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MODELING THE MULTISCALE STRUCTURE
OF CHORD SEQUENCES USING POLYTOPIC GRAPHS

Corentin Louboutin
Université Rennes 1 / IRISA, France
corentin.louboutin @irisa.fr

ABSTRACT

Chord sequences are an essential source of information in
a number of MIR tasks. However, beyond the sequen-
tial nature of musical content, relations and dependencies
within a music segment can be more efficiently modeled as
a graph.

Polytopic Graphs have been recently introduced to
model music structure so as to account for multiscale rela-
tionships between events located at metrically homologous
instants.

In this paper, we focus on the description of chord se-
quences and we study a specific set of graph configura-
tions, called Primer Preserving Permutations (PPP). For
sequences of 16 chords, PPPs account for 6 different la-
tent systems of relations, corresponding to 6 main struc-
tural patterns (Prototypical Carrier Sequences or PCS).
Observed chord sequences can be viewed as distorted ver-
sions of these PCS and the corresponding optimal PPP is
estimated by minimizing a description cost over the latent
relations.

After presenting the main concepts of this approach,
the article provides a detailed study of PPPs across a cor-
pus of 727 chord sequences annotated from the RWC POP
database (100 pop songs). Our results illustrate both qual-
itatively and quantitatively the potential of the proposed
model for capturing long-term multiscale structure in mu-
sical data, which remains a challenge in computational mu-
sic modeling and in Music Information Retrieval.

1. INTRODUCTION

One of the essential properties of music structure is the
multiscale nature of the inner organization of musical seg-
ments, i.e. the existence of relationships between musical
elements at different time-scales simultaneously.

Given its important role in supporting the local har-
monic ground-plan of the music in a significant number of
music genres, chord sequences are commonly considered
as an essential source of information in a variety of MIR
tasks (see for instance [13,17,22]).
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Figure 1. A chord sequence represented on a tesseract.

However, beyond the sequential order of chords along
the timeline, relations and dependencies between chords
within a music segment tend to be more efficiently mod-
eled as a graph.

Polytopic Graphs of Latent Relations (PGLR) [11] have
been recently introduced to model music structure, so as
to account for multiscale relationships between events lo-
cated at metrically homologous instants, by means of an
oriented graph supported by a n-dimensional polytope.

This class of models is assumed to be particularly well
suited for strongly “’patterned” music, such as pop music,
where recurrence and regularity tend to play a central part
in the structure of the musical content.

PGLR also relax the adjacency hypothesis of the GTTM
model [10], by which the grouping of elements into higher
level objects is strictly limited to neighbouring units. This
is particularly useful to account for period-like abac pat-
terns, where the similarity relationship between the two a
segments spans above (and irrespective of) the b segment.

In this paper, we focus on the description of metric-
synchronous chord sequences of 16 elements, resting on
regular phrasal structures or carrures. In that case, the sup-
porting polytope is a tesseract (i.e. a 4-cube) as illustrated
by Fig. 1, and the graph description lives on this tesseract
(as represented on Fig. 4).

After providing, in Section 2, the main concepts and
formalisms related to the approach, we study in detail a
particular variant of the model, where the graph structure



is restricted to a set of 6 configurations, called Primer Pre-
serving Permutations (PPP). We show in Section 3.1 that
PPPs relate to prototypical multi-scale structural patterns
which we call Prototypical Carrier Sequences (PCS) and
we explain how observed chord sequences can be viewed
as distorted versions of these prototypical patterns. In the
last part of the article (Section 4), we provide an exper-
imental study of PPPs across a corpus of 727 chord se-
quences annotated from the RWC POP database (100 pop
songs) with qualitative and quantitative results illustrating
the potential of the model. We conclude with perspectives
outlined by the proposed approached.

2. CONCEPTS AND FORMALISM
2.1 The PGLR Framework

As mentioned in the introduction, the PGLR approach
views a sequence of musical elements within a structural
segment as exhibiting privileged relationships with other
elements located at similar metrical positions across dif-
ferent timescales.

For metrically regular segments of 2" events, the cor-
responding PGLR conveniently lives on an n-dimensional
cube (square, cube, tesseract, etc..)!, n being the num-
ber of scales considered simultaneously in the multiscale
model. Each vertex in the polytope corresponds to a musi-
cal element of the lowest scale, each edge represents a la-
tent relationship between two vertices and each face forms
an elementary system of relationships between (typically)
4 elements. In addition, the proposed model views the last
vertex in each elementary system as the denied realization
of a (virtual) expected element, itself resulting from the
implication triggered by the combination of former rela-
tionships within the system (see Section 2.3).

For a given support polytope, the estimated PGLR
structure results from the joint estimation of (i) the configu-
ration of an oriented graph resting on the polytope, with the
constraint that it reflects causal time-order preserving de-
pendencies and interactions between the elements within
the musical segment, and (ii) the inference of the corre-
sponding relations between the nodes of the graph, these
relations being termed as latent, as they are not explicitly
observed (and may even not be uniquely defined).

2.2 Chord Representation and Relations

Strictly speaking, a chord is defined as any harmonic set of
pitches that are heard as if sounding simultaneously. How-
ever, in tonal western music, chords are more specifically
understood as sets of pitch classes which play a strong role
in the accompaniment of the melody (in particular, in pop
songs).

A number of formalisms exist for describing chord rela-
tions, either in the context of classical musicology or in the
framework of more recent theories, for instance, the neo-
Riemannian theory and voice-leading models [5,6,20], or
computational criteria such as Minimal Transport [10].

! and more generally speaking, on an n-polytope

Figure 2. Circles of thirds (inner) and phase-shifts (outer).

While chords may contain combinations of four pitch
classes or even more, they are frequently reduced to triads
(i.e. sets of three pitch classes), with a predominance of
major and minor triads. A minimal representation of triads
boils down to 24 distinct triads (12 major and 12 minor).
In the rest of this article, we restrict ourselves to this case,
in spite of its simplified nature.

In order to model relations between triads, we consider
triadic circles, i.e. circular arrangements of chords aimed
at reflecting some proximity relationship between triads
along their circumference.

The circle of thirds is formed by alternating major and
minor triads with neighbouring triads sharing two common
pitch classes, which is a way to model some kind of prox-
imity between chords. In particular, chords belonging to a
given key lie in a same sector of the circle of thirds. As
an alternative, we also consider the circle of phase-shifts,
which consists of a chord progression resulting from a min-
imal displacement on the 3-5 phase torus of triads as de-
fined in [1]. Both circles are shown together on Fig. 2.

Each circle provides a way to express (in a unique way),
the relationship between two triads, as the angular dis-
placement along the circle. Note that a "chromatic” circle
(... By B C,,, C Db, D" ...) could also be considered, but
it is not represented on Fig. 2, for reasons explained later.

2.3 Systemic Organization

Based on the hypothesis that the relations between musi-
cal elements form a system of projective implications, the
System & Contrast (S&C) model [2] has been recently for-
malized [3] as a generalization and an extension of Nar-
mour’s Implication-Realization model [16]. Its applicabil-
ity to various music genres for multidimensional and mul-
tiscale music analysis has been explored in [7] and algo-
rithmically implemented in an early version as “Minimal
Transport Graphs” [10].

The S&C model primarily assumes that relations be-
tween 4 elements in a musical segment g 1 x2 T3 can be
viewed as based on a two-scale system of relations rooted
on the first element xg (the primer), which thus plays the
role of a common antecedent to all other elements in the



Figure 3. Tesseract where vertices at a same depth (or
geodesic distance) from vertex #0 are aligned vertically.
The resulting partial order between vertices is causal.

system. This is the basic principle that enables the joint
modeling of several timescales simultaneously.

In the S&C approach, it is further assumed that latent
systemic relations 21 = f(xg) and x2 = g(xo) trigger a
process of projective implication:

2o f(xo) g(wo) " g(f(wo)) =35 (1)

The virtual element 3 may then be more or less strongly
denied by a contrast: x5 = ~(Z3) # &3, which creates
some sense of closure to the segment.

In this work, the S&C model is used as the basic scheme
to describe systems of music elements forming the faces of
the tesseract.

3. GRAPH-BASED DESCRIPTION
3.1 Nested Systems

Elementary systems of four elements, as introduced in Sec-
tion 2.3, can be used to describe longer sequences of mu-
sical events. In particular, sequences of 2" elements ar-
ranged on an n-cube, provide a layout of the data where
each face potentially forms a S&C, involving time instants
that share specific relationships in the metrical grid.

As opposed to the sequential viewpoint which assumes
a total order of elements along the timeline, the systemic
organization on the tesseract leads to a partial order (il-
lustrated on Fig. 3), where elements of the same depth are
aligned vertically and where, in the framework of the S&C,
the fourth element of each face can be defined in reference
to the virtual element resulting from the projective impli-
cation of the three others. In the most general case, valid
systemic organizations can be characterized by a graph of
nested systems, the flow of which respects the partial or-
dering of Fig. 3. Note however that there is a possible
conflict between three implications systems for elements
7, 11, 13 and 14 (each possible implication corresponding
to a face of the tesseract?), and six for element 15.

2 for instance, node 7 can be viewed as resulting from 3 implication
systems: [1,3,5,7],[2,3,6,7] and [4, 5,6, 7].

PO 0123 456 7 89 101112131415
A AAABBBBCCCCDDTDD
Pl 01 45236 7 8 9 12131011 1415
A ABBAABBCCDDTCCDD
P 0246 135 7 8 1012149 111315
A BABABABCDCDTC CDTCD
P3 01 8 92 3 10114 5 12136 7 1415
A ABBCCDDAABBCCDD
P4 028 101 3 9 114 6 12145 7 1315
A BABCDCDABABTC CDTCD
Ps 04 8 121 5 9 132 6 10143 7 1115
ABCDABCDABCDABTCD

Table 1. List of the 6 PPPs, together with their correspond-
ing Prototypical Carrier Sequences (PCS).

3.2 Primer Preserving Permutations (PPP)

One way to handle these conflicts is to constrain the graph
to preserve systemic properties at higher scales. This can
be achieved by forcing lower-scale systems to be supported
by parallel faces on the tesseract, while the first elements
of each of the 4 lower-scale systems are used to form an
upper-scale system. This approach drastically brings down
the number of possible graphs to 6, which corresponds to
specific permutations of the initial index sequence (see Ta-
ble 1), termed here as PPP (Primer Preserving Permuta-
tions).

To illustrate a PPP, let’s consider the subdivision of a
sequence of 16 chords into four sub-sequences of four suc-
cessive chords. Each sub-sequence can be described as
a separate Lower-Scale S&C (LS): [0,1,2,3], [4,5,6,7],
[8,9,10,11] and [12, 13,14, 15]. Then, these four S&Cs
can be related to one another by forming the Upper-Scale
S&C (US) [0, 4, 8, 12], linking the four primers of the 4 LS.
This configuration (P0) turns out to be particularly eco-
nomical for describing chord sequences such as SEQ1:

CmCmCmBb AbADbAVGm FFFF CmCm BbBb

as most similarities develop between neighbouring ele-
ments.
If we now consider the following example (SEQ3):

BmBmAA GEmBmBm BmBmAA GEm Bm Bm

a different configuration appears to be more efficient to
explain this sequence. In fact, grouping chords into the
following 4 LS: [0,1,8,9], [2, 3,10, 11], [4,5,12,13] and
[6,7,14,15], and then relating these four faces of the
tesseract by a US [0, 2,4, 6] (configuration P3) leads to a
less complex (and therefore more economical) description
of the relations between the data within the segment. Fig. 4
illustrates these two configurations.

3.3 Prototypical Carrier Sequences (PCS)

Each of the 6 PPPs can be related to a prototypical struc-
tural pattern which turns out to be the one that is the most
concisely described in the framework of this particular
configuration. These 6 patterns, identified in Table 1, can
be interpreted as “Prototypical Carrier Sequences” (PCS)
over which the actual chord sequence appears as partially
“modulated” information.



Figure 4. Representations of two PPP-based PGLRs on a tesseract: PO (left), P3 (right). In blue, the Upper-Scale S&C —in
black, the 4 Lower-Scale (LS) S&Cs. Dotted nodes indicate the virtual elements (Z) in the implication scheme (Section 2.3).

For instance, SEQ; appears merely as a sequence of
type PO, which has been altered in positions 3, 7, 14 and
15 from the following carrier system:

CmCmCmCm AbAbAbAV FFFF CmCmCmCm

Conversely, SFEQ exhibits a pattern that strongly relates
to P3, with scattered deviations from:

BmBmAA GGBmBm BmBmAA GG BmBm

located in positions 5 and 13.

Inferring the PCS shows interesting analogies with a de-
modulation operation and/or an error correcting code pro-
cess, by concentrating the redundancy on the carrier se-
quence. It can of course happen that a sequence has several
possible descriptions of equivalent plausibility, i.e. mul-
tiple coexisting interpretations w.r.t. its prototypical PPP
structure.

In summary, PPP provide a limited set of baseline mul-
tiscale structural patterns which can be used to characterize
actual chord sequences, via a minimum deviation criterion.

3.4 Algorithmical Considerations

In practice, given a (chord) sequence, X = xg...x;_1, its
optimal description (D) within a class of PGLRs, can be
obtained by minimizing a criterion F written as:

DX = [, R¥] = argmingy g F(V, R|X) (2)

where ¥ is a PGLR and R is a set of latent relations com-
patible with the connections of .

In the general case, both quantities are optimized
jointly, considering all possible relations between each set
of elements associated to each possible ¥, and minimizing
the cost over the whole sequence X.

Assuming that F is measuring the complexity of the
sequence structure, DX can be defined as the shortest de-
scription of the sequence. Therefore, searching for DX can
be seen as a Minimum Description Length (MDL) prob-
lem [21] and F can be understood as a function that eval-
uates the size of the ”shortest” program needed to recon-
struct the data [9]. This is strongly related to the concept
of Kolmogorov complexity, which has received increasing
interest in the music computing community over the past
years [12,14,15,19].

In the general case, the above optimization problem
may turn out to be of a relatively high combinatorial com-
plexity (see [10, 11]). But when considering triads over a
circular arrangement, and limiting the set of possible ¥ to
6 PPPs, the optimization of D becomes easily tractable: all
six PPPs can be tested exhaustively and for each of them,
the set R comprises 16 relations (15 displacements over the
triadic circle + the initialization of x) which are uniquely
defined. Therefore, each cost can be readily computed as
the sum of 16 terms, and the minimal PPP is easily found.

4. EXPERIMENTS

In order to study the ability of the PGLR model to capture
structural information in chord sequences, we have carried
out a set of experiments on the RWC POP dataset [8] on
a corpus of 727 x 16 beat-synchronous chords sequences
annotated manually as triads > .

As there exists no ground truth as of the actual struc-
ture of a chord sequence, we compare different models
as regards their ability to predict and compress chord se-
quences: in other words, how much side information is
brought by the structure model, that saves information
needed to describe of the content.

4.1 Distribution of PPPs

For each chord sequence X, the polytopic S&C graph P,
corresponding to the PPP with minimal cost can be esti-
mated by the optimization algorithm of Section 3.4. This
yields the histogram depicted on Figure 5%

Permutation P3 appears as the dominant one (= 33%)
and this may be related to the fact that its prototypical car-
rier sequence corresponds to a rather common “antecedent-
consequent” form in music (especially, in pop music).
Conversely, the least frequent PPP (P2), displays a fre-
quency of occurrence below 5%. Somewhere in between,
the 4 other permutations see their frequencies ranging
loosely within 10% to 20%).

3 Data are available on musicdata.gforge.inria.fr/RWCAnnotations.html

4 About 2/3 of test sequences correspond to a unique optimal PPP
but when k& > 1 permutations provide equally optimal solutions, each of
them is counted as 1/k.
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Figure 5. Histogram of PPPs across the test data.

4.2 Prediction and Compression

In order to compare the prediction and compression capa-
bilities provided by multiscale polytopic graphs, we con-
sider 4 structure models:

e S, a purely sequential graph where each element is
5

related to its immediate predecessor” ,
e Py, the polytopic S&C graph corresponding to PPP
Py for all sequences,

e P5, the polytopic S&C graph corresponding to PPP
Ps for all sequences,

e Px, the polytopic S&C graph corresponding to the
PPP with minimal cost optimised a posteriori for
each 16-chord sequence, as described in section 3.4.

All models are first-order models, in the sense that any
given element within the sequence is related to a single
antecedent (its time predecessor for the sequential graph, a
primer or a virtual element, in the case of the S&C model).

Performance for each model is obtained by calculating
a perplexity [4] B*, derived from the entropy H*.

Given a model M, the computation of perplexity re-
quires the definition of a probability density function
(pdf) for all observable events which underlie the model.
In our case, this means assigning a probability value
Pys(a;|®(x;)) to any pair (x;, ®(z;)), where ®(x;) is
the antecedent of z; in the graph. This is equivalent to
defining Pps (r(®(z;), x;)), where r(®(x;), z;) is the re-
lation which turns ®(x;) into x;. Considering a simple
rotation angle 0(x2|z1) = 63 — 61 on the triadic circle,
Pyy(r(x1,x2)) is a pdf that takes z = 24 distinct values.

The entropy of model M can be computed as:

H*(M) == Pa(ri)logy Par(ry) 3)
k=0

B* = 2" can be interpreted as a branching factor, that
is the equivalent number of distinct relations between two
chords, if these relations were equiprobable. It measures
the compression capacity of the model and is smaller for
models which capture more information in the data.

5 This corresponds to a sequential bi-gram model, a very common ap-
proach in MIR [18].

Triad Circle
Third | Phase | Random
B(S) 8.00 7.67 9.32
(Po) 6.68 6.77 7.84
(Ps3) 5.35 5.35 6.02
B(Px) 4.63 | 4.63 5.21
Biot(Px) | 5.18 5.18 5.83

Table 2. Average cross-perplexity obtained for the vari-
ous models on RWC-Pop data with 2-fold cross-validation
(training on even songs + testing on odd songs and vice-versa).

In this work, we consider specifically the cross-
perplexity B derived from the negative log likeli-
hood (NLL) H , computed on a test-set (of L observations).
In that case, the capacity of the model to catch relevant in-
formation from an unseen musical segment is measured by
means of a cross-entropy score, which quantifies the ability
of the model to predict unknown sequences from a similar
(yet different) population.

For a given model M, H is defined as:

L—1
N 1
H(M) = -+ ; logy Par(w:|®(z:))  (4)
with the convention P(xzq|®(zg)) = 1/24.
In that context, the cross-perplexity B = 27 can be

understood as an estimation of the (per symbol) average
branching factor in predicting the sequence knowing its
structure, on the basis of probabilities learnt on other se-
quences, assumed to be of the same sort.

Additionnally, for model Px, we also compute the to-
tal entropy I:Itot(PX) = H (Px) + @, which includes the
number of bits needed to encode the optimal configuration
of the PPP (1 among 6) for each sequence of 16 chords,
namely:

Q@ =log,(6)/16 ~ 0.16 bits/symbol, Q)

this term being equal to 0 for the other models.

The first column in Table 2 compares cross-perplexity
figures obtained with the 4 structure models and consid-
ering the circle of thirds for modeling relations between
chords. These results show that all tested polytopic models
outperform the sequential model, with an additional advan-
tage for the Px approach, even when taking into account
the overhead cost required for PPP configuration encoding.

4.3 Impact of the Triadic Circle

In the rest of Table 2, cross-perplexity values are provided
for two other circles of triads: the circle of phase-shifts as
defined on Fig. 2 and a randomized circle, where triads are
positioned at random. Results show that the phase circle
performs quite the same as the circle of thirds, whereas the
randomized circle clearly performs less well. All outper-
form their counterpart in the sequential model, as for all
polytopic models, the identity relation is of zero cost and
higher probability. We do not report perplexities on the
chromatic circle, given that it is congruent to the circle of
thirds, thus yielding strictly identical results.



US LSl LSQ LSg LS4
44.4% 1] 8.0% | 15.7% | 19.7% | 22.4%

Table 3. Proportion of sequences with contrastive U.S
(Upper-Scale system) and LSy (k*" Lower-Scale system).

0.7 0.7
60.4%
0.6 556% 0.6
0.5 44.4% 0.5
0.4 0.4
0.3 0.3
22.6%

0.2 0.2
o1 oL 10.3%
0 0 | —

0 1 0 1 2 3 4

Figure 6. Proportion of contrastive systems within US sys-
tems (left) and the 4 LS systems (right)

4.4 Distribution and Density of Contrasts

To study the specific relationship between the virtual and
the contrastive element in the Px scheme, we investigated
on the location and the number of contrastive vs. non-
contrastive elements in potentially contrastive positions
defined by the PPP framework.

Table 3 presents the distribution of actual contrasts for
the Upper-Scale (US) and the 4 Lower-Scale (LS) in con-
trastive positions. While 44.4% of Upper-Scale Systems
are contrastive, it can also be noted that the frequency of
LS contrasts (or, so to speak, the occurrence of surprises
at the lower-scale span) increases with the index of the LS
system (i.e., its depth in the tesseract).

Figure 6 depicts the proportion of sequences as a func-
tion of the number of actual contrasts observed in different
contrastive positions. It can be observed that the number
of contrastive Lower-Scale systems decays (roughly ex-
ponentially) from over 60.4% of sequences with no con-
trastive Lower-Scale system down to only 2.3% with all 4
LS systems being contrastive.

It would surely be interesting to compare these profiles
across different music genres and a variety of musical di-
mensions, in order to study possible correlations.

4.5 Contrast Intensity

Table 4 reports the perplexity obtained when considering
separately the systemic positions and the contrastive posi-
tions. Keeping in mind that they may be specific to the cor-
pus, results show nevertheless two very interesting trends.

Perplexity is higher in systemic positions (5.6) as op-
posed to constrastive positions (3.5), implying that the ac-
tual observations in contrastive positions often correspond
(or are close) to the projective implication. This can be re-
lated to the results observed in the previous section, w.r.t.
the relatively low density of actual contrasts.

However, when different from identity (column Diff),
these relations show a lower perplexity for systemic re-
lations (14.6 vs 18.7) indicating that, when a relation is
not identity, the contrast is more unpredictable and/or more

All | Diff
Systemic position | 5.6 | 14.6
Contrastive position | 3.5 | 18.7

Table 4. Perplexity of relations for systemic relations and
contrastive relations, including (All) or excluding (Diff)
the identity relation.

0.35
0.3
0.25
0.2
0.15
0.05
0 1 2 3 4 5 6 7 8 9 10 11

Figure 7. Proportion of chord sequences showing n distor-
tions relative to their Prototypical Carrier Sequence (PCS).

distant on the circle of thirds, than it is for systemic rela-
tions.

In summary, strictly contrastive relations tend to be less
frequent but more intense than systemic relations. This cer-
tainly relates to the presumed role of contrasts as carrying
a strong quantity of surprise. These observations may be
a motivation for a different treatment of systemic relations
vs. contrastive ones.

4.6 Distortion of Prototypical Carrier Sequences

Ultimately, we considered the distribution of the number
of distortions between observed chord sequences and their
PCS, as defined in section 3.3. Figure 7 shows a domi-
nance of 4 deviations, with an overall prevalence of even
values, suggesting that modelling systems of relations (i.e.
edges) within the tesseract could be useful to further im-
prove the compression capabilities of the PGLR model.

5. CONCLUSIONS

Both from the conceptual and experimental viewpoints, the
polytopic approach presented in this article appears as an
efficient way to model multiscale relations in chord se-
quences.

While still at an early stage of development, the PGLR
model provides a potentially useful and powerful frame-
work for a number of tasks in MIR, as well as interesting
tracks for music analysis and generation. Indeed, the core
principles of the PGLR scheme are not specific to chord
sequences: its application to other types of musical ob-
jects, such as melodic motives and rhythmic patterns are
currently being explored.

Ongoing work also includes the extension of the poly-
topic model to a wider range of timescales, and the han-
dling of segments of irregular size.
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