simply read
j(x = 0) = 0 and j(x� 1) = −ϕ0(1−ae), leading finally
to

j(x) = −ϕ0(1− ae) (1− exp [−(1− ae)x]) . (C3)

In this asymptotic regime, the rate of concentration
given by Eq. (C1) follows approximatively

∂tϕ ' ϕ0(1− ae)2 exp (−(1− ae)x) , (C4)

and the concentration profiles are thus well-
approximated by

ϕ(x, t) ' ϕ0 + t ϕ0(1− ae)2 exp (−(1− ae)x) , (C5)

using the initial condition Eq. (15). The onset of the
falling rate period can be estimated by ϕ(x = 0, tc) = ϕ?

using the previous relation, leading to:

tc =
ϕ? − ϕ0

(1− ae)2ϕ0
, (C6)

see the circles shown in Fig. 7.

Appendix D: Self-similar solutions

We use the model of evaporation from a thick film de-
scribed in apprendix A to find a self-similar solution in
the long-time scale regime. Eq. (A3) is replaced by the
following Dirichlet boundary condition:

ϕ(yi, t) = ϕ? , (D1)

where ϕ? is a constant given by a(ϕ?) = ae. This is fully
justified as dyi/dt→ 0 in the long time scale regime (see
Eq. A3). Equations (A4–A6) and (D1) are rewritten as-
suming that the solute volume fraction ϕ(y, t) depends
on a single variable ũ(y, t). As done classically for dif-
fusion problems, we choose ũ(y, t) = y/(2

√
t) [36]. The

partial derivatives equation (A4) turns to the ordinary
differential equation:

d

dũ

[
D̂(ϕ)

dϕ

dũ

]
+ 2ũ

dϕ

dũ
= 0 for ũ > ũi (D2)

where ũi = yi//(2
√
t). Equations (A6) and (A7) collapse

onto a single boundary condition:

ϕ(ũ→∞) = ϕ0. (D3)

The Dirichlet condition (D1) now reads:

ϕ(ũi) = ϕ? . (D4)

As ϕ? is a constant, a necessary condition for the self-
similar solution to exist is ũi = α where α is a constant to
be determined. Immediate consequences of this condition
are:

yi = 2α
√
t and

dyi
dt

=
α√
t
. (D5)

The boundary condition Eq. (A5) along with Eq. (D5)
yields:

2αϕi + D̂(ϕi)
dϕ

dũ
(ũ = α) = 0 , (D6)

whose unknown is α. The self-similar solution exists if
Eq. (D6) has a solution.

1. Constant mutual diffusion coefficient D̂(ϕ) = 1

We solve Eqs. (D2–D4, D6) to find:

ϕ(ũ) = ϕ0 + (ϕ? − ϕ0)
erfc(ũ)

erfc(α)
. (D7)

Injecting Eq. (D7) into (D6) yields:

ϕ? − ϕ0

ϕ?
=
√
π α erfc(α) exp(α2) , (D8)

hence leading to α.
To recover the solution for the problem of unidirec-

tional drying, we now use the change of variable (A8)
and we define u(x, t) = x/(2

√
t). The self-similar solu-

tion is now:

ϕ(u) = ϕ0 + (ϕ? − ϕ0)
erfc(u+ α)

erfc(α)
, (D9)

and Eq. (D8) is unchanged. With the assumption ϕ0 �
ϕ?, a simple approximate solution of Eq. (D8) is obtained
by a second order series expansion of erfc at α→∞. We
get:

α '
√

ϕ?

2ϕ0
, (D10)

where the evaporation rate follows:

v =

√
ϕ?

2ϕ0t
. (D11)

2. Piecewise constant mutual diffusion coefficient
D̂(ϕ)

We consider now a piecewise constant diffusion coef-
ficient, falling from 1 to a constant value d at a solute
volume fraction ϕc, see Eq. (23) and Fig. 3(b). We define
yc the abscissa such that ϕ(yc, t) = ϕc. With the change
of variable ũ(y, t) = y/(2

√
t), the solute volume fraction

ϕ(ũ) verifies Eq. (D2) with D̂(ϕ) = d for ũi < ũ < ũc,

and D̂(ϕ) = 1 for ũc < ũ, where ũi = yi/(2
√
t) and
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ũc = yc/(2
√
t). The existence of a self-similar solution re-

quires yi = 2α
√
t and yc = 2β

√
t, where α and β are two

constants to be determined. Boundary conditions (D3–
D4) are supplemented with flux conservation equations
at ũ = ũi = α and ũ = ũc = β:

2αϕ∗ + d
dϕ

dũ
(ũ = α) = 0, (D12)

d
dϕ

dũ
(ũ = β−) =

dϕ

dũ
(ũ = β+). (D13)

The solution is

ϕ(ũ) = (ϕ∗ − ϕc)
erfc( ũ√

d
)− erfc( α√

d
)

erfc( α√
d
)− erfc( β√

d
)

+ ϕ∗ , (D14)

for ũi < ũ < ũc, and

ϕ(ũ) = (ϕc − ϕ0)
erfc(ũ)

erfc(β)
+ ϕ0 , (D15)

for ũc < ũ. Injecting Eqs. (D14–D15) in Eqs. (D12–D13)
provides two equations to be solved to get α and β:√

π

d

[
erfc(

α√
d

)− erfc(
β√
d

)

]
exp(

α2

d
)α =

ϕ∗ − ϕc
ϕ∗

,

(D16)[
erfc( α√

d
)− erfc( β√

d
)
]

exp(β
2

d )

erfc(β)
√
d exp (β2)

=
ϕ∗ − ϕc
ϕc − ϕ0

. (D17)

Eqs. (D16–D17) can be solved numerically. However,
we are particularly interested in the asymptotic case d→
0, for which an analytical solution can be found. With
the approximation erfc(z → ∞) ' exp(−z2)/(

√
πz),

Eqs. (D16–D17) turn to:

α

β
exp

(
α2 − β2

d

)
=
ϕc
ϕ∗

, (D18)

√
πβ erfc (β) exp (β2)

exp
(
β2−α2

d

)
β
α − 1

=
ϕc − ϕ0

ϕ∗ − ϕc
. (D19)

Because Eqs. (D18–D19) require non zeros left hand sides
to be satisfied, d → 0 implies β → α. Using Eq. (D18)
to eliminate α in Eq. (D19) yields:

√
π β erfc (β) exp (β2) =

ϕc − ϕ0

ϕc
. (D20)

By analogy with Eq. (D8), and considering the assump-
tion ϕ0 � ϕc, we get finally:

α ' β '
√

ϕc
2ϕ0

. (D21)
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