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Abstract

Transfer learning approaches have shown interesting results by using knowledge from source domains to learn a
specialized classifier/detector for a target domain containing unlabeled data or only a few labeled samples. In this
paper, we present a new transductive transfer learning framework based on a sequential Monte Carlo filter to
specialize a generic classifier towards a specific scene. The proposed framework utilizes different strategies and
approximates iteratively the hidden target distribution as a set of samples in order to learn a specialized classifier.
These training samples are selected from both source and target domains according to their weight importance,
which indicates that they belong to the target distribution. The resulting classifier is applied to pedestrian and car
detection on several challenging traffic scenes. The experiments have demonstrated that our solution improves and
outperforms several state of the art’s specialization algorithms on public datasets.

Keywords: Generic and specialized classifier, Sequential Monte Carlo filter, Sample-proposal and observation
strategies, Specialization, Transductive transfer learning

1 Introduction
The object detection in an image or in video frames is
the first task to perform and the most interesting one in
several computer vision applications. A lot of work has
focused on pedestrian and vehicle detection for the intel-
ligent development of the transportation system and the
video-surveillance traffic-scene analysis [1–13]. Most of
these papers have proposed object-appearance detectors
to improve the performance of the detection task and to
avoid—or at least reduce—problems relative to a simple
background subtraction algorithm, such as merging and
splitting blobs, detecting mobile background objects, and
detecting moving shadows. Some researchers [9, 10, 14]
have focused on presenting relevant features that drop the
false positive rate and raise the detection accuracy, though
often leading to a increase in the computational costs
of multi-scale detection tasks. Other researchers, like
Dollár et al. [11, 12], have been interested in reducing
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the time needed to compute features at each scale of
sampled image pyramids without adding complexity or
particular hardware requirements to allow fast multi-scale
detection.
However, a key point of learning appearance-based

detectors is the building of a training dataset, where thou-
sands of manual labeled samples are needed. This dataset
should cover a large variety of scales, view points, light
conditions, and image resolutions. In addition, training a
single object detector to deal with various urban scenarios
is a very hard task because there can be much variabil-
ity in traffic scenes like several object categories, different
road infrastructures, weather influence on video quality,
and time of scene recording (rush hours or off-peak hours,
day or night).
The diversity of both positive and negative samples can

be very restricted in a video surveillance scene recorded
by one static camera. Nevertheless, it was demonstrated in
[15–20] that the accuracy of a generic (pedestrian or vehi-
cle) detector would drop-off quickly when it was applied
to a specific traffic scene, in which the available data would
mismatch the training source one.
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An intuitive solution is to build a scene-specialized
detector that provides a higher performance than a
generic detector using labeled samples from the target
scene. On the other hand, labeling data manually for
each scene and repeating the training process several
times, according to the number of object classes in the
target scene, are arduous and time-consuming tasks. A
functional solution to keep away from these tasks is to
automatically label samples from the target scene and to
transfer only a set of useful samples from the labeled
source dataset to the target specialized one. Our work
moves along this direction.We suggest an original formal-
ization of transductive transfer learning (TTL) based on
a sequential Monte Carlo (SMC) filter [21] to specialize
a generic classifier to a target scene. In the proposed for-
malization, we estimate a hidden target distribution using
a source distribution in which we have a set of annotated
samples, in order to give an estimated target distribu-
tion as an output. We consider samples of the training
dataset as realizations of the joint probability distribution
between samples’ features and object classes.
The distribution approximation is solved by a recursive

process. A synthetic block diagram corresponding to one
iteration is illustrated in Fig. 1. Algorithm 1 describes the
process of the suggested approach. In this algorithm, we
start with a prediction step that applies sample-proposal
strategies on a set of frames extracted from the target
scene to search and suggest target samples. Then, we
determine the relevance of the proposals in the update
step using observation strategies that assign a weight to
each proposal sample. The sampling step uses a sampling
importance resampling (SIR) algorithm to select target

samples with a high weight and to pick out source sam-
ples that are visually close to the selected target ones. The
selected samples from both the target and source datasets
are combined to create a new specialized dataset for the
next iteration. When the stopping criterion is reached, we
provide the last specialized classifier and the associated
specialized dataset as outputs.
Our major contribution in this paper concerns the use

of the Monte Carlo filter in a context of transfer learning:

(1) Original formalization of TTL for classifier spe-
cialization based on SMC filter: This formalization
is inspired from particle filters, mostly used to solve
the problems of object tracking and robot localization
[22–24]. We propose to approximate an unknown
target distribution as a set of samples that compose
the specialized dataset. The aim of our formalization
is to automatically label the target data, to attribute
weights to samples of both source and target datasets
reflecting their relevance, to select relevant samples
for the training according to their weights, and to
train a scene specialized classifier. Importantly, this
formalization is general and can be applied to special-
ize any classifier.

Moreover, we propose different strategies for the three
steps of the Monte Carlo filter:

(2) Strategies of sample proposal: In order to use infor-
mative samples for training a scene-specialized clas-
sifier, we put forward two sample-proposal strategies.
The letter gives a set of suggestions composed by true

Fig. 1 A synthetic block diagram of a sequential Monte-Carlo specialization at a given iteration k. (1) Prediction step to search and propose a set of
target samples. (2) Update step to select the right predicted samples. (3) Sampling step to build a new specialized dataset
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positive samples, false positive ones known as “hard
examples,” and samples from background models.
These strategies accelerate the specialization process
by avoiding handling all the samples of the target
database.

(3) Strategies of observation: We also suggest two obser-
vation strategies to select the correct proposed target
samples and to avoid the distortion of the special-
ized dataset with mislabeled samples. These strategies
utilize prior information, extracted from the target
video sequence, and visual context cues to assign
a weight for each sample returned by the proposal
strategies. Our suggested visual cues do not incorpo-
rate the score returned by the classifier, which can
make the training of the specialized classifier drift, as
some previous work did [25–28].

(4) Strategy of sampling: In general, the properly classi-
fied target samples are not enough to build an effi-
cient target classifier. However, the source dataset
may contain some samples that are close to the
target ones, which helps training a specialized clas-
sifier. Therefore, we put forward a sampling strat-
egy that selects useful samples from both target and
source datasets according to their weight impor-
tance, reflecting the likelihood that they belong to the
target distribution. Differently from the work devel-
oped in [25–28], which treated equally the dataset
samples, or from the work of Wang et al. [16, 17],
which integrated the confidence-score associated to
the sample in the training function of the classifier,
we utilize the SIR algorithm. The latter transforms
the weight of a sample on a number of repetitions,
through replacing the samples associated to a high
weight by numerous ones and replacing the sam-
ples linked to a low weight by few ones, thus giving
them identical weights. This makes our approach
applicable to specialize any classifier, while treating
training samples according to the importance of their
weights without modifying the training function as
Wang et al. [16, 17] did.

The remainder of the paper is organized as follows.
First, some related work is described in Section 2. Then,
the proposed approach is presented in Section 3: We
describe the general SMC scene specialization framework
in Section 3.1 and the several proposed strategies for
each filter step in Section 3.2. After that, our experimen-
tal results are provided in Section 4. Finally, the paper is
summarized in Section 5.

2 Related work
The literature has proven that the transfer learning meth-
ods have been successfully utilized in various real-world
applications like object recognition and classification.

These methods propose to use available annotated data
and knowledge acquired through some previous tasks rel-
ative to source domains so as to improve a learning system
of a target task in a target domain [29]. In this section, we
are interested in the work that suggests to develop auto-
matically or with less human effort-specific classifiers or
detectors to a target scene.
Mainly three categories of transfer learning methods,

related to the suggested approach, were described in [20].
The first category would modify the parameters of a
source learning model to improve its accuracy in a target
domain [30, 31]. The second one would reduce the differ-
ence between the source and target distributions to adapt
the classifier to the target domain [32, 33]. The last one
would automatically select the training samples that could
give a better model for the target task [34, 35]. Except
[18, 36], which presented classifiers based on the Convo-
lutional Neural Networks (CNN), most of the work cited
above was presented as variants of the Support Vector
Machine (SVM).
In this paper, we focus on the last category that uses an

automatic labeler to collect data from the target domain.
Rosenberg et al. [25] utilized the decision function of an
object appearance classifier to select the training sam-
ples from one iteration to another. Since the classifier
was itself the labeler, it was difficult to set up the deci-
sion function. If this latter was selective enough, then
only the very similar data would be chosen—even if they
did not contain important variability information. Con-
trarily, there was a risk of introducing wrong data that
would degrade the system’s performance over time. To
introduce new data containing more diversity, Levin et al.
[27] used a system with two independent classifiers to
collect unlabeled data. The data labeled with a high con-
fidence, by one of the two classifiers, were added to the
training data to retrain both classifiers. Another way to
automatically collect new samples is to use an external
entity called “oracle.” An oracle may be built utilizing a
single algorithm or combining and/or merging multiple
algorithms. Nair and Clark [26] presented an oracle based
on a background subtraction algorithm, while Chesnais
et al. [28] put forward an oracle composed of three inde-
pendent classifiers (appearance, background extraction,
and optical flow). It was noted that the adapted classifier
of Nair and Clark [26] was very sensitive to the risk of
drifting because the selection of samples would depend
only on the background subtraction algorithm. Indeed,
several static objects or those with similar background
appearance were classified as negative samples andmobile
background objects were labeled as objects of interest.
Moreover, the proposed methods of Levin et al. [27] and
Chesnais et al. [28] were based on the assumption that the
classifiers were independent, which could not be easy to
validate.
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Futhermore, some solutions concatenated the source
dataset with new samples, which increased the dataset
size during iterations [30–33]. Others were limited only to
the use of samples extracted from the target domain [28],
which resulted in losing pertinent information of source
samples. Ali et al. [37] presented an approach that learned
a specific model by propagating a sparsely labeled training
video based on object tracking. Inspired from this, Mao
and Yin [19] opted for chains of tracked samples (track-
lets) to automatically label target data. They linked detec-
tion samples returned by an appearance-object detector
into tracklets and propagated labels to uncertain tracklets
based on a comparison between their features and those
of labeled tracklets. The method used a lot of parameters,
which should be determined or estimated empirically, and
several sequential thresholding rules, causing an ineffi-
cient adaptation of a scene-specific detector.
Another solution was proposed in [15–18, 20, 35, 36].

It collected new samples from the target domain and
selected only the useful ones from the source dataset.
Wang et al. [17] used different contextual cues such as
pedestrianmotion, roadmodel (pedestrians, cars ...), loca-
tion, size, and objects’ visual appearances to select positive
and negative samples of the target domain. In fact, their
method was based on a new SVM variant to select only
source samples that were good for the classification in the
target scene. The limit of their method was that it can be
applied only onto an SVM classifier.
Recently, we have noticed an emergence of work based

on deep learning, which presents high performances on
classification and detection tasks. Yet, it is known that
this type of model requires large datasets and has various
parameters to train. In order to take advantage of these
classifiers, some work has proposed to transfer the CNN
trained on a large source dataset to a target domain with
a small dataset. Oquab et al. [38] copied the weight from
a CNN trained on the ImageNet dataset to a target net-
work with additional layers for image classification on the
Pascal VOC dataset. In [18], Li et al. suggested adapt-
ing a generic ConvNet vehicle detector to a scene-specific
one by reserving shared filters between source and tar-
get data and updating the non-shared filters. In contrary
with [18, 38], which needed several labeled data in the tar-
get domain, Zeng et al. [36] learnt the distribution of the
target domain by opting for Wang’s approach [17] as an
input to their deep model to re-weight samples from both
domains without manual data labeling from the target
scene.
Most of the specialization algorithms cited above are

based on hard-thresholding rules and can drift quickly
during training [17], or they are applied only to few
classifiers. Nevertheless, our proposed framework over-
comes the risk of drifting by propagating a subset of
specialized dataset through iterations. It can be used to

specialize any classifier while utilizing the same function
as a generic classifier and may be applied using several
strategies on each step of the filter. Some preliminary
results of the work presented in this paper were published
in [20]. In this paper, we put forward an extension of
our original TTL approach based on an SMC (TTL-SMC)
filter by other sample proposal and observation strate-
gies and more experiments. The TTL-SMC approximates
iteratively the joint probability distribution between the
samples and the object classes of the target scene by com-
bining only relevant source and target data as a specialized
dataset. The latter is used to train a specialized classifier
for the target scene.

3 Our proposed approach
This section presents the proposed approach.We describe
in Section 3.1 the core of the general specialization frame-
work based on the SMC filter. Then, we suggest in
Section 3.2 different strategies that can be used for each
filter step.

3.1 SMC scene specialization framework
This subsection introduces the context and gives a
detailed description of the proposed framework.

3.1.1 Context
In our work, we assume that the unknown joint distribu-
tion between the target samples and the associated labels
can be approximated by a set of representative samples.
The block diagram of the suggested specialization, at a
given iteration k, is illustrated in Fig. 1. Algorithm 1 gives
a summary of its process.
Given a source dataset, a generic classifier, which can be

learnt from this source dataset, and a video sequence of a
target scene, then a specialized classifier and an associated
specialized dataset are to be generated. The two latter are
the outputs of the distribution approximation provided by
the SMC filter.
Let Dk

.= {X(n)

k }n=1,..,N be a specialized dataset of size
N at an iteration k, where X(n)

k
.= (x(n), y) is the sample

number n, with x being its feature vector and y its label,
where y ∈ Y . Basically, Y = {−1; 1}, where 1 represents
the object and −1 represents the background (or non-
object class). In addition, �Dk is a specialized classifier at
an iteration k, which is trained on the previous specialized
dataset Dk−1. We use a generic classifier �g at the first
iteration.
A source datasetDs .= {Xs(n)}n=1,..,Ns ofNs labeled sam-

ples is defined. Moreover, a large target dataset Dt .=
{xt(n)}n=1,..,Nt is available. This dataset is composed of
Nt unlabeled samples provided by a multi-scale slid-
ing window extraction strategy applied on the target
video sequence and cropped from computed background
models.
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Algorithm 1 SMC scene specialization algorithm
Input: Source datasetDs

Generic classifier �g
Target video scene and associated datasetDt

Number of source samples Ns.
Parameter αs.

Output: Last specialized datasetD
Last classifier �D
________________________________________
k ← 0
stop ← false
while stop �= true do

/* Prediction step */
if (Dk = ∅) then

Learn(�g ,Ds)∗
else

Learn(�Dk ,Dk)
∗

end if
D̃k+1 ←

{(
X̃(n)

k+1

)}
n=1,..,Ñk+1

if (|D̃k+1|/|D̃k| >= αs) then
stop ← true
Break

end if

/* Update step */

D̆k+1 ←
{(

X̆(n)

k+1, π̆
(n)

k+1

)}
n=1,..,N̆k+1

/* Sampling step */

Dk+1 ←
{(

X∗(n)

k+1

)}
n=1,..,Ns

k ← k + 1
end while
∗Learn(�,D) is a function that learns a classifier � on
the datasetD.

3.1.2 Classifier specialization based on SMC filter
We define Xk as a hidden random state vector associ-
ated to a joint distribution between features and labels of
dataset samples at an iteration k andZk a randommeasure
vector associated to information extracted from the tar-
get video sequence. Based on our assumption, fixed above,
the target distribution can be approximated iteratively by
applying Eq. 1:

p
(
Xk+1|Z0:k+1

) =
C.p

(
Zk+1|Xk+1

) ∫

Xk

p
(
Xk+1|Xk

)
p (Xk|Z0:k) dXk

(1)

with C = 1/p(Zk+1|Z0:k+1).

The SMC filter approximates the posterior distribution
p(Xk|Zk) by a set of N particles (samples in this case),
according to Eq. 2:

p (Xk|Zk) ≈ 1
N

N∑
n=1

δ
(
X(n)

k

)
≈

{
X(n)

k

}
n=1,..,N

(2)

Therefore, the SMC filter is used to estimate the
unknown joint distribution between the features of the
target samples and the associated class labels by a set of
samples that are initially unknown. We suppose that the
recursion process selects relevant samples for the spe-
cialized dataset from one iteration to another, leads to
converge to the right target distribution, and makes the
resulting classifiers more and more efficient.
The resolution of Eq. 1 is done in three steps: prediction,

update, and sampling. The following paragraphs describe
the details of each one.

Prediction step: The prediction step consists in applying
the Chapman-Kolmogorov (Eq. 3):

p
(
Xk+1|Z0:k

) =
∫

Xk

p
(
Xk+1|Xk

)
p (Xk|Z0:k) dXk (3)

Equation 3 uses the term p(Xk+1|Xk) of the system
dynamics between two iterations in order to propose a
specialized dataset Dk

.=
{
X(n)

k

}
n=1,..,Ns

producing the
approximation (4):

p
(
Xk+1|Z0:k

) ≈
{
X̃(n)

k+1

}
n=1,..,Ñk+1

(4)

We note D̃k+1
.=

{
X̃(n)

k+1

}
n=1,..,Ñk+1

the specialized

dataset predicted for an iteration (k + 1) where Ñk+1 is its
number of samples and X̃(n)

k+1 is the n
th predicted sample.

Update step: This step defines the likelihood term (5) by
using a set of observation strategies. These latter help to
assign a weight π̆

(n)

k+1 to each sample X̆(n)

k+1 returned by the
classifier at the prediction step.

p
(
Zk+1|Xk+1 = X̆(n)

k+1

)
∝ π̆

(n)

k+1 (5)

The observation strategies employ visual contextual
cues and prior information extracted from the target video
sequence, like object motion, a KLT feature tracker, a
background subtraction algorithm, and/or an object path
model, to favor a proposition with a correct label. These
observation strategies are detailed in Section 3.2.2. The
output of this step is a set of weighted target samples,
which will be referred to as “the weighted target dataset,”
hereafter (6):

{(
X̆(n)

k+1, π̆
(n)

k+1

)}
n=1,..,N̆k+1

(6)
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where (X̆(n)

k+1, π̆
(n)

k+1) represents a target sample with its
associated weight and N̆k+1 is the number of weighted
samples.

Sampling step: The goal of this step is to build a new
specialized dataset by deciding, according to a sampling
strategy, which samples will be included in the produced
dataset. This latter approximates the posterior distribu-
tion p(Xk+1|Z0:k+1) according to (7):

p
(
Xk+1|Z0:k+1

) ≈
{
X∗(n)

k+1

}
n=1,..,Ns

(7)

X∗(n)

k+1 is a selected sample n to be in the next specialized
dataset Dk+1; a sample can be selected either from the
target dataset or from the source one.
It is to note that in this step we apply the SIR algorithm

to approximate the conditional distribution p(X̆k+1|Zk+1)
of the target samples given by the observations. Further-
more, we propose to extend this target set by transferring
samples from the source dataset, which mostly resemble
those of the target scene, without changing the posterior
distribution.
The specialization process stops when the ratio

(|D̃k+1|/|D̃k|) exceeds a previously fixed threshold αs. | • |
represents the dataset cardinality. The output classifier
will be based only on appearance to detect the interest
object (pedestrian or car) on the target scene.

3.2 The different proposed strategies
In this subsection, we propose several strategies in each
filter’s step. This filter aims to specialize a classifier to a
target scene surveilled by a static camera.
In the description below, we consider a pedestrian as our

interest object, but the strategies can be applied for any
other objects, e.g., cars and motorbikes.

3.2.1 Sample proposal strategies
The sample proposal strategies consist in suggesting a set
of target samples to be added in the specialized dataset.

Fig. 2 Processing details of sample proposal strategies

Figure 2 shows an overview of the processing at a given
iteration.
In our case, the proposal dataset is composed of three

subsets:

• Subset 1: It corresponds to sub-sampling the spe-
cialized dataset resulting from the previous iteration
to propagate the distribution from one iteration to
another. The ratio between the positive and negative
classes (typically the same as the one of the source
dataset) should be respected. This subset approxi-
mates the term p(Xk|Z0:k) in Eq. 1, according to Eq. 8:

p (Xk|Z0:k) ≈
{
X∗(n)

k+1

}
n=1,..,N∗ (8)

where X∗(n)

k+1 is the sample n selected from Dk to be
in the dataset of the next iteration (k + 1) and N∗ is
the number of samples in this subset with N∗ = αtNs,
where αt ∈[ 0, 1]. The parameter αt determines the
number of samples to be propagated from the previous
dataset.

• Subset 2: To get this subset, we train a new specialized
classifier θDk on Dk and use it to detect a pedestrian
on a set of frames extracted uniformly from the target
video-sequence, using a multi-scale sliding window
technique. This technique covers a pedestrian by sev-
eral bounding boxes, so a spatial mean-shift grouping
function is opted for to merge the closest bounding
boxes. Moreover, it provides a set of samples classified
as a pedestrian, but there are true and false detections.
Herein, we suppose that each detection can be either
a positive sample or a negative one. Thus, each detec-
tion is duplicated: one sample is labeled positively
and the other one is labeled negatively. This subset is
returned by Eq. 9:
{
X̆(n)

k+1

}
n=1,..,N̆k

.=
{(

x(n), y
)}

y∈Y ;x(n)∈Dt/�Dk (x
(n))>0

(9)

X̆(n)

k+1 is the n
th target sample proposed to be included

in the dataset of the next iteration (k + 1).
• Subset 3: In some cases, the previous specialized clas-

sifier would rather miss detections than give false
positive ones; and it is difficult to favor a label for sev-
eral samples in subset 2. This means that we cannot
select enough negative target samples to specialize the
classifier from subset 2.
In order to avoid such cases, we use

computed-background models (in our case, a
median_background and a mean_background) to
provide negative target samples and produce subset 3
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according to Eq. 10.
{
X̆

′(n)

k+1

}
n=1,..,M̆k

.=

∪
∑

bjin{b1,...,bm}

{
(x

′(n),−1)
}
x′(n)∈bj

(10)

where (x′(n),−1) is a sample cropped from a target
background model and labeled negatively. M̆k = m ∗
N̆k is the number of all background samples.
We crop a sample from each computed background

model, at the same position and with the same size of
each selected sample returned by the classifier.

Figure 3 shows an illustration of the proposal strategy
to crop samples of subsets 2 and 3 from a target frame.
At the first iteration, subset 1 is empty and the proposals
composing subsets 2 and 3 are given by using a generic
detector trained on the INRIA person dataset, in a similar
way to the one proposed by Dalal and Triggs in [9].

3.2.2 Observation strategies
As depicted in Fig. 3, some target samples are misclas-
sified, which are known as “hard examples.” It is unre-
liable to directly use these samples according to their
predicted labels or not to utilize them in the specializa-
tion process because they are probably informative. In
what follows, we present several strategies of the weight-
ing samples of subset 2 in order to choose the correct

Table 1 Functions and notations used in Algorithm 2

Notation: definition

- p: It is a spatio-temporal ROI position into the target video

sequence (Dt ).

- compute_overlap(p,Dt):It computes an overlap_score of

ROI p.

- compute_accumulation(p,Dt):It computes an accumulation

_score of ROI p.

proposal using the information extracted from the target
scene.
1 - Overlap accumulation scores: Our first strategy,

called overlap accumulation scores (OAS), is based on
two simple spatio-temporal cues: a background extraction
overlap score and a temporal accumulation one.
In a traffic scene, it is rare for pedestrians to stay

stable for a long time, and a good detection occurs on
a foreground blob; whereas, false positive background
detections provide some region of interests (ROIs) that
appear over time at the same location and with almost the
same size.
Considering this, favoring automatically the sample

associated to the right label becomes easier and is done
by applying Algorithm 2. Table 1 outlines some notations
used in Algorithm 2.

Fig. 3 Illustration of sample-proposal strategies. aMulti-scale sliding windows technique for pedestrian detection. b Spatial mean-shift grouping
and selection of target samples according to their detection score; c, d Crop of selected samples from median background and mean background,
respectively
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Algorithm 2Observation strategy 1: OAS

Input: Subset 2
{
X̆(n)

k+1

}
n=1,..,N̆

with associated ROI
position and size {pi}i=1,..,N̆ into the target video-
sequence
Target video sequence and associated datasetDt

αp: overlap threshold
Output: Set {πi}i=1..,N̆ of weights associated to samples

_________________________________________
for i = 1 to N̆ do

πi ← 0
/* Visual contextual cues
computation */
λo ← compute_overlap(pi,Dt)
λa ← compute_accumulation(pi,Dt)
/* Weight assignment */
if (y̆i = pedestrian) then

if (λo >= αp) then
πi ← λo

end if
else
if ((λo = 0.0)&(λa > 0.0)) then

πi ← λa
end if

end if
end for

To assign a weight for each sample, we compute an
overlap score λo that compares the ROI associated to
one sample with the output of a binary foreground
extraction algorithm and an accumulation score λa that
measures the rate of finding detections at the same loca-
tion across frames. Figure 4a, b gives the details about the
computation of λo and λa, respectively.
A positive sample will be linked to a weight equal to its

overlap score if λo exceeds a fixed threshold αp, which is
determined empirically. Otherwise, it will be associated to
zero. A similar thinking is used in the case of a negative
sample; it will have its accumulation_score as a weight if
its λo is null and its λa is greater than zero. Otherwise,
it will be related to a weight equal to zero. Any sample
associated to a null weight will be rejected.
2 - KLT feature tracker: We propose a second strategy

that uses the KLT feature tracker [39, 40]. This latter aims
to find for each feature point (called also interest point),
detected on the video frame (i), a corresponding feature
point, detected on the video frame (i + 1).
First, we utilize correspondence information between

consecutive frames to attribute an identifier for each
feature point, detected and tracked on the frame (i), and to
save three parameters: Life, AmpX, and AmpY. The three
latter respectively describe the number of frames until

Fig. 4 Computation of OAS. Example of a an overlap_score and b an
accumulation_score

reaching i, the magnitude of the displacement on x, and
the magnitude of the displacement on y. In addition, once
all the video is processed, we re-propagate, for each point,
the values of its parameters from the last frame to the
first one. These parameters allow us to classify the feature
point as a foreground feature point or a background one.
A feature point will be considered a foreground feature
point if it has a “Life” parameter in [minlife,maxlife] and
“AmpX” or “AmpY” parameters in [minamp,maxamp],
whereminlife,maxlife,minamp, andmaxamp are given as
inputs. Otherwise, it will be a background feature point.
Figure 5 illustrates the main idea of this strategy.
It is more reliable to consider that a positive sam-

ple is a true positive one if its ROI contains a number
of foreground feature points higher than the number of
background ones. Contrariwise, a negative sample is a true
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Fig. 5 KLT feature tracker strategy. A green feature point is detected on both current and previous frames with a very small movement, and a blue
pointmoves at least a distance equal to 0.1 between two consecutive frames

negative one if its ROI contains only background feature
points or a very limited number of foreground ones.
To use this strategy, we apply Algorithm 3, which takes

into account the feature point type in the sample ROI
and its predicted label to assign a weight for each sam-
ple of subset 2. Table 2 presents the notations utilized in
Algorithm 3.

Algorithm 3Observation strategy 2: KLT feature tracker

Input: Subset 2
{
X̆(n)

k+1

}
n=1,..,N̆

with associated ROI posi-
tion and size {pi}i=1,..,N̆ into target video-sequence
Target video sequence and associated datasetDt

List of parameters: minlife,maxlife,minamp and max-
amp
List of feature points {FPtsj} relative to each frame
j, {FPtsj}j=1..,L

Output: Set {πi}i=1..,N̆ of weights associated to samples
________________________________________
for i = 1 to N̆ do

πi ← 0
/* Feature point classification */
FR_FPts ← compute_FRPts(pi, {FPtsj}j=1..,L)
BK_FPts ← compute_BKPts(pi, {FPtsj}j=1..,L)
/* Weight assignment */
if ((y̆i = pedestrian)&(FR_FPts > BK_FPts)) then

πi ← FR_FPts
FR_FPts + BK_FPts

else if ((y̆i �= pedestrian)&(FR_FPts < BK_FPts))
then

πi ← BK_FPts
FR_FPts + BK_FPts

end if
end for

3.2.3 Sampling strategy
This strategy aims to select the samples composing the
specialized dataset. Figure 6 depicts the details of its
processing. Herein, we present an alternative to previ-
ous work, which treated equally the training samples or
integrated the sample confidence score in the learning
function of the classifier. Our strategy selects the train-
ing samples using the SIR algorithm. This latter gives an
unweighted set of samples reflecting an input’s weighted
set which allows us to consider the associated weights
of the training samples without changing the learning
function of the classifier.
We approximate, according to (11), the conditional dis-

tribution p(X̆k+1|Zk+1) by merging an unweighted target
dataset from subset 2 and a random selection from subset
3. The unweighted target dataset is generated by applying
the SIR algorithm on the weighted target dataset provided
by the update step.

p
(
X̆k+1|Zk+1

)
≈

{
X̆∗(n)

k+1

}
n=1,..,N̆∗

k+1

∪
{
X̆∗′(n)

k+1

}
n=1,..,M̆∗

k+1

(11)

Table 2 Functions and notations used in Algorithm 3

Notation: definition

- p: It is a spatio-temporal ROI position into the target video

sequence (Dt ).

-compute_FRPts(pi , {FPtsj}j=1..,L): It computes the fore-

ground feature points of ROI p.

-compute_BKPts(pi , {FPtsj}j=1..,L): It computes the back-

ground feature points of ROI p.
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Fig. 6 Processing details of sampling strategy

where X̆∗(n)

k+1 and X̆∗′(n)

k+1 are the selected target samples for
the next iteration (k+1) from subsets 2 and 3, respectively.
At this level, the posterior distribution p(Xk+1|Z0:k+1) is

approximated according to Eq. 12:

p
(
Xk+1|Z0:k+1

) ≈
{
X∗(n)

k+1

}
n=1,..,N∗

∪
{
X̆∗(n)

k+1

}
n=1,..,N̆∗

k+1
∪

{
X̆∗′(n)

k+1

}
n=1,..,M̆∗

k+1

(12)

In general, these selected-target samples may contain
ones with false labels because they are automati-
cally weighted. In addition, they are insufficient to
generate an efficient classifier to the target scene.
However, the source dataset contains labeled sam-
ples that are similar to the target ones and which
should be beneficial to the specialization of the
classifier.
Thus, we propose to utilize the source distribution

to improve the estimation of the target one by select-
ing only the source samples that derive from the same
target distribution (12). The probability π̆

s(n)

k+1 (weight)
that each source sample belongs to the target distribu-
tion p(Xk+1|Z0:k+1) is computed using a non-parametric
method based on the KNN algorithm (utilizing the
FLANN1 library and an L2 distance on features). Based on
these probabilities, we apply the SIR algorithm to select
the source samples that approximate p(Xk+1|Z0:k+1)
according to Eq. 13:

p
(
Xk+1|Z0:k+1

) ≈
{
Xs∗(n)

k+1

}
n=1,..,N̆s∗

k+1
(13)

where Xs∗(n)

k+1 is the source sample n selected to be in the
specialized dataset at the iteration (k + 1) and N̆s∗

k+1 is the

number of the selected source samples. This number is
determined using Eq. 14:

N̆s∗
k+1 = Ns − (

N∗ + N̆∗
k+1 + M̆∗

k+1
)

(14)

At the end of this step, the new specialized datasetDk+1
is built from both source and target samples (15), and it is
used to start the next iteration.

Dk+1
.=

{
X∗(n)

k+1

}
n=1,..,N∗ ∪

{
X̆∗(n)

k+1

}
n=1,..,N̆∗

k+1

∪
{
X̆∗′(n)

k+1

}
n=1,..,M̆∗

k+1
∪

{
Xs∗(n)

k+1

}
n=1,..,N̆s∗

k+1

(15)

The specialization process stops when the ratio between
the cardinality of two predicted datasets related to two
consecutive iterations exceeds αs (αs = 0.80 fixed empir-
ically in our case). Once the specialization is finished, the
obtained classifier can be used for pedestrians’ detection
and classification in the target scene based only on their
appearance.

4 Experimental results
In this section, we present and discuss the different exper-
iments achieved in order to evaluate the performance of
our specialization algorithm.
We tested our method on two public traffic videos, the

CUHK_Square dataset [16] and the MIT traffic dataset
[41], using the same settings as in [15–17, 36]. Also, we
have illustrated the results on our Logiroad traffic dataset.
Figure 7 shows examples of the three used datasets.
We used the HOG descriptor as a feature vector and we

trained the generic and specialized classifiers utilizing the
SVMLight2, for both car and pedestrian cases.

4.1 Datasets
- CUHK_Square dataset [16] : It is a video surveillance
sequence of 60 min, recording a road traffic scene
by a stationary camera. We uniformly extracted (as
described in [16]) 452 frames from this video, of which
the first 352 frames were used for the specialization
and the last 100 frames were utilized for the test.

- MIT traffic dataset [41] : A static camera was used to
record a set of 20 short video sequences of 4 min 36 s,
each one. From the first 10 videos, we extracted 420
frames for the specialization. Also, 100 frames were
extracted from the second 10 videos for the test.
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Fig. 7 Three traffic datasets. a CUHK_Square dataset. bMIT traffic dataset. c Logiroad traffic dataset

- Logiroad traffic dataset : It is a record of a traffic scene,
which was done by a stationary camera, of almost
20 min. The same reasoning was applied. We uni-
formly extracted 700 frames from this video, of which
the first 600 frames were used for the specialization
and the last 100 frames were utilized for the test.

In our evaluation, we opted for the ground truth pro-
vided by Wang and Wang in [15] (noted MIT_P) and by
Wang et al. (noted CUHK_P) in [16], to test the detec-
tion results of pedestrians on the MIT traffic dataset and
on the CUHK_Square dataset, respectively. As there was
no available car-annotated database to test the detection
results, we proposed annotations relative to cars on both
MIT and Logiroad traffic datasets. We note these latter
MIT_C and LOG_C, respectively.
We applied the PASCAL rule [42] to compute the

true positive rate and the receiver operating charac-
teristic (ROC) curve, so as to compare the detectors’
performances. A detection will be accepted if the over-
lap area between the detection window and the blob
of the ground truth exceeds 0.5 of the union area. A
ROC curve presents the pedestrian detection rate for
a given false positive rate per image. It is to note that
we use the term “specialized classifier” when the con-
clusion is true for all classifiers provided by our frame-
work independently from the used strategies. Moreover,
we apply the specialized classifier based only on object
appearance without prior information at the test stage.
In addition, the indication of a detection’s rate here-
after is always relative to one false positive per image
(FPPI = 1).
We collected samples for our source car database from

different sets of video sequences3 and trained our own car
detector. Each sample contained a car in the center. All the
samples were normalized into the size of 64×64 pixels and
flipped horizontally. The negative samples were cropped
randomly from video frames and from the INRIA Person
dataset [9] and the INRIA car dataset [43].We trained and
respected the ratio between positive (2100) and negative
(12,000) samples, as used in [9] at the initial dataset. Then,

we performed a bootstrap step on the negative images
of the INRIA Person dataset. Figure 8a, b illustrates the
detections done by our source car detector on the UIUC
car dataset [44] and the Caltech cars 2001 (Rear) dataset
[45], respectively.

Fig. 8 Results of source car detector on a UIUC cars dataset and b
Caltech cars 2001 (rear) dataset
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4.2 Convergence evaluation
The comparison of the performances of the specialized
classifier at several iterations to that of the generic one
demonstrates that our TTL-SMC generates an increase in
the detection rate since the first iteration. Figure 9a shows
that the specialized classifier performance improves from
26.6 to 60% at the first iteration and from 60% to more
than 70% at the fourth iteration on the CUHK_Square
dataset. The experiments prove that the performance has
improved weakly for the next five iterations. For clarity
reasons, we have limited the visualization of the ROC at
the tenth iteration.
The Kullback–Leibler divergence (KLD) was another

metric evaluation used to measure the convergence of the
estimated distribution towards the true target one. We
computed the KLD between a set of pedestrians cropped
manually from the specialization frames and positive sam-
ples of the specialized dataset produced at each iteration.

Fig. 9 Evaluation of specialized detector convergence. a Detection
performance ROC curves and b Kullback–Leibler divergence

The KLD between two sets of realizations was computed
as in the work of Boltz et al. [46]. Figure 9b indicates
that the KLD decreases until having a minimal variation
starting from iteration 4 (corresponding to the stopping
iteration) on the CUHK_Square dataset. The same inter-
pretation is noticed in the other datasets.
In practice, the convergence of our specialization will

be determined when the parameter αs reaches the value
0.8. The parameter αs reflects the ratio between the num-
ber of sample proposals returned at the current iteration
and the number of sample proposals in the previous iter-
ation. Figure 10 demonstrates that the number of sample
proposals stabilizes from iteration 4, which marks the
validation of the stopping criterion.

4.3 Effect of sample proposal strategies
To evaluate the effect of sample-proposal strategies, we
tested two strategies: one based on three subsets, as
described in Section 3.2.1 (noted as SMC_B), and another
one, where we were limited to samples of the two
first subsets without using background models (noted
as SMC_WB). Figure 11 reports the results of our
specialization algorithm according to the sample proposal
strategies while using the OAS strategy as an observation
one. The results of the specialized detector at the first and
last iterations are reported.
Although the specialization process converges with the

same number of iterations in most of the cases, we notice
that the strategy SMC_B needs a little extra time at one
iteration on the CUHK_Square dataset and the MIT traf-
fic dataset. However, the use of samples extracted from
background models leads to an improvement of 6% in
the pedestrian detection rate on both datasets. For the
case of car detection, we record that both strategies give
comparable results on the MIT traffic dataset. Never-
theless, the ROC curves of the detection rate on the

Fig. 10 Number of sample-proposal during iterations
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Fig. 11 Comparison of sample-proposal strategies. Pedestrian detection: a CUHK_Square dataset and bMIT traffic dataset. Car detection: cMIT
traffic dataset and d Logiroad traffic dataset

Logiroad traffic dataset show that while the two strategies
have the same performance at an FPPI = 1 at the first
iteration, the SMC_B strategy improves by 19% in per-
formance compared to the SMC_WB at the convergence
iteration. Table 3 reports the average time of a specializa-
tion’s iteration (sample selection and detector training) on
an Intel(R) Core(TM) i7- 3630QM 2.4G CPU machine on
each tested dataset with a designed number and size of
images.

4.4 Effect of observation strategies
We make a comparison between two observation strate-
gies: the OAS and the KLT feature tracker in several cases.
This comparison aims to prove the performance of the
specialized detector compared to the generic one and to

Table 3 Average duration of a specialization’s iteration on
several datasets

Dataset Nb. images Image size SMC_WB SMC_B

CUHK_P 352 1440 × 1152 60 min 84 min

MIT_P 420 4320 × 2880 210 min 285 min

MIT_C 420 720 × 480 14 min 28 min

LOG_C 600 864 × 486 22 min 36 min

show that our proposed specialization is a general frame-
work. It can be applied by combining or substituting many
algorithms that extract visual context cues from a video
recorded by a static camera.
To correctly evaluate the effect of the observation strate-

gies, we adopt the SMC_B proposal strategy, which has
given the best performance in the tests of Section 4.3
for all the experiments. We note SMC_B_OAS a special-
ized detector trained by applying our framework using
the SMC_B as a proposal strategy and the OAS as an
observation strategy. Also, SMC_B_KLT is noted when
the SMC_B and KLT strategies are used.
Figure 12 investigates the effectiveness of both observa-

tion strategies and compares the performance of the spe-
cialized detector to the performance of the generic one.
Figure 12a, b depicts the results of pedestrian detection
on the CUHK_Square dataset and the MIT traffic dataset,
respectively. Whereas, Figs. 12c, d presents the results of
car detection on the MIT traffic dataset and the Logiroad
traffic dataset. Figure 12a–c indicates that the special-
ized detector, trained by our TTL-SMC, generates an
increase in the detection rate from the first iteration with
both used observation strategies. Yet, Fig. 12d illustrates
a decrease in the first iteration. On the CUHK_Square
dataset, the performance of the specialized SMC_B_OAS
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Fig. 12 Comparison of sample-proposal strategies. Pedestrian detection: a CUHK_Square dataset and bMIT traffic dataset. Car detection: cMIT
traffic dataset and d Logiroad traffic dataset

detector exceeds that of the generic one bymore than 27%.
In addition, the curves show that the specialization con-
verges after four iterations with a rate of true positives
equal to 81%. On the other hand, the SMC_B_KLT detec-
tor improves the detection rate by 34%, compared to the
generic one.
On the MIT traffic dataset, in the case of pedestrians,

our SMC_B_OAS detector ameliorates the detection rate
from 10 to 24% at the first iteration and it starts converg-
ing from the fourth iteration with 49% of true positive
detections. However, the SMC_B_KLT detector converges
by a rise of 22% compared to the performance of the
generic detector. In the case of cars, we record for both
SMC_B_OAS and SMC_B_KLT detectors a raise in the
detection rate by 5% at the first iteration, compared to the
one of the generic detector. Then, the detection rate of
the SMC_B_OAS moves to about 30% at the fourth iter-
ation against an increase from 9 to 24% recorded by the
SMC_B_KLT detector. We notice that the performance
goes up weakly after the fourth iteration corresponding to
the stopping iteration in our experiments.
In particular, on the Logiroad traffic dataset, the

generic detector presents a detection rate equal to 32%.
Nevertheless, our specialized SMC_B_OAS detector gives
a detection rate equal to 20% at the first iteration and

then converges with 45% from the fourth iteration. The
performance of the SMC_B_KLT detector decreases to
16% at the first iteration and then goes up to 47% at
the stopping iteration. We explain the decline at the
first iteration by injecting an interest object (failed to be
weighted correctly by the spatio-temporal scores because
it is temporarily stationary) as a negative sample in
the specialized dataset. This means that this sample is
detected by the detector but misclassified by the obser-
vation strategy, which may disturb the specialization
process.
On the other hand, we record a slight fall in most of the

final detection rates of the SMC_B_KLT detector, com-
pared to those reached by the SMC_B_OAS detector. We
can clearly see an improvement generated by our pro-
posed specialization framework independently from the
strategies used on each step.
Besides, the ROC curves relative to car detectors dis-

play a small amelioration of the detection rates through
specialization iterations on both MIT and Logiroad traf-
fic datasets. This is noticed for both observation strategies
because it is really difficult to have a 0.5 overlap score
between the ground truth blob and the detection square
window which can bound cars of frontal and rear view
and profile view at the same time Fig.13 gives examples
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Fig. 13 Illustration of car detection results. Specialized detector (blue) and generic detector (red). Overlap-accumulation score strategy (2 top rows)
and KLT feature tracker strategy (2 bottom rows). (1 and 3 rows) detections on MIT traffic dataset and (2 and 4 rows) detections on Logiroad traffic
dataset

of car detection results to compare the generic and the
specialized detectors according to the two observation
strategies on both MIT traffic dataset and Logiroad traffic
dataset.

4.5 Combination of both observation strategies
In this subsection, we simultaneously apply both observa-
tion strategies on the set of proposals returned by the pre-
diction step. After that, we combine the weighted datasets
as a single one to be an input to the sampling step. Table 4
compares the true detection rates of several specialized
detectors with the one given by the generic detector at one
false positive per image. It is to note that OAS, KLT, and
Fusion refer to the OAS strategy, the KLT feature tracker
strategy, and the combination of both strategies, respec-
tively. Also, we use it_f and it_c to denote the first iteration
and the convergence one.
Table 4 demonstrates again that our framework can be

applied utilizing any observation strategy and shows that
the combination of the two observation strategies gen-
erally improves the classifier performance a bit, but in
some cases one strategy gives a better detection rate than
Fusion.

4.6 Comparison with state-of-the-art algorithms
In our proposed application, we assume that the target
scene is monitored by a static camera. This assumption
helps us to extract our visual context cues; however, if
other context information is able to be extracted with a
mobile camera, our approach may be used.
Considering the fixed assumption, we need annotated

video sequences, which are recorded by a stationary

Table 4 Detection performance (in percent) of several detectors
according to observation strategy used (at FPPI = 1)

Specialised detector Generic OAS KLT Fusion

Pedestrian

CUHK
it_f

26.6
53.7 46.5 66.5

it_c 81.3 59.6 76.7

MIT
it_f

10
24.2 22 26.3

it_c 49 44.1 45.8

Car

MIT
it_f

9
15.8 14.7 17.2

it_c 28.7 23.8 31.5

Logiroad
it_f

33.5
20.8 16 25.8

it_c 45.6 47 46.8
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camera, in order to compare our proposed approach to
the state-of-the-art algorithms. Nevertheless, most of the
datasets used specially for car detection or multi-object
detection are composed of only still images or video
sequences recorded by amoving camera. Hence, we evalu-
ate the overall performance of the suggested specialization
approach on the CUHK_square and MIT trafic datasets
with the following state-of-the-art methods in the case of
pedestrian detection.

• Generic [9]: A HOG-SVM detector was built and
trained on the INRIA dataset, as proposed in [9] by
Dalal and Triggs.

• Manual labeling: A target detector was trained on a set
of target labeled samples. This latter was composed by
all the pedestrians of the specialization images (pos-
itive samples), from which a negative set of samples
was extracted randomly taking into account that there
was no overlap with pedestrian bounding boxes.

• Nair 2004 [26]: It was a HOG-SVM detector that was
created in a similar way to the one suggested in [26],
but the HOG descriptor was used as a feature vec-
tor and the SVM instead of the Winnow classifier. An
automatic adaptation approach picked out the target
samples to be added in the initial training dataset using
the output of the background subtraction method.

• Wang 2014 [17]: A specific target scene detector was
trained on both INRIA samples and samples extracted
and labeled automatically from the target scene. The
target and the source samples that had a high confi-
dence score were selected. The scores were calculated
using several contextual cues and the selection was
done by a method called “confidence-encoded SVM,”
which would favor samples with a high score and
would integrate the confidence score in the objective
function of the classifier.

• Mao 2015 [19]: A detector was trained on target
samples labeled automatically by using tracklets and
by information propagation from labeled tracklets to
uncertain ones.

Figure 14a shows that the specialized SMC_B_OAS
detector significantly exceeds the generic one on the
CUHK_Square dataset. The performance soars from 26.6
to 81%. The SMC_B_OAS outperforms the detector
trained on target samples, which are labeled manually,
by about 31% at an FFPI = 1. However, the target
detector with manual labeling slightly exceeds the spe-
cialized detector for an FPPI that is less than 0.2. Our
SMC_B_OAS CUHK detector also exceeds the three
other specialized detectors of Nair (2004), Wang (2014),
and Mao (2015) respectively by 45.57, 23.25, and 20%. It
is to note that Mao (2015) fairly exceeds our specialized
SMC_B_OAS detector for an FFPI less than 0.4.

Fig. 14 Overall performance. Comparison of specialized detector
with other methods of state-of-art methods: a CUHK_Square dataset
and bMIT traffic dataset

On the MIT traffic dataset (Fig. 14b), the detection
rate improves from 10 to 47%. The MIT specialized
SMC_B_OAS detector exceeds the detector trained on the
labeled target samples by about 21%. Compared to Nair
2004’s detector, our specialized SMC_B_OAS detector
gives a better detection rate than the one proposed byNair
and Clark for an FPPI less than 1. Otherwise, Nair’s (2004)
detector somewhat exceeds our SMC_B_OAS detector.
The ROC curves display that our specialized detector
gives a comparative detection rate to Wang (2014) detec-
tor. It is necessary to mention that shadows, on the MIT
video, affect the weighting and the selection of correct
positive samples.
To compare the performance of the samemethod across

datasets, we display in Fig. 15 the results of the generic,
Wang 2014 and our specialized SMC_B_OAS detectors
on both MIT and CUHK datasets. We limit the display
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Fig. 15 Overall performance of same method across datasets

on three methods for a clarity reason. We summarize in
Table 5 the pedestrian detection rate of several state-of-
the-art detectors related to the CUHK_Square dataset and
the MIT traffic dataset for an FPPI = 1. Moreover, we
give the gain between our specialized SMC_B_OAS detec-
tor and the generic one on the last line. Figure 15 shows
that the generic detector has a much better performance
on the CUHK_Square dataset than its performance on
the MIT traffic dataset and so does our SMC_B_OAS
detector. However,Wang (2014) gives practically the same
performance on both datasets. This means that the bet-
ter generic detector we use in our approach, the better
specialized detector we get.
It is shown that our SMC specialization process con-

verges after only a few iterations on four cases: two for
pedestrian detection and two for car detection. In our
experiments, we have used different strategies at each step
of our filter, which confirms the generalization of our
approach.
We notice that the OAS strategy rejects any positive

sample having a weight less than the fixed threshold αp,

Table 5 Comparison of detection performance with
state-of-the-art detectors at FPPI = 1

Detector
Dataset

CUHK (%) MIT (%)

Generic [9] 26.60 9.80

Manual labeling 50.36 22.01

Nair 2004 [26] 28.80 42.70

Wang 2014[17] 51.12 49.00

Mao 2015 [19] 61.50 -

Our SMC_B_OAS 81.35 48.97

Gain (SMC_B_OAS / generic) 205.82 399.63

which reduces the number of positive samples. Other-
wise, a static pedestrian, associated to a negative label,
can have a high weight because he/she is detected by the
detector at the same location in some frames with a null
overlap_score and a high accumulation_score. The KLT
feature tracker allows us to select more positive samples
but may reduce the negative ones. We note also that the
co-execution of both strategies and the combination of
outputs (as we did in the test “combination of both strate-
gies”) slightly change the performance of the specialized
SMC_B_OAS classifier.
Although the proposed observation strategies validate

our general framework, the use of other strategies and
the combination with other spatio-temporal information
can enhance the performance provided by our approach
and accelerate the convergence of the specialization
process.

5 Conclusions
The suggested TTL-SMC filter automatically specializes a
generic detector towards a specific scene. It estimates the
unknown target distribution by selecting relevant samples
from both source and target datasets. These samples are
used to learn a specialized classifier that ameliorates much
better the detection rate in the target scene.
Indeed, we have validated the suggested method on sev-

eral challenging datasets, applied it on a pedestrian and
car detection, and tested it with different strategies. The
experiments have demonstrated that the proposed spe-
cialization gives a good performance starting from the
first iteration. Besides, the results have illustrated that
our method gives a comparable performance to Wang’s
approach on the MIT traffic dataset and exceeds the
state-of-the-art performance on two public datasets.
As a future work, we are going to aggregate our frame-

work with fast feature computation techniques to acceler-
ate the specialization process, and we are going to extend
the proposed approach to a multi-object framework.
In addition, we will ameliorate the observation strate-
gies with more spatio-temporal information combined
together, and we may apply our algorithm to specialize a
CNN classifier.

Endnotes
1 http://www.cs.ubc.ca/research/flann/
2 http://svmlight.joachims.org
3Video sequences provided by Logiroad company
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