
HAL Id: hal-01653480
https://hal.science/hal-01653480

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable Neighborhood Descent with Iterated Local
Search for Routing and Wavelength Assignment

Alexandre Martins, Christophe Duhamel, Philippe Mahey, Rodney R
Saldanha, Mauricio C de Souza

To cite this version:
Alexandre Martins, Christophe Duhamel, Philippe Mahey, Rodney R Saldanha, Mauricio C de Souza.
Variable Neighborhood Descent with Iterated Local Search for Routing and Wavelength Assignment.
Computers and Operations Research, 2012, �10.1016/j.cor.2011.10.022�. �hal-01653480�

https://hal.science/hal-01653480
https://hal.archives-ouvertes.fr


Variable Neighborhood Descent with Iterated Local

Search for Routing and Wavelength Assignment

Alexandre X. Martins∗ Christophe Duhamel† Philippe Mahey‡

Rodney R. Saldanha§ Mauricio C. de Souza¶‖

October 27, 2011

Abstract

In this work we treat the Routing and Wavelength Assignment (RWA) with fo-

cus on minimizing the number of wavelengths to route demand requests. Lightpaths

are used to carry the traffic optically between origin-destination pairs. The RWA is

subjected to wavelength continuity constraints, and a particular wavelength cannot

be assigned to two different lightpaths sharing a common physical link. We develop

a Variable Neighborhood Descent (VND) with Iterated Local Search (ILS) for the

problem. In a VND phase we try to rearrange requests between subgraphs associ-

ated to subsets of a partition of the set of lightpath requests. In a feasible solution,

lightpaths belonging to a subset can be routed with the same wavelength. Thus, the

purpose is to eliminate one subset of the partition. When VND fails, we perform

a ILS phase to disturb the requests distribution among the subsets of the partition.

An iteration of the algorithm alternates between a VND phase and a ILS phase. We
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report computational experiments that show VND-ILS was able to improve results

upon powerful methods proposed in the literature.

Keywords : Routing and assignment; Network design; Variable neighborhood de-

scent; Local search

1 Introduction

Optical networks with wavelength division multiplexing (WDM) provide users with

very large bandwidths. In all-optical networks a traffic demand is carried from source

to destination through a lightpath, which is a sequence of fiber links carrying the

traffic optically from end to end [5]. The wavelength continuity constraint implies

that to a given lightpath a single wavelength must be assigned, i.e., a particular

wavelength must be reserved to travel with the traffic on each link the lightpath

traverses. Moreover, a particular wavelength cannot be assigned to two different

lightpaths sharing a common physical link.

The Routing and Wavelength Assignment (RWA) problem deals with the routing

and the assignment of wavelengths to lightpath requests between pairs of nodes. Given

a set of lightpath requests, two variants of the RWA problem have been studied in the

literature: max-RWA and min-RWA. In the former, the objective is to maximize the

number lightpath requests that can be routed with a fixed number of wavelengths.

In the latter, the objective is to minimize the number of wavelengths to route all the

requests.

In this paper, we develop a Variable Neighborhood Descent (VND) with an Iterated

Local Search (ILS) based perturbation for the min-RWA. Let G = (V, E) be a digraph

where V is the set of nodes and E is the set of bidirectional arcs. We denote by Γ the

set of lightpath requests where each r ∈ Γ is defined by an origin and destination pair

(sr, dr) ∈ V × V . Note that we can have two different requests with the same origin-

destination pair and in this case if they are to be routed with the same wavelength,

then they have to be routed through two arc disjoint paths in G. The problem is

to find a minimal partition of Γ in W subsets such that the requests in each Γw,

w = 1, . . . , W , can be routed through arc disjoint paths in G.

The paper is structured as follows. In the next section we discuss related works

in the literature. In Section 3 we describe the VND-ILS heuristic for the min-RWA.

Then, in Section 4 we report numerical results on some hardest benchmark instances

from the literature. We end with concluding remarks and extensions for future work.
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2 Related works

Chlamtac et al. [4] have shown that the RWA problem is NP-Complete, and proposed,

to our knowledge, the first greedy heuristics for the problem. Dutta and Rouskas [5]

and Zang et al. [26] reviewed the literature on the RWA problem covering different

approaches and variants developed in the 90’s. For instance, Ramaswami and Sivara-

jan [23] derived upper bounds on the number of lightpath requests that can be routed,

while in [24] they proposed to minimize the network congestion subjected to average

delay constraints. Banerjee and Mukherjee [3] partitioned large RWA problems into

several smaller subproblems to be solved independently and efficiently. Mukherjee et

al. [19] proposed to alternate two phases: simulated annealing to construct a topology,

and flow deviation to route the traffic. See also Kennington et al. [12] for the RWA

problem in survivable WDM networks.

Mathematical formulations have been developed for the RWA problem, with par-

ticular emphasis on path-based ones. Ramaswami and Sivarajan [23] first modeled the

RWA problem using a path-based formulation. Krishnaswamy and Sivarajan [13, 14]

presented a mixed integer linear formulation which takes into account the maximum

number of hops, among other logical and physical constraints, to minimize congestion.

The authors developed heuristics based on rounding the solutions obtained by solving

the respective LP-relaxation. Lee et al. [15] proposed a column generation algorithm

to deal with the exponential number of variables associated to potential feasible paths.

Jaumard et al. [9, 10], in comprehensive surveys, reviewed existing column generation

formulations and proposed new ones. In particular, Jaumard et al. [11] developed

improvements to make column generation methods efficient on the RWA problem. In

their work, several instances were solved to optimality for the first time.

Some studies and tests have been done in order to design new or improved heuris-

tics. The heuristics described below were developed for the min-RWA version of the

problem. Manohar et el. [17] presented a greedy algorithm to do a partition of light-

path requests into subsets, each of which associated to a wavelength. Their algorithm

explores techniques employed to solve the maximum edge disjoint paths problem.

Noronha and Ribeiro [22] used a decomposition scheme in two distinct phases. In the

first phase, a number of alternative routes are computed for each lightpath request.

A conflict graph is built to exploit efficient heuristics for coloring problems. A route

computed generates a node in the conflict graph, and an edge is set up between two

nodes whose routes share a common link in the original graph. The set of nodes of

the conflict graph is partitioned such that each subset contains the routes computed

for a given lightpath request. Noronha and Ribeiro [22] proposed a tabu search for

the partition coloring problem which is applied, in the second phase, over the conflict

graph to assign wavelengths to routes.
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Skorin-Kapov [25] adapted ideas from bin packing heuristics to the min-RWA. For

such purpose, she considered lightpath requests as items, and copies of the original

graph as bins. The equivalent for the weight of an item is the number of links to

route a lightpath. To say that a bin has not enough capacity to accommodate two

items is equivalent to not being able to route two lightpath requests on a copy of the

original graph without sharing a link. According to the bin packing analogy Skorin-

Kapov [25] proposed four variants of best fit and first fit heuristics. In the numerical

results reported in [25] the best fit decreasing (BFD) was the most successful among

them. Noronha et al. [20] improved performance of best fit and first fit heuristics. To

do this, the authors worked on data structures and implementation strategies, such as

double linked adjacency lists and dynamically updating of shortest paths. Noronha

et al. [20] introduced a broader set of testbed instances, and maximum running times

were reduced to one quarter of those with a standard implementation of BFD (which

was confirmed as the heuristic to perform best).

More recently, Noronha et al. [21] embedded BFD into a biased random-key ge-

netic algorithm. The chromosomes are vectors of real numbers, denoted keys, in the

interval [0,1]. The keys are used to bias a decoding heuristic in generating a feasible

solution. Actually, each key is associated with a lightpath. Lightpaths are sorted in

non-increasing order of the sum of their lengths and keys, and then BFD is applied.

Computational experiments were conducted on the most studied instances and as well

on the new benchmark ones introduced in [20]. The genetic algorithm improved upon

results from heuristics previously proposed in the literature. Noronha et al. [21] re-

ported that it reached solutions better than or similar to those found by a multistart

variant of BFD in 23% less time on average, and reduced on average to half gaps

provided by the decomposition scheme proposed in [22].

3 VND-ILS heuristic for the min-RWA

A feasible solution is characterized by a partition of Γ in W subsets along with arcs

disjoints paths to route requests belonging to each Γw, w = 1, . . . , W , in G. Let us

define by Fr ⊆ E the arcs of the path used to route a request r ∈ Γ in G. Each

Γw ⊆ Γ induces a subgraph Gw = (V, Ew) of G where Ew = E − ∪r∈Γw
Fr. In other

words, Gw contains the arcs not used to route requests belonging to Γw.

Given a feasible solution, in a VND phase we employ three kinds of moves trying

to rearrange requests between the subgraphs associated to subsets of the partition

in attempt to eliminate one of them. When VND fails, we perform a ILS-based

perturbation phase to disturb the requests distribution among the subsets of the

partition. Thus, an iteration of the algorithm alternates between a VND phase and a
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ILS-based perturbation phase.

3.1 VND phase

VND is a search heuristic proposed by Mladenović and Hansen [18] within the frame-

work of variable neighborhood search methods, see Hansen et al. [6, 7, 8]. The VND

works with kmax neighborhood structures Nk, k = 1, . . . , kmax, designed for a specific

problem. It starts with a given feasible solution as incumbent and sets k = 1. If

an improvement is obtained within neighborhood Nk, the method updates the new

incumbent and sets k = 1. Otherwise, it increases the value of k and the next neigh-

borhood is considered. The method stops when a local optimum for Nkmax
is found.

We propose a VND algorithm with kmax = 3. Let Γw̄ be a subset contained in

the partition characterizing a feasible solution. We consider two alternatives to chose

Γw̄. In the first alternative, denoted by VNDr, Γw̄ is the subset of the partition with

the least number of requests, i.e., w̄ = arg min{|Γw| : w = 1, . . . , W}. The idea is

that it might be easier to empty by reallocating requests a set with a few of them. In

the second one, denoted by VNDe, Γw̄ is the subset whose induced graph Gw̄ has the

greatest number of arcs, i.e., w̄ = arg max{|Ew| : w = 1, . . . , W}. If a fewer number

of arcs were used to route requests belonging to Γw̄ then it might be possible to find

paths to route them in the subgraphs induced by the other sets of the partition. In

both alternatives, the requests belonging to Γw̄ form a list Lw̄. The VND traverses

Lw̄ and tries with each request r to perform moves within neighborhoods N1, N2, N3

until it either succeeds to reallocate all requests belonging to Γw̄ or fails to reallocate

a request within N3. In the former case, VND has emptied subset Γw̄ of the partition,

and consequently reduced the number of wavelengths to be used. In the latter case,

the ILS-based perturbation phase is called. We remark that an improving move, if it

happens, occurs only when the last remaining request of Γw̄ is reallocated to another

subset, while for |Γw̄| ≥ 2 performing a move does not reduce the objective function’s

value. When VND succeeds to empty Γw̄, we update the remaining subsets of the

partition with respect to the criteria to select the next subset to which VND is to be

applied, according to the alternatives VNDr or VNDe.

Suppose, traversing Lw̄, the search is to consider a request r. A move in the first

neighborhood N1 tries to reallocate r to another subset of Γ. If the neighborhood N1

is not empty with respect to a partition and a request, then there exists Γw′ ⊂ Γ,

w′ 6= w̄, whose induced graph Gw′ has a path between sr and dr (the request’s origin

and destination pair). In this case the search within N1 stops when the first graph

Gw′ to accommodate r is found, and r is transferred from Γw̄ to Γw′ . The search

then continues to the next request in Lw̄, or reduces a wavelength if r was the last

of Lw̄. The list Lw̄ is sorted in non-increasing order of shortest path lengths in G
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between origin and destination nodes. The motivation behind is to try to route in the

subgraphs induced by the other sets first the requests using more arcs, and leave the

requests using fewer arcs to try after since when a path is found to route a request in

a subgraph its arcs are removed. If N1 is empty, VND proceeds to neighborhood N2

with the same request r under analysis.

The rationale in the second neighborhood is try first to make room for r in a graph

Gw′ by transferring as many requests as possible from Γw′ to other subsets of Γ not

equal to Γw̄. This is done analogously to the search in neighborhood N1, i.e., we

traverse Lw′ and try, for each request, to find a subset Γŵ, ŵ 6= w′ and ŵ 6= w̄, such

there is a path to route the request in Gŵ. If we are able to unload at least one request

from Γw′ , then we can try to allocate r to it. Upon success, the search resumes from

the next request in Lw̄, if any, within neighborhood N1. Otherwise, VND proceeds

to neighborhood N3 still with the same request r under analysis. Assume that the

subsets of the partition were built in a given order, w = 1, . . . , W . At each new search

within N2 we take only one subset of the partition, according to the order, to try to

make room for r in it. That is, if we fail, during a search within N2, to make room

in a graph Gw′ for request r, we do not try to perform a move considering another

graph but proceeds to neighborhood N3. Then, the next time we proceed to N2 the

graph to be considered will be Gw′+1 (assuming w̄ 6= w′ + 1).

A move in neighborhood N3 seeks to swap request r with another request belonging

to a subset of Γ different from Γw̄. Given a request u, let minspl(u) be the number of

arcs of the shortest path between su and du in G. The search considers requests with

minspl smaller than minspl(r), sorted in non-decreasing order of minspl. The choice

to consider only requests whose shortest paths in G have fewer arcs than r carries the

idea that it might be easier to route such a request in other subgraphs of the partition

when the search resumes from N1. Thus, if a request r′ ∈ Γw′ , such that r can be

routed in the subgraph induced in G by Γw′ − {r′}, and r′ in the one by Γw̄ − {r},

is found, then a swap between r and r′ is performed. After a successful move in N3

we have r′ ∈ Γw̄ and r ∈ Γw′ . In this case, the search resumes by trying to transfer

r′ from Γw̄ to another subset of the partition with a move in N1. Note that a move

in N3 does not reduce |Γw̄|, but since it swaps r with r′, and minspl(r
′) < minspl(r),

it may allow a reallocation of r′ with a move in N1 in the sequel. If it is not possible

within N3 to swap r with any other request having a smaller minspl, the search calls

a ILS-based perturbation phase. This means that VND failed to empty Γw̄, and it

is not subsequently applied to another subset of the partition. Instead, a ILS-based

perturbation phase is applied to disturb the current solution before another trial of

VND.

Figure 1 illustrates searching moves within each neighborhood of VND. The idea

in part 1(a) is to move request r from Γw̄ to a different subset Γi, i = 1, . . . , W , i 6= w̄,
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as long as r can be routed in Gi. Part 1(b) shows the attempt to accommodate r in

Γw′ by reallocating as much requests from Γw′ as possible. Part 1(c) represents swap

moves.
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Figure 1: Searching moves within neighborhoods N1, N2, and N3 of VND.

3.2 ILS-based perturbation phase

ILS employs perturbation techniques to escape from a current local optima. Let s∗

be a current solution, and let initially s be equal to s∗, then ILS’s iterative step has

three components: (i) a local search applied to s generating s′; (ii) an acceptance

criterion to either update s∗ to s′ or not; and (iii) a perturbation technique applied to

s∗ generating a new solution s. The overall best solution is returned after a number

of iterations. The reader is referred to Lourenço et al. [16] for a broader discussion on

ILS features.

We exploit the idea of applying a perturbation technique, in the manner of ILS,

after a solution had been obtained by the VND. Suppose the perturbation is applied

when VND failed to swap a request r ∈ Γw̄ within N3. Note that at this point VND

might have successfully performed moves when traversing the requests’ list Lw̄. We do

not undo these moves and consequently, when perturbation is applied, the subsets of

Γ characterizing the partition may have other elements than those at the beginning of

the iteration. The perturbation relies upon an assignment problem built to rearrange

requests among the subsets partitioning Γ − Γw̄. We pull out a randomly chosen

request ri from each subset Γi, Γi ⊆ Γ−Γw̄, of the partition. Let Ga
i = (V, Ea

i ) be the

subgraph of G where Ea
i = Ei ∪ Fri

(the arcs used to route request ri are reactivated

in Ga
i ). The perturbation is done by finding the best way to assign W − 1 requests

chosen to W − 1 subsets partitioning Γ−Γw̄. The cost of assigning request ri ∈ Γi to

subset Γj is given as follows:

• crij = 2, if j = i;
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• crij = ∞, if there is no path to route request ri in the graph Ga
j ;

• crij = 1 −
minspl(ri)

minspl(ri)(Ga
j ) − max(minspl(ri)(G

a
i ) − minspl(ri)(G

a
j ), 0), otherwise;

where minspl(ri)(G
′) is the number of arcs of the shortest path between sri

and dri
in

graph G′ (we remember that minspl(ri) is the number of arcs of the shortest path in

the original graph G). The assignment problem results in a feasible partition of Γ−Γw̄

because a solution that returns each ri to its original subset Γi is always feasible and

possess a cost of 2(W − 1), which is smaller than the cost of any solution that assigns

a request ri to a subset Γj where there is no path to route ri in Ga
j . If the solution

of the assignment problem has cost smaller than 2(W − 1), then at least two requests

were assigned to subsets other than their original ones while preserving feasibility in

terms of arc disjoint paths to route requests of each subset. Thus, after solving the

assignment problem, we check whether the allocation of requests to partition subsets

has changed. If so, the algorithm resumes the VND by trying a move with r ∈ Γw̄

within N1. Otherwise, a perturbation step is done again. Figure 2 shows an example

where Γ is partitioned in five subsets. Suppose VND failed to swap a request r ∈ Γ4

within N3. Then, for each i, i ∈ {1, 2, 3, 5}, a request ri is randomly chosen and the

assignment problem built. Note the graph G4 (w̄ = 4) does not take part on the

assignment.

1G

G

G

a

a

a

r2

G

c

G
a

2

r3

r

4

5

3

r j

5

r1
i

Figure 2: ILS-based perturbation by means of an assignment problem.

We propose two variants for choosing a request ri from subset Γi to build the

assignment problem used to guide the perturbation. In the first one, denoted ILSp, all

requests belonging to Γi have the same probability to be chosen. In the second one,

denoted ILS5p, requests whose paths pass through the origin sri
or the destination dri

of the request r ∈ Γw̄ for which VND failed to perform a move within N3 have higher

probability of being chosen. In fact, if the path used to route request ri ∈ Γi in G has

an outgoing (resp. incoming) arc from sri
(resp. to dri

), then ri has five times more

probability of being chosen.
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4 Computational results

The computational experiments were structured into three comparative settings: com-

parison among combinations of VND-ILS strategies, evaluation of the effectiveness of

the VND-ILS with respect to a multistart heuristic and robustness to initial solution,

and comparison with the strongest metaheuristic in the literature. For such purpose,

we used benchmark instances from the literature - the most studied realistic instances,

and sets Y and Z introduced by Noronha et al. [20]. The realistic instances are avail-

able on the web1 or were provided along with sets Y and Z by Noronha2. Instances Y

and Z are the most difficult ones. Set Y is formed by randomly generated instances

with 100 nodes and different values for the probabilities of a link and a request between

a pair of nodes. Set Z is formed by instances with 100 nodes on a grid embedded on a

torus where each node is connected only to its nearest four nodes, and different values

for the probability of a request between a pair of nodes. Computational experiments

were carried out on a Core 2 Duo with 1.97 GHz and 4 GB of RAM, running MS

Windows XP, and the proposed algorithms were coded on C++.

Table 1 presents average results to decide among VND-ILS alternatives the one

that seems to work better. The first column lists the group of instances. The group

Realistic has 26 instances, and each of the Z and Y groups has 5 and 25 instances,

respectively. Then, for each combination VND-ILS we report average deviation gaps

for 5 runs of the heuristic on each instance, each run limited to 5 minutes. The gaps

are calculated as the difference in percentage between the upper bound UB obtained

by the heuristic and the lower bound LB computed according to Jaumard et al. [9, 11]

and also used in the study conducted by Noronha et al. [20, 21], i.e., (UB-LB)/LB. It

can be seen that if the VND strategy is fixed, ILS5p leads consistently to better results.

It shows that giving more chance, in the ILS-based perturbation, to requests passing

through the origin or destination nodes of the request blocked during the precedent

VND phase is more effective in rearranging wavelengths to another VND trial. The

different VND strategies have similar behavior, with VNDe obtaining slightly better

results. Thus, we present in the sequel results comparing the VNDe-ILS5p with the

powerful methods in the literature.

The second comparison setting aims to see whether VND and ILS are effective

to improve results regarding a multistart variant of what is considered the best con-

structive heuristic in the literature, and on the other hand evaluate the robustness

of the method with respect to initial solution. The initial solution for VNDe-ILS5p

is given by one run of the BFD heuristic proposed by Skorin-Kapov [25]. Thus, we

compare VNDe-ILS5p to a multistart variant of BFD where requests whose shortest

1http://dag.cs.uni-kl.de/research/rwa/
2personal communication
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paths in G have the same length are randomly ordered. We then apply solely VNDe

to the initial solution. Finally, we apply VNDe-ILS5p starting from a different initial

solution which is obtained with the edge disjoint path (EDP) heuristic proposed by

Manohar et al. [17].

Table 2 presents results of the four methods - Multistart-BDF, BFD-VNDe, VNDe-

ILS5p, EDP-VNDe-ILS5p - on a set of realistic instances. For each method we per-

formed again 5 runs on each instance, each of them limited to 5 minutes. The first

column presents the instance’s identification, and from the second to the fourth col-

umn the corresponding number of nodes, number of arcs, and number of lightpath

requests. For the instances marked with (∗) we randomly generated asymmetric re-

quests. Then, in the next columns, we report for each method the minimum number

of wavelengths obtained on 5 runs, that is the best solution found, and the average

gap. The last column presents the lower bounds. It has seen in Table 1 that realistic

instances are easier to solve than the ones in sets Y and Z. Nevertheless, Multistart-

BFD and BFD-VNDe were not able to find optimal solutions for all of them, whereas

VNDe-ILS5p and EDP-VNDe-ILS5p did. We see from Table 2 that BFD-VNDe im-

proved results upon Multistart-BFD reducing the overall average gap from 3.27% to

2.50%, though BFD-VNDe still shows some high average gaps of 20% and 15.37%.

But when ILS5p was coupled, the method VNDe-ILS5p closed all gaps independently

of the initial solution.

Tables 3 to 5 present results on the set Y of instances [20, 21]. These 100 node

instances are characterized by the probabilities that there is a pair of direct arcs be-

tween a pair of nodes, which are 0.03, 0.04, 0.05, and that there is a request between

a pair of nodes, which are 0.2, 0.4, 0.6, 0.8, 1. There are 5 instances for each com-

bination of probabilities. For example, instance y.3.60.4, has probability of 0.03 for

arcs and 0.6 for requests, and it is the 4th instance with this combination. Results are

reported analogously to those in Table 2, and again 5 runs limited to 5 minutes were

performed for each instance. Comparing the four methods, they follow the general

tendency observed in Table 2. The VND solely produces only slightly reductions on

average gaps, and both versions employing ILS-based perturbation lead to significant

smaller gaps than Multistart-BFD. We note that VNDe-ILS5p was able to improve

gaps on all the 42 out of 75 instances for which Multistart-BFD was not able to find

the optimum. Moreover, EDP-VNDe-ILS5p, starting from a different initial solution,

was able to obtain smaller gaps than Multistart-BFD on 35 out of these 42 instances.

The use of BFD as initial solution yields however better results, since for these harder

instances VNDe-ILS5p clearly outperforms EDP-VNDe-ILS5p.

Table 6 presents results on the set Z of instances [20, 21]. These instances have

approximately 100 nodes which are the vertices on grids of dimensions 10×10, 8×13,

6× 7, 5× 20, 4× 25, with probability of 0.2, 0.4, 0.6, 0.8, 1 to have a request between
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a pair of nodes. For example, instance z.8× 13.80, is a 8× 13 grid with probability of

0.8 for requests. Results for 5 runs limited to 5 minutes for each method are reported

in the same manner. Although gaps of 20% are not observed as in some cases of set

Y , these instances seem to be more difficult because Multistart-BFD were not able to

match lower bounds. And in this case VNDe-ILS5p was able to obtain better gaps than

Multistart-BFD for all 25 instances in set Z. Besides, VNDe-ILS5p was able to find

the optimum for 6 instances. As it can be seen from Table 6, the proposed approach of

combining VND and ILS-based strategies is robust. EDP-VNDe-ILS5p, even though

not using BFD to generate initial solutions, found better gaps than Multistart-BFD

for 14 instances.

The third setting is intended to compare VNDe-ILS5p with the genetic algorithm

GA-RWA proposed by Noronha et al. [21] which recently improved the state-of-the-art

algorithms in the literature. Noronha et al. [21] selected a subset of 30 instances as

the hardest ones, and their results showed that GA-RWA was able to improve average

gaps on 29 of them. Table 7 presents a comparison between VNDe-ILS5p and GA-

RWA on these 30 instances. Results of GA-RWA were obtained with a limit of 10

minutes on a Pentium IV with 3.4GHz, and those of VNDe-ILS5p with a limit of 5

minutes as an attempt to take into account the processor difference. The first column

presents the instance. Then, the second and third (resp. the fourth and fifth) columns

present the best solution and the average gap for 5 runs obtained by GA-RWA (resp.

by VNDe-ILS5p). The last column presents the lower bound. Table 7 shows quite

competitive results regarding the state-of-the-art in the literature. VNDe-ILS5p found

better solutions than GA-RWA in 26 out of 30 instances, and equal solutions for the

other 4. Besides, VNDe-ILS5p was able to find 6 optima for instances that were still

open. In terms of time consuming, on average, the time spent on neighborhoods N1

and N2 is about 5%, on neighborhood N3 is about 25%, and the most time consuming

phase is the ILS-based perturbation with 70% of the CPU time.

We now proceed to detailed analysis on the behavior of algorithm VNDe-ILS5p.

The first analysis is an attempt to learn more about the performance of VNDe-ILS5p if

it should run on less time than 5 minutes. For such purpose, we make use of the time-

to-target (TTT) plots proposed by Aiex et al. [1, 2]. The hypothesis behind is that

CPU times fit a two parameter exponential distribution. Thus, for a given problem

instance, TTT plots display on the ordinate axis the probability for the heuristic to

obtain a solution as good as a given target value within a running time in seconds,

shown on the abscissa axis. We had chosen 8 instances from Table 7 to do this. For

each instance we ran VNDe-ILS5p 200 times with different seeds until the algorithm

reaches the target value. Figures 3 to 6 show the TTT plots generated with 4 instances

for which an average gap of 0% is reached - ATT, NSF.12, y.4.20.4, y.5.100.2. For

these instances we set the target value to the optima. On the other hand, Figures 7
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to 10 show the TTT plots generated with the instances for which a high average gap

is observed - y.4.80.1, y.4.100.1, Z.10x10.60, Z.10x10.80. In these cases, we set the

target value to one wavelength less than the best solution found by GA-RWA. TTT

plots indicate that VNDe-ILS5p is likely to obtain high quality solutions in a short

time. As it can be seen, on instances tested, VNDe-ILS5p has high probability to find

very good solutions (optimum or better than the best known) in less than 2 minutes,

except for instance y.5.100.2, for which a little more time is needed.

The second analysis tries to bring some insight on which neighborhood brings the

best gain. We performed experiments with reduced versions of VND using, along with

ILS-based perturbation, neighborhoods N1 and N2 separately and in combination with

N3. Neighborhood N3 is not tested separately since alone it cannot reduce the number

of wavelengths. Table 8 shows numerical results for the reduced versions of VND. The

first column presents the instance. Then, the subsequent pairs of columns present the

best solution and the average gap for each reduced version of VND. As before, it

is reported for each proposed algorithm the results of 5 runs with a time limit of 5

minutes each. The last column presents the lower bound. We remark that although

N3 alone cannot be used to improve solutions, the reduced versions of VND using it

in combination with N1 or N2 lead to the better results. So, a move in neighborhood

N3 is an important instrument to rearrange requests to further improving moves. It

is also worth noting that neighborhood N2 alone is not effective, but in combination

with N3 becomes the most successful reduced version of VND.

5 Conclusions

We propose an algorithm for the RWA problem that alternates between a VND phase

and a ILS-based perturbation phase. In the VND phase we explore three neighbor-

hoods by trying three kinds of moves. The purpose is to reduce one wavelength.

The ILS-based phase is called to introduce a perturbation in the current partition

of the lightpath requests’ set. The perturbation itself does not improve a solution,

but it leaves a rearrangement of lightpaths among subsets of the partition that may

yield further improvements with another trial of VND. Even though better results

were found taking BFD as constructive heuristic, VND-ILS is quite robust with re-

spect to the initial solution and clearly outperforms a multistart variant of BFD.

Computation experiments were conducted on the hardest benchmark instances, and

significant improvements upon better upper bounds from the literature were achieved.

An interesting research direction is to adapt the methods to deal with possibilities of

traffic-grooming.
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[18] N. Mladenović, P. Hansen, “Variable neighbourhood search”, Computers & Op-

erations Research 24 (1997), 1097–1100.

[19] B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles

for designing a wide-area WDM optical network”, IEEE/ACM Transactions on

Networking 4 (1996), 684–696.

[20] T. Noronha, M.G.C. Resende, C.C. Ribeiro, “Efficient implementations of heuris-

tics for routing and wavelength assignment”, In: C.C. McGeoch (Ed.), Proceed-

ings of the 7th International Workshop on Experimental Algorithms, Lecture

Notes in Computer Science 5038 (2008), 169–180.

[21] T. Noronha, M.G.C. Resende, C.C. Ribeiro, “A biased random-key genetic algo-

rithm for routing and wavelength assignment”, Journal of Global Optimization,

DOI 10.1007/s10898-010-9608-7.

[22] T. Noronha, C.C. Ribeiro, “Routing and wavelength assignment by partition

colouring”, European Journal of Operational Research 171 (2006), 797–810.

[23] R. Ramaswami and K.N. Sivarajan, “Routing and wavelength assignment in all-

optical networks”, IEEE/ACM Transactions on Networking 3 (1995), 489–500.

[24] R. Ramaswami and K.N. Sivarajan, “Design of logical topologies for wavelength-

routed optical networks”, IEEE Journal on Selected Areas in Communications

14 (1996), 840–851.

14



[25] N. Skorin-Kapov,“Routing and wavelength assignment in optical networks using

bin packing based algorithms”, European Journal of Operational Research 177

(2007), 1167–1179.

[26] H. Zang, J.P. Jue, and B. Mukherjee, “A review of routing and wavelength

assignment approaches for wavelength-routed optical WDM networks”, Optical

Networks Magazine 1 (2000), 47–60.

Set VNDe-ILSp VNDr-ILSp VNDe-ILS5p VNDr-ILS5p

Realistic 0.00 0.00 0.00 0.00

Z.20 2.72 2.57 2.36 2.39

Z.40 3.27 3.15 2.75 2.78

Z.60 3.11 3.08 2.55 2.62

Z.80 2.66 2.63 2.41 2.40

Z.100 4.15 4.15 3.94 3.88

Y.3 4.25 4.20 3.66 3.75

Y.4 6.62 6.60 6.37 6.39

Y.5 1.79 1.66 1.30 1.33

Average 3.17 3.12 2.82 2.84

Table 1: Deviation gaps in percentage for combinations of VND-ILS strategies.
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Figure 3: TTT plots produced for instance ATT - target value equal to 20.

Figure 4: TTT plots produced for instance NSF.12 - target value equal to 38.
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Figure 5: TTT plots produced for instance y.4.20.4 - target value equal to 19.

Figure 6: TTT plots produced for instance y.5.100.2 - target value equal to 73.
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Figure 7: TTT plots produced for instance y.4.80.1 - target value equal to 72.

Figure 8: TTT plots produced for instance y.4.100.1 - target value equal to 89.
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Figure 9: TTT plots produced for instance Z.10x10.60 - target value equal to 86.

Figure 10: TTT plots produced for instance Z.10x10.80 - target value equal to 114.

19



Multistart-BFD BFD-VNDe VNDe-ILS5p EDP-VNDe-ILS5p

Instance |V | |E| |Γ| λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LB

Atlanta20 15 22 13680 1342 6.91 1284 2.37 1256 0.00 1256 0.00 1256

ATT 90 137 359 25 25.00 24 20.00 20 0.00 20 0.00 20

ATT2 71 175 2918 113 0.71 113 0.71 113 0.00 113 0.00 113

Brasil 27 70 1370 48 0.00 48 0.00 48 0.00 48 0.00 48

Cost266∗ 37 57 6543 446 0.00 446 0.00 446 0.00 446 0.00 446

Dfn-bwin∗ 10 45 4840 73 0.00 73 0.00 73 0.00 73 0.00 73

Dfn-gwin∗ 11 47 3771 316 0.00 316 0.00 316 0.00 316 0.00 316

EON 20 39 373 22 0.00 22 0.00 22 0.00 22 0.00 22

Finland 31 51 930 47 2.17 47 2.17 46 0.00 46 0.00 46

France∗ 25 45 15398 946 0.00 946 0.00 946 0.00 946 0.00 946

Germany50 50 88 4730 169 15.37 169 15.37 147 0.00 147 0.00 147

Giul 39 86 14732 402 6.07 401 5.91 379 0.00 379 0.00 379

Janos-us∗ 26 42 3262 215 4.15 215 4.15 207 0.00 207 0.00 207

Nobel-eu 28 41 3796 304 0.00 304 0.00 304 0.00 304 0.00 304

Nobel-germany 17 26 1320 89 4.94 89 4.71 85 0.00 85 0.00 85

Norway 27 51 10696 543 0.00 543 0.00 543 0.00 543 0.00 543

NSF.1 14 21 284 23 4.55 22 0.00 22 0.00 22 0.00 22

NSF.3 14 21 285 22 3.64 22 2.73 22 0.00 22 0.00 22

NSF.12 14 21 551 39 2.63 39 2.63 38 0.00 38 0.00 38

NSF.48 14 21 547 41 0.49 41 0.00 41 0.00 41 0.00 41

NSF2.1 14 22 284 21 0.00 21 0.00 21 0.00 21 0.00 21

NSF2.3 14 22 285 21 0.00 21 0.00 21 0.00 21 0.00 21

NSF2.12 14 22 551 35 1.71 35 0.00 35 0.00 35 0.00 35

NSF2.48 14 22 547 39 0.00 39 0.00 39 0.00 39 0.00 39

Sun 27 51 952 61 3.39 60 1.69 59 0.00 59 0.00 59

Average 3.27 2.50 0.00 0.00

Table 2: Comparison with multistart BFD on realistic instances.
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Multistart-BFD BFD-VNDe VNDe-ILS5p EDP-VNDe-ILS5p

Instance λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LB

y.3.20.1 33 22.22 33 22.22 29 8.89 30 11.11 27

y.3.20.2 33 0.00 33 0.00 33 0.00 33 0.00 33

y.3.20.3 31 6.90 31 6.90 29 0.00 29 0.00 29

y.3.20.4 31 19.23 31 19.23 28 8.46 29 11.54 26

y.3.20.5 31 10.71 31 10.71 28 2.86 29 3.57 28

y.3.40.1 62 18.49 62 18.11 57 7.55 59 11.32 53

y.3.40.2 59 0.00 59 0.00 59 0.00 59 0.00 59

y.3.40.3 61 0.00 61 0.00 61 0.00 61 0.00 61

y.3.40.4 58 16.00 58 16.00 54 8.00 56 12.00 50

y.3.40.5 60 13.21 60 13.21 56 6.79 58 9.43 53

y.3.60.1 93 14.81 93 14.81 87 7.41 90 12.35 81

y.3.60.2 89 0.00 89 0.00 89 0.00 89 0.00 89

y.3.60.3 91 0.00 91 0.00 91 0.00 91 0.00 91

y.3.60.4 85 9.23 85 8.97 80 2.82 83 6.41 78

y.3.60.5 86 12.73 86 12.73 82 7.53 85 11.69 77

y.3.80.1 123 16.04 123 16.04 115 9.25 122 15.09 106

y.3.80.2 117 0.00 117 0.00 117 0.00 117 0.00 117

y.3.80.3 118 0.17 118 0.17 118 0.00 118 0.00 118

y.3.80.4 112 6.67 111 6.48 106 1.14 110 5.71 105

y.3.80.5 114 9.62 114 9.62 109 4.81 114 9.62 104

y.3.100.1 151 15.27 151 15.57 143 9.31 152 16.03 131

y.3.100.2 146 0.00 146 0.00 146 0.00 146 0.00 146

y.3.100.3 146 0.00 146 0.00 146 0.00 146 0.00 146

y.3.100.4 138 5.80 138 5.80 132 1.22 139 6.87 131

y.3.100.5 141 9.30 141 9.30 136 5.58 143 10.85 129

Average 8.26 8.23 3.66 6.14

Table 3: Comparison with multistart BFD on set Y 3 of instances.
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Multistart-BFD BFD-VNDe VNDe-ILS5p EDP-VNDe-ILS5p

Instance λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LB

y.4.20.1 21 23.53 21 23.53 19 11.76 19 11.76 17

y.4.20.2 28 0.00 28 0.00 28 0.00 28 0.00 28

y.4.20.3 23 0.00 23 0.00 23 0.00 23 0.00 23

y.4.20.4 20 8.42 20 7.37 19 0.00 19 0.00 19

y.4.20.5 21 23.53 21 23.53 19 11.76 19 15.29 17

y.4.40.1 38 22.58 38 22.58 35 12.90 36 16.13 31

y.4.40.2 57 0.00 57 0.00 57 0.00 57 0.00 57

y.4.40.3 43 0.00 43 0.00 43 0.00 43 0.00 43

y.4.40.4 38 0.00 38 0.00 38 0.00 38 0.00 38

y.4.40.5 40 21.21 40 21.21 37 12.12 38 15.15 33

y.4.60.1 56 19.15 56 19.15 53 12.77 54 14.89 47

y.4.60.2 86 0.00 86 0.00 86 0.00 86 0.00 86

y.4.60.3 64 0.00 64 0.00 64 0.00 64 0.00 64

y.4.60.4 58 0.00 58 0.00 58 0.00 58 0.00 58

y.4.60.5 58 19.18 58 18.78 55 12.24 57 16.33 49

y.4.80.1 73 57.02 73 56.60 70 48.94 72 54.04 47

y.4.80.2 118 0.00 118 0.00 118 0.00 118 0.00 118

y.4.80.3 81 0.00 81 0.00 81 0.00 81 0.00 81

y.4.80.4 78 0.00 78 0.00 78 0.00 78 0.00 78

y.4.80.5 76 16.92 76 16.92 72 10.77 75 15.38 65

y.4.100.1 91 19.74 91 19.74 86 14.21 90 19.47 76

y.4.100.2 146 0.00 146 0.00 146 0.00 146 0.00 146

y.4.100.3 98 0.00 98 0.00 98 0.00 98 0.00 98

y.4.100.4 98 0.00 98 0.00 98 0.00 98 0.00 98

y.4.100.5 93 16.50 93 16.50 89 11.75 93 17.25 80

Average 9.91 9.84 6.37 7.83

Table 4: Comparison with multistart BFD on set Y 4 of instances.
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Multistart-BFD BFD-VNDe VNDe-ILS5p EDP-VNDe-ILS5p

Instance λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LB

y.5.20.1 14 7.69 14 7.69 13 0.00 13 0.00 13

y.5.20.2 17 0.00 17 0.00 17 0.00 17 0.00 17

y.5.20.3 13 8.33 13 8.33 12 5.00 13 8.33 12

y.5.20.4 17 0.00 17 0.00 17 0.00 17 0.00 17

y.5.20.5 15 0.00 15 0.00 15 0.00 15 0.00 15

y.5.40.1 25 4.17 25 4.17 24 0.00 24 0.83 24

y.5.40.2 31 1.29 31 1.29 31 0.00 31 0.00 31

y.5.40.3 24 9.09 24 9.09 23 4.55 23 6.36 22

y.5.40.4 33 0.00 33 0.00 33 0.00 33 0.00 33

y.5.40.5 28 0.00 28 0.00 28 0.00 28 0.00 28

y.5.60.1 36 11.52 36 11.52 35 6.67 36 9.09 33

y.5.60.2 45 1.33 45 0.89 45 0.00 45 0.00 45

y.5.60.3 35 2.94 35 2.94 34 0.00 34 0.00 34

y.5.60.4 48 0.00 48 0.00 48 0.00 48 0.00 48

y.5.60.5 40 0.00 40 0.00 40 0.00 40 0.00 40

y.5.80.1 47 11.16 47 11.16 46 6.98 47 9.30 43

y.5.80.2 60 1.69 60 1.69 59 0.00 59 1.02 59

y.5.80.3 45 4.65 45 4.65 44 2.33 45 5.12 43

y.5.80.4 63 0.00 63 0.00 63 0.00 63 0.00 63

y.5.80.5 53 0.00 53 0.00 53 0.00 53 0.00 53

y.5.100.1 59 7.27 59 7.27 57 3.64 58 5.82 55

y.5.100.2 75 2.74 75 2.74 73 0.00 74 1.37 73

y.5.100.3 56 5.66 56 5.66 54 3.40 56 5.66 53

y.5.100.4 77 0.00 77 0.00 77 0.00 77 0.00 77

y.5.100.5 66 0.00 66 0.00 66 0.00 66 0.00 66

Average 3.18 3.16 1.30 2.12

Table 5: Comparison with multistart BFD on set Y 5 of instances.
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Multistart-BFD BFD-VNDe VNDe-ILS5p EDP-VNDe-ILS5p

Instance λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LB

Z.10x10.20 31 17.04 31 17.04 29 7.41 30 11.11 27

Z.8x13.20 35 8.48 35 8.48 34 3.03 34 3.03 33

Z.6x17.20 46 4.55 46 4.55 44 1.36 45 2.27 44

Z.5x20.20 55 1.85 55 1.85 54 0.00 54 0.00 54

Z.4x25.20 68 3.03 68 3.03 66 0.00 67 2.12 66

Z.10x10.40 59 15.69 58 14.51 55 8.63 57 12.16 51

Z.8x13.40 67 6.35 67 6.35 64 2.54 66 4.76 63

Z.6x17.40 87 4.29 87 3.57 85 1.19 86 2.38 84

Z.5x20.40 104 2.97 104 2.97 101 0.59 103 2.18 101

Z.4x25.40 129 2.70 129 2.38 127 0.79 129 2.38 126

Z.10x10.60 88 14.29 87 14.03 84 9.09 87 12.99 77

Z.8x13.60 101 5.63 101 5.21 98 2.08 100 4.38 96

Z.6x17.60 133 3.91 133 3.91 129 0.78 131 2.66 128

Z.5x20.60 158 2.60 158 2.60 154 0.26 158 2.60 154

Z.4x25.60 195 2.08 195 1.98 193 0.52 197 2.71 192

Z.10x10.80 116 12.62 116 12.62 112 9.51 117 13.98 103

Z.8x13.80 134 4.50 134 4.50 130 1.09 134 3.88 129

Z.6x17.80 176 3.39 176 3.27 171 0.47 175 2.57 171

Z.5x20.80 209 1.95 209 1.95 206 0.49 210 2.63 205

Z.4x25.80 261 1.56 261 1.56 258 0.47 264 2.72 257

Z.10x10.100 142 13.60 142 13.60 139 11.52 146 17.44 125

Z.8x13.100 175 4.17 175 4.17 173 3.21 178 6.31 168

Z.6x17.100 222 3.06 222 3.06 220 1.85 225 4.17 216

Z.5x20.100 256 2.56 256 2.48 253 1.52 260 4.16 250

Z.4x25.100 319 2.24 318 2.18 317 1.60 325 4.42 312

Average 5.80 5.67 2.80 5.20

Table 6: Comparison with multistart BFD on set Z of instances.
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GA-RWA VNDe-ILS5p

Instance λmin gap(%) λmin gap(%) LB

ATT 24 20.0 20 0.0 20

ATT2 113 0.0 113 0.0 113

Finland 46 0.4 46 0.0 46

NSF.3 22 0.9 22 0.0 22

NSF.12 39 2.6 38 0.0 38

NSF2.12 35 0.6 35 0.0 35

Z.10x10.20 31 15.6 29 7.4 27

Z.6x17.40 87 4.0 85 1.2 84

Z.10x10.60 87 13.2 84 9.1 77

Z.4x25.60 195 2.0 193 0.5 192

Z.10x10.80 115 12.4 112 9.5 103

Z.8x13.80 134 3.9 130 1.1 129

Z.6x17.80 176 3.0 171 0.5 171

Z.5x20.80 209 2.0 206 0.5 205

Z.4x25.80 260 1.3 258 0.5 257

Z.5x20.100 257 2.8 253 1.5 250

y.4.20.4 20 6.3 19 0.0 19

y.3.40.5 59 12.8 56 7.4 53

y.3.60.5 86 12.5 82 7.5 77

y.4.60.5 58 18.4 55 12.2 49

y.5.60.1 36 9.7 35 6.7 33

y.3.80.1 122 15.5 115 9.3 106

y.3.80.5 113 8.8 109 4.8 104

y.4.80.1 73 55.3 70 48.9 47

y.4.80.5 75 16.0 72 10.8 65

y.5.80.1 47 11.2 46 7.0 43

y.5.80.2 60 1.7 59 0.0 59

y.4.100.1 90 18.4 86 14.2 76

y.5.100.1 58 5.5 57 3.6 55

y.5.100.2 74 1.6 73 0.0 73

Average 9.3 5.5

Table 7: Comparison with GA-RWA on a set of difficult instances.
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N1 N2 N1 + N2 N1 + N3 N2 + N3

Instance λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) λmin gap(%) LI

ATT 20 0.0 26 33.3 20 0.0 20 0.0 20 0.0 20

ATT2 113 0.0 115 2.0 113 0.0 113 0.0 113 0.0 113

Finland 46 0.0 48 5.2 46 0.0 46 0.0 46 0.0 46

NSF.3 22 0.0 22 0.0 22 0.0 22 0.0 22 0.0 22

NSF.12 38 0.0 38 0.0 38 0.0 38 0.0 38 0.0 38

NSF2.12 35 0.0 35 0.0 35 0.0 35 0.0 35 0.0 35

Z.10x10.20 30 14.1 32 20.7 30 11.1 29 7.4 29 7.4 27

Z.6x17.40 87 3.6 88 5.5 85 2.1 86 2.4 85 1.2 84

Z.10x10.60 88 14.3 89 15.8 86 12.7 85 10.4 85 10.4 77

Z.4x25.60 195 2.2 196 3.1 193 1.0 195 1.7 193 0.9 192

Z.10x10.80 115 12.2 116 13.6 115 11.8 114 10.7 113 9.7 103

Z.8x13.80 134 3.9 135 5.0 132 2.9 131 1.9 131 1.6 129

Z.6x17.80 175 2.7 177 4.0 173 1.3 173 1.2 172 0.7 171

Z.5x20.80 209 2.1 210 2.8 206 0.9 207 1.4 206 0.6 205

Z.4x25.80 260 1.5 262 2.2 259 0.8 260 1.3 259 0.8 257

Z.5x20.100 256 2.5 257 3.0 254 1.9 255 2.3 254 1.7 250

y.4.20.4 19 0.0 21 11.6 19 4.2 19 0.0 19 0.0 19

y.3.40.5 58 10.9 60 14.7 58 9.4 57 7.5 57 7.5 53

y.3.60.5 85 11.4 87 13.5 84 10.1 83 8.3 83 7.8 77

y.4.60.5 58 18.4 59 21.2 58 18.4 55 13.5 55 12.2 49

y.5.60.1 36 10.9 37 14.5 36 10.3 35 6.7 35 8.5 33

y.3.80.1 121 14.5 123 17.2 119 12.8 116 10.0 116 9.6 106

y.3.80.5 113 8.7 114 10.0 111 7.5 110 5.8 109 5.4 104

y.4.80.1 73 55.7 74 58.3 73 55.3 70 49.4 70 49.4 47

y.4.80.5 75 15.7 76 17.8 75 15.4 73 12.3 72 11.7 65

y.5.80.1 47 11.2 49 14.0 47 11.2 46 7.0 46 7.9 43

y.5.80.2 59 1.4 60 2.7 59 1.0 59 0.0 59 0.0 59

y.4.100.1 90 18.9 91 20.3 90 18.7 87 14.5 87 14.5 76

y.5.100.1 58 5.5 59 8.4 58 5.5 57 3.6 57 3.6 55

y.5.100.2 74 1.4 76 4.1 74 1.4 73 0.5 73 0.5 73

Average 8.1 11.5 7.6 6.0 5.8

Table 8: Analysis on the performance of each neighborhood.
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