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SMC Faster R-CNN: Toward a Scene-Specialized Multi-Object Detector

Ala Mhalla®®, Thierry Chateau®, Houda Madmatou®®, Sami Gazzah?, Najoua Essoukri Ben Amara®

“LATIS ENISo, National Engineering School of Sousse, University of Sousse, Tunisia
Y Institut Pascal, Clermont Auvergne University, France

Abstract

Generally, the performance of a generic detector decreases significantly when it is tested on a specific scene due to the large variation
between the source training dataset and the samples from the target scene. To solve this problem, we propose a new formalism
of transfer learning based on the theory of a Sequential Monte Carlo (SMC) filter to automatically specialize a scene-specific
Faster R-CNN detector. The suggested framework uses different strategies based on the SMC filter steps to approximate iteratively
the target distribution as a set of samples in order to specialize the Faster R-CNN detector towards a target scene. Moreover,
we put forward a likelihood function that combines spatio-temporal information extracted from the target video sequence and
the confidence-score given by the output layer of the Faster R-CNN, to favor the selection of target samples associated with the
right label. The effectiveness of the suggested framework is demonstrated through experiments on several public traffic datasets.
Compared with the state-of-the-art specialization frameworks, the proposed framework presents encouraging results for both single
and multi-traffic object detections.

Keywords: Transfer learning, Deep learning, Specialization, Faster R-CNN, Sequential Monte Carlo filter, Traffic object detection.

1. Introduction process is aided by generic detectors for automatically
) ) ) ) collecting training samples from target scenes without manually
Learning-based object detection algorithms have become labelling them [2][51[6][7]. Accordingly, we put forward a

an essential part for numerous video analysis applications, .y formalization of transfer learning based on the theory
including security and intelligent transportation systems [[1][2]. of a Sequential Monte Carlo (SMC) filter [§] so as to
However, most detectors are learnt with generic annotated

datasets that are sampled from a large number of situations to
cover the maximum intra-class variability of the traffic objects.
When applied on a specific scene, the distribution of objects
captured by the camera, like the Closed-Circuit Television
camera (CCTV camera), is only a small subset of the initial
learning set, and the resulting generic detector is often limited.
Therefore, the detector may fail to perform satisfactorily when
tested on scenes that have data distributions different from the
source training dataset [3]][4].

This problem can be solved by transfer learning, referred
to as cross-domain adaptation, which can specialize a generic
detector to a target scene. A classical way of specializing
a generic detector is to manually select positive and negative
samples from the target scene to re-train a scene-specific one.
This requires collecting labelled data in every new scene and
training a new detector, which can be labor intensive. A typical
solution to avoid these tasks is to automatically label samples
from the target scene and to transfer only a set of useful target
samples to re-train a scene-specific detector.

Most state-of-the-art researches have been recently made to
iteratively develop a scene-specific detector, whose training

automatically generate a specialized Faster R-CNN detector 9]
for multi-traffic object detection, enhancing perform better than
the generic one.

A global synoptic of our framework is illustrated in Figure
[[}(a). We have a generic Faster R-CNN detector which is
fine-tuned by a source labelled dataset with labeled information
given in the form of traffic-object annotations. Given a target
video sequence where labeled information is not available, an
iterative process estimates both the set of target objects and
the parameters of the specialized Faster R-CNN detector. This
latter is automatically and iteratively trained and is called until
a stopping criterion is reached. Then a final specialized Faster
R-CNN detector is produced.

Our main contribution consists in putting forward a new
transfer learning framework based on the formalism and the
theory of the SMC filter for deep detector specialization. The
aim of our formalization is to automatically label the target data,
to favor the selection of the target samples associated with the
right label and to fine-tune a scene specialized Faster R-CNN
detector.

Although the use of the SMC filter for transfer learning is
obviously not new, our work extends the SMC framework for
deep detector and for multi-traffic object detection. Moreover,
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Figure 1: (a) General synoptic of the proposed framework. The input of the framework is a generic Faster R-CNN detector fine-tuned on a generic dataset, then given

a target video sequence without any label information, an iterative process automatically estimates both the set of target objects and the parameters to specialize

the Faster R-CNN deep detector; (b) and (c) improvement of specialized scene-specific detector over generic detector for single-class and (d) multi-class object
detection (left images are generic Faster R-CNN detections and right images are specialized Faster R-CNN ones).



target samples for training a scene-specialized detector, the
first strategy of the algorithm is to propose bounding boxes
of traffic-object candidates by adapting the architecture of the
Faster R-CNN deep network for only traffic-object detection.
This strategy gives a set of suggestions composed by traffic
proposals predicted by the output layers of the Faster R-CNN.

(2) Strategy of verification: We suggest a verification
strategy to correctly select unlabeled samples from a target
scene. This strategy utilizes a combination between the
confidence-scores returned by the output layer of the Faster
R-CNN and the visual context cues extracted from the target
video sequence, in order to favor the selection of positive
samples from a target scene and to reduce the risk of
introducing wrong labelled examples in the training dataset.

(3) Strategy of sampling: We suggest a sampling strategy
that collects useful samples from target datasets according to
their weights importance, reflecting the likelihood that they
belong to the target distribution. The main role of this strategy
is to build the specialized dataset with samples produced by
the strategy of verification. To do this, we use the Importance
Sampling (IR) algorithm inspired from the theory of the SMC
filter [10]]. This algorithm transforms the weight on a number of
repetitions, through repeating the samples associated to a high
weight by numerous ones and repeating the samples associated
to a low weight by few ones. This strategy makes the suggested
framework applicable to specialize any detector and avoids the
distortion of the specialized dataset, while selecting training
samples according to the importance of their weights without
modifying the training function.

Another contribution is to make a comparative evaluation of
the proposed framework to the state-of-the-art specialization
frameworks on several public datasets and with new more
challenging annotations.

The rest of the paper is organized as follows. Section 2
reviews the existing work performed in this field and provides
a discussion about the advantages of our work over the
state-of-the-art specialization frameworks. After that, a detailed
description of our approach are provided in section 3. The
experiments and results are described in section 4. Finally, the
conclusion is given in section 5.

2. Related Work

2.1. State-of-the-art scene specialization frameworks

In this subsection, we are interested in the related
specialization frameworks that suggest to automatically
specialize scene-specific detectors or classifiers towards a target
scene.

In the recent years, transfer learning has attracted a lot
of research groups in developing state-of-the-art theories and
new applications in several domains like object detection and
recognition [S][6][7Z][L1]. Transfer learning aims to address
the problem when the distribution of the training data from the
source domain is different from that of the target one.

According to the state-of-the-art theories, transfer learning
approaches suggest to use the available annotated data and

knowledge acquired through some previous tasks relative to
source domains so as to improve a learning system of a target
task in a target domain.

Generally, three categories of transfer learning methods,
related to the proposed framework, were described in [3]]. The
first one would change the parameters of a source learning
model to improve its accuracy in a target domain [12][13].
The second category would decrease the variation between the
source and target distributions to adapt a detector to the target
domain [14]][[15]. The third one would automatically choose the
training samples that could provide a better detector or classifier
for the target task [S][[11]]. In this paper, we focus on the third
category which utilizes an automatic labeler to select data from
the target domain.

Much of the state-of-the-art research has used an iterative
self-training process to specialize a generic detector to a target
scene. An ideal framework can apply a generic detector on
some frames in a target scene, score each detection using
some heuristics and then include the most confident positive
and negative detections to the original dataset for retraining
[LON[17][18]]. Rosenberg et al. [17] opted for a self-training
framework based on background subtraction to label scene
samples. Only the samples with high confidence scores
were added in a new training dataset from one iteration to
another. Contrarily, there was a risk of introducing a wrong
labelled example in the training dataset, which may degrade
the framework performance over iterations. In addition, Wang
et al. [6] utilized different contextual cues such as visual
appearances of objects, motion of pedestrian, model of road,
size and location to select positive and negative samples from
the target scene and to add the last ones in the training dataset
for retraining. This approach proved to be sensitive to the risk
of drifting and it can be applied only onto a particular classifier.

Moreover, some solutions collected the training source
dataset with new samples extracted from the target scene,
which increased the time of training and the size of the dataset
during iterations [13[][15]. Others were limited only to the use
of samples extracted from the target domain [19][L1], which
caused the loss of useful samples stored in the source dataset.
Htike et al. [7] presented an approach that used only target
samples labeled by a background subtraction algorithm and
verified by the tracklet method to train a specific detector.
In the same vein, Mao and Yin [11] used tracklet chains to
automatically label target information. They associated the
proposal samples predicted by an appearance-object detector
into tracklets and they propagated labels to uncertain tracklets
based on a comparison between their features and those
of labeled tracklets. This framework used many manual
parameters and several thresholding rules for every target scene,
which can affect the specialization performance.

Other solutions were proposed in [S][20][16], which
collected new samples from the target scene and the source
dataset. Maamatou et al. [5] suggested a transfer learning
method based on the SMC filter to iteratively build a new
specialized dataset that was used to train a new specialized
pedestrian detector. This produced dataset consisted of both
source and target samples that were utilized to estimate the



unknown target distribution.
inspired from this latter.

Addressing this problem with deep learning has recently
gained a growing attention. Some deep models have been
investigated in the unsupervised and transfer learning challenge
[21]]. Transfer learning using deep models has been turned out
to be effective in some challenges [22][23] like traffic-object
detection [24][20], emotion recognition [25] and sentiment
analysis [26]. In order to take advantage of these types
of detectors, several transfer learning methods have been
proposed to specialize a Convolutional Neuronal Network
(CNN) detector by fine-tuning an ImageNet-pre-trained model
with a small target dataset. Li ef al. [20] suggested adapting a
generic CNN vehicle detector to a target scene by appropriating
the shared filters between source and target data and updating
the non-shared filters. In contrary to [20][27], which needed
several manual labeling of data in the target scene, Zeng et
al. [24] proposed to use Wang’s approach [6] to select target
samples and utilized these latter as an input to their CNN deep
model to re-weight samples from target and source domains
without manually labeling data from the target scene.

In this paper, we use a recent deep model, the Faster R-CNN
[9], thanks to its efficiency and robust performance in general
object detection and we specialize it with a new formalism of
transfer learning based on the theory of the SMC filter [8]] for
multi-traffic object detection.

The Faster R-CNN was put forward in [9] to accurately detect
general objects in pictures. It achieved a state-of-the-art 73.2
mean average precision on the PASCAL VOC 2007 dataset. It
was composed of two modules: The first module is a Region
Proposal Network (RPN) that provided a set of rectangular
object proposals from an input image. The second module was
the Fast R-CNN deep model [28] which took as inputs this set
of object proposals and then used them for classification. The
entire system was a single, unified network for object detection.

The suggested framework presented in this paper proposes
some improvements over the related specialization frameworks.
These improvements will be described in the next subsection.

Our proposed framework is

2.2. Literature analysis and framework proposition

This section provides a discussion about the advantages
of our work over the state-of-the-art scene specialization
frameworks and the main difference between the SMC
framework proposed by Maamatou et al. [S)] and the suggested
one.

Most of the specialization frameworks cited above are based
on hard-thresholding rules and are very sensitive to the risk of
drifting during iterations, or they are applied only to particular
classifiers or few detectors like the HOG-SVM. In fact, several
frameworks are limited only for mono-traffic object detection,
or they need many iterations for the convergence of the
specialization process.

Differently from the existing work, we put forward an
iterative process based on the formalism of the SMC filter
to specialize the Faster R-CNN deep detector for multi-traffic
object detection. Accordingly, our proposed framework allows

reducing the risk of drifting by using efficient strategies during
iterations and it can be used to specialize any deep detector like
the Fast R-CNN [28]] and the R-CNN [29]. Furthermore, this
framework may be applied using several strategies on each step
of the SMC filter. Particularly, we cite some advantages of the
suggested framework:

e We propose a likelihood function based on an efficient
strategy of verification. This latter is used to favor the
selection of samples associated to the right label from a
target scene, to decrease the risk of drifting the detector
over iterations by reducing the introduction of mislabeled
examples in the training dataset.

e The suggested framework automatically specializes a
generic detector to a target scene. This framework
iteratively estimates the unknown target distribution as
a specialized dataset by selecting only relevant samples
from the target dataset. These samples are selected
to re-train a specialized detector that increases the
detection accuracy in the target scene. Contrarily, several
state-of-the-art frameworks have aimed to collect samples
from both source and target datasets to improve accuracy
by augmenting the training dataset. These frameworks
have led to extend the size of the training dataset and to
slightly decrease the performance of the detector during
iterations.

e To permit training an accurate specialized detector with
the same function as the generic one and avoiding
the distortion of the specialized dataset, we suggest a
sampling strategy which uses the IR algorithm to select
the confidence samples relevant to their weight returned
by the likelihood function. This makes our framework
applicable to specialize any deep detector, while training
the treating samples according to the importance of their
weight without modifying the training function, as done
by [6] [16].

e We derive a generic transfer learning framework in which
many strategies can be integrated in the SMC steps.

Table [I] provides a comparison over the SMC framework
proposed by Maamatou et al.[5] and our suggested one.

The advantages of our specialization framework over the
SMC framework [3] are:

e In [3]], for each iteration, they selected relevant samples
from both source and target domains to create a specialized
dataset. In contrast, our proposed framework selects only
the relevant samples from target domains according to the
importance of their weights to create a specialized dataset.
This solution enables a faster learning of detector and leads
to an increase in detection accuracy.

e The specialized framework proposed in [S5] was very
sensitive to the risk of drifting because they used only
a background subtraction algorithm to assign weights to
the target samples. Indeed, several static objects or those



Table 1: Description of the difference between the work of Maamatou et al. [S]] and our proposed one

Maamatou et al. [5]]

Our framework

Generic detector HOG-SVM
Transfer learning

Specialized dataset

Positive & negative samples
Source & target samples

Faster R-CNN
Positive samples
Target samples

Output Specialized SVM SMC Faster R-CNN
Specialized process | SMC steps SMC steps & fine-tuning step
Traffic objects Pedestrian Multi-traffic object

with similar background appearances were classified as
negative samples, and mobile background objects were
labeled as objects of interest. On the other hand, to avoid
the distortion of the specialized dataset with mislabeled
samples, we propose a likelihood function based on the
verification strategy, which combines the confident-score
given by the output layer of the Faster R-CNN network
with spatial-temporal cues in order to attribute confidence
weights to target samples.

e The work of Maamatou et al.[S] was limited for only
single-traffic object detection, but our proposed one is
extended for multi-traffic objects like cars, pedestrians,
buses, motorbikes...

o Differently from the work in [5], we put forward new
strategies for transfer learning inspired from the three steps
of the SMC filter to specialize the Faster R-CNN deep
detector.

e [t is important to say that we need only two iterations for
the convergence of our specialization process, whereas the
framework suggested in [5] required at least 4 iterations
for this convergence.

e The proposed approach in [3] was limited to specialize the
SVM classifier, in contrary, our framework is applicable to
specialize some deep detector like the Fast R-CNN [28]],
the Faster R-CNN [9] and the R-CNN [29].

3. Proposed specialization framework

In this section, we present the proposed framework for
specializing the Faster R-CNN model to a target scene based
on SMC filter steps. Figure [2] shows the block diagram
representation corresponding to one iteration of our suggested
SMC Faster R-CNN. First, a generic Faster R-CNN network
(Ro, Fo) is fine-tuned on a generic dataset (eg: PASCAL VOC).
Given the videos taken by a stationary camera in target scenes,
at a first iteration (k = 1), the generic detector (Ry, Fo) is
applied in the prediction step by using the strategy of bounding
box proposals to suggest a set of traffic-object proposals in
each individual image. Then an update step based on the
likelihood function is used to favor the selection of the positive
samples from a target scene by associating weight to each
proposal sample returned by the prediction step. By utilizing
the sampling strategy, the sampling step determines which

samples should be included in the specialized dataset according
to their weights. A new specialized detector (R, %) is trained
by using the training strategy in the fine-tuning step. This
specialized one will become the input of the prediction step in
the next iteration. The scene-specific detector is automatically
and iteratively trained and is called until reaching a stopping
criterion, for example a fixed number of iterations. When the
number of iterations is reached, a final specialized detector
(Rk, Fx) will be generated.

In what follows, we first describe the specialization of the
Faster R-CNN model based on the theory of the SMC filter.

3.1. Faster R-CNN specialization based on SMC filter

Given a source dataset, from which a generic Faster R-CNN
detector can be trained from this source dataset, and a video
sequence of a target scene, then a specialized Faster R-CNN
detector will be generated. This latter is the output of the
distribution approximation provided by the formalism of the
SMC filter and the fine-tuning step. To do this, let us define:

o [, = {I(’)}f":1 is a set of unlabelled images extracted
uniformly from a video sequence of a target scene.

o D = {x}(")}nNi | is a specialized dataset at iteration k, where
x,i") is a target object sample to be detected in each target
image of the set {I”}/_ . This sample is defined by:

x](:’) = {p,({"),y,(:'), s]({")} where p}(") = {u]({n),v,i"),w,i"),h,i")} is
the position of an object, with (ui"), vg’)) being the upper

left coordinates of the object bounding box and (wj(”), h;("))

being the width and the height of the object bounding box,

y,({") is the object class label and s,((") is an associated score.

o xMIV = @IV} ;R F) is a function that applies the
Faster R-CNN detector using the RPN network model R
for the localization task and the Fast R-CNN network
model F for detection. For both localization and
detection, a set of candidate objects with associated scores
is provided.

o (RF} = fAIV, x™Y ;R F) is a fine-tuning
function that returns the new parameters R and ¥ of the
Faster R-CNN network. The fine-tuning is performed
from the Faster R-CNN network with initial R parameters
for the RPN and initial # parameters for the Fast R-CNN,
utilizing a training dataset given by the set of images

(T , and the associated objects {x"}Y |

i=
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Figure 2: Block diagram of proposed approach: At the first iteration, our generic detector (Ro, o) which is fine-tuned by the source dataset is utilized in the first
prediction step by using bounding box proposals strategy to produce a list of traffic-object bounding boxes from the target scene, and then a update step based on
the likelihood function is used to favor the selection of positive samples from a target scene. The sampling step determines which samples will be included in the
specialized dataset by using the sampling strategy. A new specialized detector (R, F) is fine-tuned by utilized training strategy in the fine-tuning step, which will
become the input of the prediction step in the next iteration k = k + 1. A final specialized detector (Rk, Fx) is called when a predefined number of iterations is
reached. The red rectangles in the output image of update step mean that samples have a high weights attributed by our suggested likelihood function and a blue
ones mean that samples have a low weights.



We define x;, to be a hidden random state vector associated to a
joint distribution between labels and features of dataset samples
at an iteration k and z; a random measure vector associated
to information extracted from the target scene (i.e. visual
spatio-temporal information). Based on our assumption, the
target distribution can be approximated by iteratively applying

equation (I):
p(xk|ZO:k)=C-p(zk|Xk)f PXiXk— 1) p(X—11Zok-1)dXi—1 (1)
X

where C is a normalisation factor: C = 1/p(Z|Zo.x).
The SMC filter estimates the probability distribution p(x|zx)
by a set of N particles (samples in this case), according to

equation (2)):
N
~ (n)
POl = ) 76,0 (%) 6)

n=1

e ¢ represents the Dirac function (3):

_J 1
5x(ku) (Xk) = { 0

° (”) € [0, 1] is the weight associated to sample n atiteration
k and N is the number of target samples

if x¢= xf{”)
otherwise

(€)

o -y P(ZilXk = X}) @
k N n n
D=1 T_y P(ZlXk = X))

It is important to note that the sum of the weights of all the
samples is equal to (9):

N
Al =1 )
n=1

All notations mentioned above are introduced in [§]].

Therefore, the formalism of the SMC filter is used to
approximate the unknown joint distribution of traffic objects by
a set of samples that are initially unknown. We suppose that
the iterative process selects relevant samples for the specialized
dataset from one iteration to another, leading to converge to
the right target distribution, and making the resulting Faster
R-CNN detector more and more efficient.

The resolution of equation (I) is divided into three steps:
prediction, update and sampling. These steps are similar to
the popular particle filter framework, widely used to solve the
tracking problems in computer vision [30][31]]. The details of
the three main steps are described in the following subsections.

3.1.1. Prediction step
The prediction step consists in
Chapman-Kolmogorov equation (6):

applying  the

P(XklZo:k-1) = f PXilXe- 1) p(Xi—1|Zo:k-1)dXp—1 - (6)
Xk-1
Equation (6) uses the system dynamics term p(X|X¢_1)
between two iterations in order to suggest a cialized dataset
7)

Dy = {x}(")}n]\’kl producing the approximation ll

POilzos-1) ~ (KON @)

We suggest to extract the proposal set {X (")}Nk from the set

of proposals produced by the Faster R- CNN fine-tuned by
{xj(")I }N‘ ' (the target set at iteration k — 1):

&P = @IV Ry, Fin) (8)

with a first iteration (k = 1) that uses an initial generic network
(Ro, Fo)-

3.1.2. Update step

This step defines the likelihood term (9) by utilizing a
likelihood function. This latter assigns a weight 7 to each
proposal sample {X; " }Nk returned by the Faster R-CNN at the
prediction step.

P(zilxy = X) o< 7T} &)
The likelihood function employs visual contextual cues
extracted from the target video sequence and the confidence
scores given by the output layer of the Faster R-CNN, to
attribute a weight for each sample. More details about the
likelihood function are given in section The update step
gives as an output a set of weighted target samples, which will
be referred to as “the weighted target dataset” hereafter (I0):

(&, 7)) (10)

n=1

where {i,(:’), ﬁ,ﬁ")} represents a target sample with its associated

weight and Ny, is the number of weighted samples.

3.1.3. Sampling step

The aim of this last recursive-filter step is to build a new
specialized dataset by deciding, according to the strategy of
sampling (defined in the contribution), which samples will be
included in the produced dataset D; = {x (”)}Nk at the iteration

k from the weighted dataset {X] X" ~g’)},’:]kl A sampling strategy

is applied in order to generate a new unweighted dataset which
has the same number of samples as the weighted one. To do
this, we apply the IR algorithm, according to equation (TT):

knl n=1

Dy = {x (")}NA —[R({ <) ~(")}NA ) (11)

This step generates a new set D by drawing samples according
to the weight 7, 7

3.2. Likelihood function

In order to choose the correct proposal, we put forward a
likelihood function based on the verification strategy, which
assigns a weight 7r ) for each sample X ”(”) returned by the
prediction step. Our specifically designed llkelihood function
not only incorporates the confidence scores given by the output
layer of the Faster R-CNN but also adds a spatial-temporal cues,
to prioritize the selection of the correct samples and to reduce
the risk of including wrong proposal samples in the specialized
dataset.



Summarising the tests carried out on different databases, it is
noticed that the generic Faster R-CNN is robust to generate true
positive samples with a high score, and its selection of these
ones will start to fail when the score of samples is lower than
the score threshold ay. For this reason, we keep the samples
which have a confidence score greater than or equal to a; and
we propose an observation function f; to assign a weight to
each proposal sample that has a score lower than a;, according

to (T2):

(1) : (1)
sy it s 2

) = { ) Q)
~(n . n
k &) if s <

Accordingly, we choose a dynamic threshold through
iterations to avoid the problem of integrating negative samples
into the specialized dataset. We are not limited to a fixed
predefined threshold because the choice will be dynamic and
will be related to the following equation (I3):

(12)

Sk

—ap-1 if k#0
§k71 -1 1 * (13)

o if k=0

ayp =

where « is the initial value of the score threshold (fixed to
0.5 for our experiments) and §; is the mean value of sf{”) at
iteration k :

Lower than ay, the deep detector will start to fail and
it will become unable to correctly select positive samples
from a specific scene. To solve this problem, we propose
an observation function f; in order to favor the selection of
positive samples using the information extracted from the target
scene. This function is based on the visual spatio-temporal cue
”Background extraction overlap score”, to attribute a weight for
each sample.

In a traffic scene, it is rare for a traffic object to stay fixed
for a long time, and a good detection occurs on a foreground
blob; whereas, false positive background detections give some
Region of Interests (Rols) that appear over time at the same
location and with the same size.

To assign a weight for each sample, we calculate an
overlap_score A, (equation[T4) that compares the Rol associated
to one sample with the output of a binary foreground extraction
algorithm.

. 2(RoI AR x FG_AR)
" Rol AR+ FG_AR

where Rol_AR is the area in pixels of the considered Rol and
FG_AR is the foreground area at the Rol position (see Figure

B).

The background subtraction algorithm used in the proposed
observation function is adopted from and was called
the ”BackgroundS ubtractorMOG?2” algorithm. This latter
is a Gaussian mixture-based background / Foreground
segmentation algorithm.

One important property of this algorithm is that it chooses
the appropriate number of Gaussian distribution for each pixel.
It provides better adaptability to illumination changes. In our
work, to ameliorate the result generated by the background

(14)

Figure 3: The red rectangle presents the area in pixels of the considered Rol,
the green rectangle is the foreground area, and the rectangle filled in blue is the
area of intersection.

subtraction algorithm mentioned above, we put forward some
improvements such that:

e We apply several morphological filtering operations like
erosion and dilation to the result of this algorithm so as to
remove unwanted noise.

e We remove the blobs which have a surface area less than
100 pixels.

The observation function (Algorithm [I)) will assign a high
weight to a positive proposition if it has an overlap_score A, that
exceeds a fixed threshold a,, which is determined empirically.

Algorithm 1 Observation function

Input: Set {iﬁ")}nﬁi , with associated Rol position {Pg)}&
the target video-sequence

Target video sequence J,

a,: overlap threshold

into

Output: Set {ﬁg)}g] of weights associated to samples

for i =1to Ny do
ﬁ,(:) «0
/* Visual contextual cue computation */

_ 2(Rol AR x FG_AR)
" Rol AR+ FG_AR

/* Weight assignment */
if (1, > «,) then
ﬁ;:) — A,
end if
end for

Considering the likelihood function, the favoring of sample
associated to the right label becomes efficient and easier.

3.3. Fine-tuning step

In the proposed framework, the aim of the fine-tuning step is
to specialize the RPN and the Fast R-CNN deep networks to a
specific scene. Accordingly, we use the target detection boxes
included in the specialized dataset 9 and the RPN fine-tuning
process mentioned in [9].

To do this, we use a sliding window approach to generate k
bounding boxes for each position on the feature map produced



by the last convolutional layer, where each bounding box is
centered on the sliding window and is associated with an aspect
ratio and a scale (see Figure ). The intersection-over-Union
(IoU) overlap between each box of the specialized dataset Dy
and the bounding boxes is then computed. A bounding box
is designated as a positive training example if it has an IoU
overlap greater than a predefined threshold with any Dy box, or
if it is the bounding box that has the highest IoU with a D box.
A proposal is designated as a negative example to a non-positive
bounding box if its maximum IoU ratio with all boxes of the
specialized dataset Dy, is less than another predefined threshold.
The bounding boxes that are neither positive nor negative do not
contribute to the training.

Note that, the RPN fine-tuning process mentioned above does
not consider that there might exist multiple copies (maximum
twice) of the target detection box in the specialized dataset Dy
because the main objective of using the IR algorithm proposed
in the sampling strategy is not to increase the size of the
database with samples which have high weights but to decrease
the risk of distorting the specialized dataset 9D, with wrong
labelled examples because it is possible that the weighted target
dataset contains wrong samples classified as traffic objects
because their 4, >= a,,.

After training the RPN, these proposals are used to train the
Fast R-CNN. Figure [ illustrates the training strategy of the
RPN fully-convolutional network.

Algorithm 2 SMC Faster R-CNN

Input: Generic network (Ro, o)
Number of iterations: K
Number of target samples Ny,
Unweighted target dataset: ‘W)
Target video sequence J,

Output: Specialized network (Rg, Fx)
Specialized dataset Dk

for k=1,...,Kdo
/* Prediction step */
&N = OUTVNL s Reet, Fier)
/* Update step */
Wi = %)
/* Sampling step */
for n=1to N, do
Draw a sample: {£}%
p € {Xk }n=1 B
end for
/* Fine-tuning step */
{Re, Fi} = (L1, Di; Ri1, Fe-1)
end for
{Rk, Fx} = R, Fr)

according to the weight ﬁ;(")

Therefore, a new specialized RPN network and the
Fast R-CNN one are generated being fine-tuning with the
specialized dataset. These networks will become the input of
the prediction step in the next iteration and will generate new
object proposals (bounding boxes) in the target scene.

(R, T} = fZ 1, D Re—1, Fi—-1) (15)

The suggested SMC Faster R-CNN framework is

summarized in Algorithm[2]

4. Experimental results

This section presents the experiments that have been
achieved in order to compare the SMC Faster R-CNN with the
relevant frameworks on several public and private datasets for
single and multi-traffic object detection.

4.1. Implementation details

We describe the implementation details of the SMC Faster
R-CNN algorithm. We use the pre-trained VGG16 model [33]]
to initialize the Faster R-CNN network, which is used in most
recent state-of-the-art approaches [28]][29].

Both RPN and Fast R-CNN are fine-tuned end-to-end by
back-propagation and stochastic gradient descent [34] with a
weight decay of 0.0005 and a momentum of 0.9. We use the
alternating training algorithm [9] for Faster R-CNN training
from one iteration to another. The Faster R-CNN is fine-tuned
on a NVIDIA GeForce GTX TITAN X GPU with a 12GB
memory.

Following multiple experiments, we chose 9 as the number
of bounding boxes (3 aspect ratios [2:1, 1:1, 1:2] and 3 scales
[1282, 2562, 512?%]) generated on each position of the sliding
windows. We also chose 0.7 as the threshold of the IoU to
select the positive samples and 0.3 for the negatives to build the
training dataset.

The parameter K (number of iterations of the SMC process)
is fixed to K = 2. Figure [6] shows that the specialization
converges after two iterations for both car and pedestrian
detection applied on the MIT Traffic dataset (introduced in the
next section).

4.2. Datasets

The PASCAL VOC 2007 dataset [35] was utilized to learn
the generic Faster R-CNN. This dataset consists of about 5,011
trainval images and 4,952 test ones over 20 object categories.
In our experiments, we use only 713 annotated cars, 2,008
pedestrian, 186 buses and 245 for motorbikes, to fine-tune the
generic Faster R-CNN. The evaluation is achieved on three
target datasets (two public ones and a private one):

e CUHK Square dataset [16]: This is a video sequence of
road traffic which lasts 60 minutes. 352 images are utilized
for specialization, uniformly extracted from the first half
of the video. 100 images are used for the test, extracted
from the latest 30 minutes. Annotations were provided
by Wang [16] for pedestrian detection (called CUHK_WP
after). However, we notice that some annotation errors
are made in the public ground truth and we suggest a new
annotation (called CUHK_MP after) (see Figure a).

e MIT Traffic dataset [4]: This is a 90-minute video. We
use 420 images from the first 45 minutes for specialization.
100 images are uniformly sampled from the last 45
minutes for the test.  Annotations are available for
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Figure 4: Description of training strategy for the RPN fully-convolutional network

pedestrians [4] (called MIT_WP) and cars [20] (called
MIT_LV). Since some annotation errors are present,
we propose new annotations (called MIT_MV) (see

Figure[§]b).

o Logiroad Traffic dataset: This is a private video
sequence of road traffic which lasts 20 minutes. We utilize
600 images for specialization, extracted uniformly from
the first 15 minutes of the video. 100 images are used for
the test, extracted from the latest 5 minutes. Annotations
are available for vehicles (called Logiroad_MYV).

4.3. Descriptions of experiments

Evaluation is performed in terms of recall False Positives
Per Image (FPPI) curves. The PASCAL 50 percent overlap
criterion [35]] was utilized to give a score for the detection
bounding boxes. The SMC Faster R-CNN framework is
compared with several state-of-the-art frameworks:

o Generic Faster R-CNN: It is a detector fine-tuned on the
generic dataset. This is the baseline for our comparison.

e Maamatou (2016) [S]: An SMC framework was applied
to specialize a generic HOG-SVM classifier to a particular
video sequence for traffic object detection.

e Xudong Li (2015) [20]: A deep learning domain
adaptation framework was proposed for vehicle detection
with manually annotated data from the target scene.
Unlike other methods, the latter was not totally automatic
and requires some manual annotations.

e Mao (2015) [11]: A framework was suggested to
automatically train scene-specific pedestrian detectors
based on tracklets.

e Htike (2014) [7]: A non-iterative domain adaptation
framework was used to adapt a pedestrian detector to video
scenes.

e Zeng (2014) [24]: A deep learning domain adaptation
framework was proposed to automatically select training
samples from target scenes without manual labelling for
pedestrian detection.

e Wang (2014) [6]: A specific-scene detector was trained
on only relevant samples collected from both source and
target datasets.

e Nair (2004) [36]]: An iterative self-training framework
for detector adaptation was opted for using a background
subtraction algorithm.

4.4. Results and analysis for single-traffic object

Given each dataset and its annotation, we present the ROC
curves (Figure 5) of the generic Faster R-CNN, the SMC
Faster R-CNN and the available state-of-the-art frameworks.
The ROC curves present the comparison between the true
detection rate and the false positive detection rate per image.
Furthermore, we give two comparative synthetic tables: one
for pedestrian detection (cf. Table[2)) and the other for vehicle
detection (cf. Table E[) In addition, on the last line of both
tables, the improvement between the generic Faster R-CNN and
the SMC Faster R-CNN is given.

e Comparison with generic detector: Figure [3]
shows that the specialized Faster R-CNN detector
significantly outperforms the generic one on all public
and private datasets with several annotations. The median
improvement is 51%.

e Comparison with state-of-the-art: According to the
ROC curves at the top of Figure 5} for the CUHK
pedestrian detection, the SMC Faster R-CNN outperforms
all other state-of-the-art frameworks. Besides, the
detection rate achieved with our proposed annotations
on CUHK_MP is nearly 90% for 0.5 FPPL. However,
despite of the wrong annotations given by Wang (left curve



in the top of Figure [5), the SMC Faster R-CNN also
exceeds the six other specialized detectors of Nair (2004),
Wang (2014), Zeng (2014), Htike (2014), Mao (2015) and
Maamatou (2016) respectively by 24%, 45%, 53%, 49%,
58% and 62%.

For the MIT pedestrian detection (MIT_WP in Table 2),
the specialized deep detector proposed by Zeng (2014)
exceeds the SMC Faster R-CNN detector for an 0.5 FPPI,
which is less than 0.9.

Despite the wrong annotations given by Li et al. [20],
Figure [3] (right curve in the middle) shows that for the
MIT car detection (MIT_LV), the proposed SMC Faster
R-CNN clearly outperforms the specialized CNN detector
proposed by Li (2015) which trained with manual data
labeling from the target scene. According to Table 3, for
the MIT and Logiroad car detection with the proposed
annotations, the SMC Faster R-CNN is ranked first and
exceeds the specialized detector suggested by Maamatou
(2016).

One can notice that the generic Faster R-CNN, fine-tuned
on the PASCAL VOC 2007 dataset, has a poor detection
rate resulting in a limitation of the size of the specialized
dataset.

Table 2: Comparison of detection rate for pedestrian with state of the art (at
0.5 FPPI)

Dataset CUHK_WP | CUHKMP | MIT_WP
Approach
Nair [36] 0.24 - 0.35
Wang [6] 0.45 - 0.42
Zeng [24] 0.53 - 0.58
Htike [7]] 0.49 - -
MAO [[11] 0.58 - -
Maamatou [5]] 0.62 0.58 0.40
Generic Faster R-CNN [9] 0.60 0.69 0.07
SMC Faster R-CNN 0.65 0.88 0.47
Improvement / generic (%) 8% 28% 571%

Table 3: Comparison of detection rate for car with state of the art (at 1 FPPI)

Dataset MITLV | MIT MV | Logiroad MV
Approach
Li [20] 0.77 - -
Maamatou [35]] - 0.29 0.47
Generic Faster R-CNN [9] 0.68 0.38 0.40
SMC Faster R-CNN 0.77 0.80 0.70
Improvement / generic (%) 13% 110% 75%

e Effect of likelihood function: To show the effectiveness
of our likelihood function, the ROC curves in Figure
show the comparison between using the likelihood
function based only on confidence score predicted by the
Faster R-CNN and our proposed one on two datasets.

The red curves in Figure[7]present our proposed likelihood
function based on the combination between the confidence
score and the spatio-temporal cue, and the blue ones

11

indicate the use of the confidence score only, which is
given by the output layer of the Faster R-CNN. The
results demonstrate that the proposed likelihood function
based on using the verification strategy improves the
detector performance and accelerates the convergence of
the specialization process. Furthermore, we cannot say
that this choice is the best because it is possible to
ameliorate the suggested framework by proposing other
strategies for the SMC steps. For example, we can improve
the likelihood function with more complex visual cues like
tracking, optical flow or contextual information to enhance
the weighting of positive samples.

4.5. Results and analysis for multi-traffic object

We evaluate the proposed approach for multi-traffic objects
on two datasets, the MIT Traffic dataset and the Logiroad one
using two evaluation criteria: namely the ROC curves and the
confusion matrix (classical metrics for object detection).

For the MIT Traffic dataset, we select 2 classes {’pedestrian’,
car’} and 4 classes for the Logiroad Traffic dataset
{’pedestrian’, ’car’, "bus’, "'motorbike’}.

The results are reported in Table The SMC Faster
R-CNN presents a median improvement of 89% related to
the generic detector. Moreover, Tables [5] and [6] provide the
associated similarity matrix. We show that some confusion
may occur between motorbikes and cars or between buses and
cars. Furthermore, these results illustrate that our framework
has a robust performance for multi-traffic object detection.
This indicates that it is useful to run our specialization
algorithm whenever we have a new sequence and we want to
automatically generate a much better deep detector than the
generic one.

5. Conclusion and future work

We have put forward an efficient framework based on the
formalism of the SMC filter to specialize the Faster R-CNN
deep detector for multi-traffic object detection. This framework
approximates the unknown target distribution by selecting
relevant samples from target datasets. These samples are
utilized to fine-tune a specialized deep detector in order to
decrease the detection rate in the target scene. Given a
generic detector and a target video sequence, this framework
automatically provides a robust specialized detector. Moreover,
the proposed framework allows reducing the risk of drifting by
using efficient strategies during iterations and it can be used
to specialize any deep detector. The extensive experiments
have demonstrated that the suggested framework has produced
a specialized detector that performs much better than the
generic one for both single and multi-traffic object detections
in different scenes. Furthermore, the results show that the
framework outperforms the state-of-the-art specialization ones
on several challenging datasets. Our future work will deal with
an extension of the algorithm to improve the likelihood function
by using a new strategy of verification based on more complex
visual cues like tracking, optical flow, tracklets or contextual
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Table 4: Detection rate for multi-traffic object detection with SMC Faster R-CNN (at 1 FPPI)

Dataset Logiroad_Car | Logiroad_Person | Logiroad_Moto | MIT_Car | MIT_Person
Approach
Generic Faster R-CNN 0.28 0.24 0,065 0.32 0.05
SMC Faster R-CNN 0.60 0.36 0.18 0.73 0.30
Improvement/ generic(%) || 114% 50% 176% 128% 500%

Table 5: Illustration of similarity matrix between traffic object categories on Logiroad Traffic dataset (diagonal row shows the accuracy to recognize traffic objects

of its own class)

Predicted class Pedestrian | Car Motorbike | Bus
Actual class
Pedestrian 140/97 % 12/1.5% 5/14% 0
Car 0 750/96% | 1/3% 1/2.5
Motorbike 5/3% 12/1.5% 30/83 % 1/2.5%
Bus 0 7/1% 0 38/95%
Total 145 781 36 40

MIT dataset

0.0t
0.8}
o
207t
| =
D o6
=2
=
a 0_5 1
(@]
Qpgal
Q
Z o3t
= ——Generic Faster R-CNN
0.2r ——SMC Faster R-CNN it1
sl ——SMC Faster R-CNN it2
! ——SMC Faster R-CNN it3
o |
0 0.2 0.4 0.6 0.8 1

False positive per image

Figure 6: ROC curves for convergence of specialization process

(ANR-10-LABX-16-01), by the European Union through the
program Regional competitiveness and employment 2007-2013
(ERDF - Auvergne region), and by the Auvergne region.
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