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Abstract. Musical relations and dependencies between events within a
musical passage may be better explained as a graph rather than in a
sequential framework. This article develops a multiscale structure model
for music segments, called Polytopic Graph of Latent Relations (PGLR)
as a way to describe nested systems of latent dependencies within the mu-
sical flow. The approach is presented conceptually and algorithmically,
together with an extensive evaluation on a large set of chord sequences
from a corpus of pop songs. Our results illustrate the efficiency of the
proposed model in capturing structural information within such data.

1 Presentation

It is quite common sense that listeners do not perceive music only as a mere
sequence of sounds, nor composers conceive their works as such. Music is essen-
tially the result of patterns whose inner organization and mutual relationships
participate to the overall structure of the musical content, at different time-scales
simultaneously.

What is exactly music structure remains an open scientific question. This
article is a contribution towards one particular aspect of music structure: it
proposes and investigates a multiscale model of the inner organization of musical
segments, which we call Polytopic Graph of Latent Relations (PGLR).

The musical content observed at a given instant t within a music segment
obviously tends to share privileged relationships with its immediate past, hence
the sequential perception of the music flow. But music content at instant t also
relates with distant events which have occurred in the longer term past, espe-
cially at instants which are metrically homologous to t, in previous bars, motifs,
phrases, etc. This is particularly evident in strongly “patterned” music, such
as pop music, where recurrence and regularity play a central role in the design
of cyclic musical repetitions, anticipations and surprises. But it is also discern-
able in a number of other music genres, which rely abundantly on all sorts of
multiscale similarities, progressions, expectations and denials.



To overcome the limitations of purely sequential models in music content
descriptions, hierarchical models are often resorted to, in order to provide a
representation framework for the grouping structure of a musical passage. The
most famous hierarchical approach is undoubtedly the Generative Theory of
Tonal Music (GTTM) by Lerdahl and Jackendoff (8), which has been for many
years a source of inspiration for a wide variety of work in music structure mod-
eling. However, hierarchical approaches such as GTTM rely axiomatically on an
adjacency hypothesis, under which the grouping of elements into a higher level
object is strictly limited to neighbouring units.

In this work, we develop a different view as regards the structural associ-
ation of elements forming music segments. We describe the “web” of musical
elements as a Polytopic Graph of Latent Relations (PGLR) which models re-
lationships developing predominantly between homologous elements within the
metrical grid.

For most segments of 2n events, the PGLR lives on an n-dimensional cube
(square, cube, tesseract, etc...), n being the number of scales considered simul-
taneously in the multiscale model. By extension, the PGLR can be generalized
to a more or less regular n-polytope.

Each vertex in the polytope corresponds to a low-scale musical element, each
edge represents a relationship between two vertices and each face forms an ele-
mentary system of relationships. In addition, one variant of the proposed model
views the last vertex in each elementary system as the denied realization of a
(virtual) expected element, itself resulting from the implication triggered by the
combination of former relationships within the system.

The estimation of the PGLR structure of a musical segment can be obtained
computationally as the joint estimation of:
1. the description of the polytope (as a more or less regular n-polytope),
2. the nesting configuration of the graph over the polytope, reflecting the flow of

dependencies and interactions between the elementary implication systems
within the musical segment (this flow being assumed to be causal),

3. the set of relations between the nodes of the graph, with potentially multiple
possibilities which need to disambiguated (hence the “latent” nature of the
relations, as they are not actually observed).

In this paper, the shape of the polytope is assumed to be a tesseract (4-cube)
and we focus our study on the modeling of meter-synchronous chord sequences of
16 chords. However, the general framework encompassed by PGLR is potentially
applicable to many other musical dimensions (rhythm, melody, etc...) as soon as
relevant latent relations can be defined.

In Section 2, we introduce the main concepts and formalism related to the
model. Section 3 covers computational aspects of the approach, including opti-
mality criteria and algorithmic design. In section 4, we present a series of exper-
imental results which assess the advantages of the PGLR model. We conclude
with perspectives outlined by the proposed approached.



Fig. 1: Triads: circle of thirds.

Fig. 2: Two possible transports
between C and Fm.

2 Concepts and Formalism

2.1 Chord Representation and Relations

Strictly speaking, a chord, in music, is any harmonic set of notes (or “pitches”)
that are heard as if sounding simultaneously. However, in tonal western music,
chords are more generally conceived as sets of pitch classes supporting the local
harmonic groundplan of the music. In particular, chords play a strong role in the
accompaniment of the melody in pop songs. The most frequently encountered
chords are triads (i.e. sets of three pitch classes), with a predominance of major
and minor triads. More sophisticated chords contain combinations of 4 pitch
classes or even more.

Chords can be represented in various ways. In this article, we consider two
types of representations: (i) the complete set of pitch classes forming the chord
(PC description) and (ii) the tabular notation of the major or minor triadic
reduction of the chord (TR description). Assuming 4 or 5 pitch classes per chord,
this leads to potentially several hundreds of different PC descriptions (much less
in practice), but only 24 distinct TRs.

A number of formalisms exists to describe chord relations, either in classical
musicology (through chromatic relations or via the circle of fifths) or in the
framework of more recent theories, in particular Wietzmann regions (21) or
neo-Riemannian theory (3). Tymockzo (18; 19) also proposes a model based on
combinations of chromatic and scalar transpositions.

Depending on the formalism under consideration, the property of uniqueness
of the relation between two chords may or may not be satisfied.

Triad Circles We call triad circle any circular arrangement of triads aimed
at reflecting some proximity relationship between triads along its circumference.
The circle of thirds is formed by alternating major and minor triads with neigh-
bouring triads sharing two common pitch classes. The circle is shown on Fig. 1.



This representation provides a way to express the relationship between two TRs
– in a unique way – as the angular displacement around the circle. Alternatively,
the chromatic circle is arranged according to a chromatic progression (not rep-
resented on Fig. 1).

Optimal Transport If two chords X and Y are represented as a set of pitch
classes xi and yj , the set of transports between X and Y can be defined as:

T = {tk = (xik
, yjk

) | xik
∈ X, yjk

∈ Y } (1)

that is, pairs of notes across the two chords indexed by an integer k which
represents a virtual mapping between their respective pitch classes. This is a
simplified model that can be used to represent “voices” in chord sequences. We
consider complete transports, i.e. each note is associated to at least one voice.
Examples of transports are given on Fig. 2.

The cost of a transport is defined as the sum of the costs associated with
each pair of notes in the transport: |T | =

∑
(x,y)∈T |d(x, y)|. In this paper we use

two types of distances:

– the chromatic distance (or smoothness) (9; 16; 3), which is the shortest dis-
placement in semitones from pitch class x to pitch class y. In Fig. 2 the first
transport is minimal for the chromatic distance (cost equal to 2).

– the harmonic distance, where the displacement is considered on the circle
of fifths instead of the chromatic scale. In Fig. 2, the second transport is
minimal for the harmonic distance (cost equal to 6).

2.2 Systemic Organization

Based on the hypothesis that the relations between musical elements in a seg-
ment are not necessarily sequential, the System & Contrast (S&C) model has
been recently formalized (1) as a generalization and an extension of Narmour’s
Implication-Realization model (14). Its applicability to various music genres
for multidimensional and multiscale music analysis has been explored in (4)
and algorithmically implemented in an early version as ”Minimal Transport
Graphs” (10).

The S&C model primarily assumes that relations between 4 elements in a
musical segment x0 x1 x2 x3 can be viewed as relying on a matrix-based system
of relations in reference to the first element x0 (the primer), which thus plays
the role of a common antecedent to all other elements in the system. This is the
basic principle that enables the joint modeling of two timescales simultaneously.

Moreover, in the S&C approach, it is further assumed that latent relation-
ships x1 = f(x0) and x2 = g(x0) trigger a process of implication:

x0 f(x0) g(x0) implies=⇒ g(f(x0)) = x̂3



Table 1: Antecedent function for the various models.

Sequential Systemic System & Contrast

φSeq(xi) = xi−1 φSys(xi) = x0 φS&C(xi) =
{
x0 if i = 1, 2
g(f(x0)) if i = 3

Virtual element x̂3 may be more or less strongly denied by a contrast: x3 6= x̂3,
which creates a potential closure to the segment.

As depicted in Table 1, sequential, systemic and S&C models studied in this
article are all first-order models which assume different antecedent functions, Φ,
between the elements forming a musical segment. It is worth noting that the
antecedent function summarizes the entire history of xi into a single element.

2.3 Polytopic Representation and Nested Configurations

Polytopic Representation Elementary systems of 4 elements, as described
in the previous section, can further be used to describe longer sequences of
musical events. In particular, sequences of 2n elements can be arranged as an
n-dimensional cube, within which each face potentially forms a S&C at time
instants that share specific relationships in the metrical grid.

For instance, a sequence of 16 chords can be divided into four sequences
of four successive chords, each of them being described as separate systems.
Then, these four S&Cs, taken as elementary objects, can be related by forming
an upper-scale S&C, linking the four primers of the 4 lower-scale S&Cs. Fig. 3
represents such a description projected on a tesseract, in the case of the chord
sequence from the chorus section of Master Blaster by Stevie Wonder:

Cm Cm Cm Bb Ab Ab Ab Gm F F F F Cm Cm Bb Bb

System Nesting However, depending on the sequence, other arrangements of
the systems may prevail. If we now consider the following example:

Bm Bm A A G Em Bm Bm Bm Bm A A G Em Bm Bm

a different configuration appears to be more efficient to explain the sequence with
a multiscale model. In fact, grouping chords [0, 1, 8, 9], [2, 3, 10, 11], [4, 5, 12, 13]
and [6, 7, 14, 15], and then relating these four faces of the polytope by an upper-
scale system [0, 2, 4, 6] leads to a less complex (and therefore more economical)
description of the relations between the data within the systems. This nest-
ing configuration is called P ∗ in the rest of the paper and is distinct from the
configuration considered in the first example, P0, where the upper-scale system



Fig. 3: Polytopic representation of the
chord sequence taken from Master
Blaster by Stevie Wonder.

Fig. 4: Tesseract where ele-
ments of the same depth are
aligned vertically.

Fig. 5: Representations of the relations used by a multiscale analysis of a sequence
of 16 events projected on a tesseract: P0 (left), P ∗ (right).

[0, 4, 8, 12] links four lower-scale nested systems [4k + j]0≤j<4 for 0 ≤ k < 4.
Fig. 5 illustrates these two configurations.

Therefore, multiscale polytopic descriptions involve different possible flows
of dependencies and interactions between systems, which correspond to distinct
nesting configurations. A nesting configuration is characterized by its correspond-
ing antecedent function (as defined in Sect. 2.2). We furthermore assume that
nesting configurations must respect a causality principle: that is, the antecedent
of any element in a system must have been observed before that element. This
leads to a partial order between elements in the tesseract, as depicted on Fig. 4.

Static Configurations Among all possible ways to construct nested configura-
tions, an interesting subset consists in nesting faces of the polytope such that all
vertices are used once and only once. In that case, valid nesting configurations
consist in specific permutations of the initial index sequence. As, for each cube in
the tesseract, there are three possible pairs of square systems corresponding to



parallel faces of the cube, there is a total of 4 ∗ 3 ∗ 3 = 36 possible permutations
such that each lower scale system contains only causal flows.

Among these 36 possibilities, 6 are dual solutions. For 6 others, which we
call Primer Preserving Permutations (PPPs), the system formed by the primers
of each lower-scale system is itself a face in the polytope. PPPs preserve the
role of elements with index 2p as being primers of one of the system in the
configuration. Whereas the list of PPPs is easy to tabulate for a tesseract, a
recursive algorithm can be used for larger values of n. Note that P0 and P ∗ are
both PPPs (see Fig. 5).

All configurations referred to in this section are made of four non-adjacent
faces on the polytope, whose primers are related by a fifth upper-scale system.
In the case of PPPs, the upper-scale system is itself a face in the polytope.

Dynamic Nesting Another way to define a nesting configuration is to construct
it on-the-fly, by determining successively for each element placed in contrastive
position, which of the possible implication systems it is more advantageous to
relate it to. In this case, the cost function is used for each system hypothesis, to
select the optimal one and disambiguate the antecedent function when several
options are possible. Looking at Fig. 4, it appears that nodes 7, 11, 13, 14 are
contrastive in three different implication systems and 15 in 6 implication systems.
Therefore, there exists 34 ∗ 6 = 486 distinct dynamic nesting configurations.

3 Optimization and Algorithmical Aspects

3.1 A Minimum Description Length Criterion

Given a sequence X = x0 . . . xl−1, the estimation process of the best PGLR, SX ,
requires the definition of an optimality criterion embedding all the variables:

SX = argminP,G,R F(P,G,R|X)) (2)

where P , G and R respectively denote the description of the polytope, the graph
and the latent relations for sequence X.

Assuming that F is measuring the complexity of the sequence structure, SX

can be defined as the shortest description of the sequence. Therefore, searching
for SX can be seen as a Minimum Description Length (MDL) problem (20)
and F can be understood as a function that evaluates the size of the “shortest”
program needed to reconstruct the data (6). This is strongly related to the
concept of Kolmogorov complexity, which has received increasing interest in the
music computing community over the past years (11; 12; 13; 17).

The exact computation of SX cannot be achieved and it is approximated in
the following way:



– the description cost of P can be estimated as a function of the regularity of
the polytope. In this work it is discarded because all polytopes are tesseracts.

– the description cost of G can be assumed to be constant for all configurations
within a model class. It is related to the number of distinct possible graphs
(DPG) in the PGLR.

– the cost (FR) of the relations associated with a given nested configuration:

RX = argminR {FR(R|G,X)} with FR(R|G,X) =
l−1∑
i=1
|r(ΦG(xi), xi)| (3)

where ΦG is the antecedent function associated to G and |r(x, y)| is the cost
of the relation between x and y.

3.2 Optimization Process

Given that the cost of P and G are assumed to be constant, the aim of the
optimisation process is to estimate the set of latent relations.

In the case of TRs, the process is rather straightforward: a relation between
two chords in a triad circle is unique.

Conversely, optimal transport provides multiple possibilities of connecting
chords together. The exhaustive optimization over the whole sequence would
require to consider all combinations of transports. However, to make the com-
putation tractable, the process is divided in several simpler sub-problems as
follows.

For the sequential model, the chord sequence is processed as groups of 4-
chord progressions (fusing beforehand identical neighboring chords, for which the
transport is trivially determined). Then the last chord of each group is related
to the first chord of the next group by minimal transport.

For the static systemic models, each elementary problem corresponds to a
square system to optimize. Upper-scale systems are optimized first and then each
lower-scale system is estimated independently. This process is repeated for each
possible configuration. Details can be found in (10), with two adjustments which
do not significantly impact the performance but save a lot of computation load:
(i) for square systems, the contrast relation is optimized aside from the other
systemic relations, (ii) the set of static configurations is restricted to PPPs.

For the dynamic nested S&C model, each chord is considered successively
in a chronological order. Those which are directly related to the primer (nodes
1, 2, 4 and 8) enable the estimation of the corresponding latent relation. Those
who are in a single contrastive position (nodes 3, 5, 6, 9, 10, 12) are used to com-
plete the estimation of the corresponding systems. Some chords in contrastive
position belong to several systems (nodes 7, 11, 13, 14 to 3 systems and node
15 to 6 systems): in these cases, the system with minimal cost is chosen. The
whole process therefore results in a graph which has been built dynamically by
successive optimisations of square systems.



4 Experimental Validation

4.1 Methodology

Experimental Setups To assess the ability of the PGLR model to capture
structural information in chord sequences, we have carried out a set of experi-
ments on a corpus of 727 × 16 beat-synchronous chord sequences from the RWC
POP dataset (5).

These experiments aim at evaluating the relevance of the PGLR model and
at comparing different chord representations, types of models and optimization
schemes.

The two types of chord representations presented in Sect. 2.1 (PCs and TRs)
are considered in conjunction with optimal transport (for PCs and TRs) and
triad circle relations (for TRs only). We compare the sequential bi-gram model
(Seq) – a very common approach in MIR (15) – with different types of systemic
models (Sys and S&C) as defined in terms of their antecedent functions in
Table 1, as well as the dynamic approach (Dyn).

For the systemic models, three types of system optimization are considered:
– S0 which corresponds to the static configuration P0 (see Fig. 5, left);
– S∗ which corresponds to the globally optimal PPP over the whole corpus

which happens to be P ∗ (see Fig. 5, right);
– SX : in this case, the optimal PPP is chosen a posteriori as the one that

optimizes the description of X, which varies across all Xs.

Perplexity As there exists no ground truth as of the actual structure of a
chord sequence, we compare the different models as regards their prediction
ability. This is done by calculating for each model the perplexity (2), B, derived
from the negative log likelihood (NLL), H. The aim is to measure how well an
unseen sequence, X = x0 . . . xl−1, can be predicted by the model:

H(X) = −1
l

l−1∑
i=0

logP (xi|Φ(xi)) (4)

with the convention φ(x0) = x0 and P (x0|x0) = P (x0).
For the triad circle relations, P (y|x) is estimated as the relative frequency of

r(x, y) (and P (x0) is set to 1/24). Similarly, for a pitch class distance d, P (y|x) is
also estimated as the frequency of d(x, y) (and here, P (x0) = 1/12). The learning
phase for r and d is done using a 2-fold cross-validation strategy: probabilities
are estimated on one half of the corpus (even numbered songs) and used on the
other half (odd numbered songs) to compute H and vice-versa.

For optimal transport, X is viewed as a set of simultaneous “voices”, Xk,
and we compute H as the average voice NLL:

H(X) = 1
k

∑
k

H(Xk) (5)



Table 2: Average perplexity obtained with 2-fold cross-validation for the different
models on RWC POP. DPG stands for Distinct Possible Graphs.

Triad Circle Optimal Transport
DPGRotation Chromatic Harmonic

on TR on PC on TR on PC on TR
Seq 8.00 3.32 3.58 4.11 4.50 1
Sys0 8.88 3.43 3.68 4.32 4.72 1
Sys∗ 7.62 3.12 3.11 3.86 4.23 1
SysX 5.78 2.66 2.73 3.18 3.41 6
S&C0 6.68 2.97 3.16 3.92 4.06 1
S&C∗ 5.35 2.60 2.71 3.39 3.56 1
S&CX 4.63 2.39 2.48 2.99 3.12 6
DynX 4.82 2.55 2.44 4.29 4.32 486

where each term H(Xk) can be computed horizontally, using Eq. 4.
Ultimately, the performance is reported in terms of perplexity, B, which can

be understood as an estimation of the average branching factor in predicting the
sequence knowing its PGLR structure:

B(X) = 2H(X) (6)

Note that, whereas PGLR is fundamentally optimized on the basis of a com-
plexity criterion, its impact is evaluated in a probabilistic framework, so as to
measure its capacity to compress the data information in a meaningful way.

4.2 Results

Table 2 summarizes the perplexity figures obtained for a variety of experimental
setups, from which a number of observations can be made.

Benefit of Systemic Organizations Systemic models globally outperform
the sequential one1: all perplexity values are lower, except for the basic Sys0
configuration. In particular, the S&CX model provides the most spectacular
perplexity improvement for all types of chord representations and relations (at
the expense of a very limited number of DPGs). Note that the P ∗ configuration
provides a noticeable advantage over Seq and P0 configurations. The last row
of the table also shows that the dynamic nesting approach is an interesting
alternative as it provides perplexity scores almost as favorable as S&CX .

Predictive Support of the Virtual Element The effectiveness of the vir-
tual element in the S&C scheme is underlined by the systematic improvement
1 This confirms preliminary results formerly obtained on a much smaller corpus of 45

chord sequences (10).



observed when shifting from Sys to S&C results. The virtual element, x̂3, in
S&C appears globally as a better antecedent for x3 than does the primer, x0, in
Sys. However, for about one third of test sequences SysX outperforms S&CX

(figure not reported in Table 2), in particular for aaba structures.

Triad Circle Relations vs Optimal Transport The performance of tri-
adic circle relations (TCRs) is based on a global sequence entropy while the
optimal transport (OT) approach is evaluated in terms of average “per voice”
entropy. In particular, the maximal branching factor of TCRs is 24 instead of
12 for OT. Therefore, the two perplexity scores cannot be compared. However,
both approaches show similar trends w.r.t. the relative model performance. This
supports the hypothesis of a general benefit of the multiscale approach rather
independently from the way the chord information and relations are encoded.

In Table 2, results are also provided for optimal transport on triadic reduc-
tions (TRs) treated as PC description. Here too, the relative performance levels
across models show the same trends. Note that the perplexity on TRs is slightly
higher because the average pitch class distance between triads tends to be larger
than that between chords with 4 notes or more.

Harmonic vs Chromatic Transport In chromatic optimal transport, the dis-
tance is computed from the set of note displacements measured on a semitone
scale. We also tested a harmonic distance by considering displacements on the
circle of fifths. Results in Table 2 show that this globally degrades the perfor-
mance. Conversely, there is no need to consider triad rotations on a chromatic
circle, as this is formally equivalent to modeling systems on the circle of thirds.

5 Conclusions

Both from the conceptual and experimental viewpoints, the PGLR approach
appears as an efficient way to model multiscale relations in music segments. It
is expected to provide a useful framework for a number of tasks in automatic
music processing, as well as offering an interesting tool for music analysis.

Given that its core principles are not specific to a particular type of musical
information, the application of PGLR to other types of musical objects, such as
melodic motives and rhythmic patterns is a rather natural extension, currently
under investigation. Ongoing work also includes the extension of the PGLR
model to a larger range of timescales (n-cubes) and to chord patterns of other
lengths (using irregular polytopes, by truncating or duplicating vertices, edges
or faces, as in (7)).
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