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Abstract
In flow-coating processes at low substrate ve-
locity, solvent evaporation occurs during the
film withdrawal and the coating process yields
directly a dry deposit. In this regime, often
referred to as the evaporative regime, several
works performed on blade-coating-like config-
urations have reported a deposit thickness hd
proportional to the inverse of the substrate ve-
locity V . Such a scaling can be easily de-
rived from simple mass conservation laws, as-
suming that evaporation occurs on a constant
distance, referred to as the evaporation length,
noted Lev in the present paper and of the or-
der of the meniscus size. However the case of
colloidal dispersions deserves further attention.
Indeed, the coating flow leads to a wet film of
densely-packed colloids before the formation of
the dry deposit. This specific feature is related
to the porous nature of the dry deposit, which
can thus remain wet when capillary forces are
strong enough to prevent the receding of the sol-
vent through the pores of the film (the so-called
pore-emptying). The length of this wet film
may be possibly much larger than the menis-
cus size, therefore modifying the solvent evap-
oration rate, as well as the scaling hd ∼ 1/V .

This result was suggested recently by different
groups using basic modeling and assuming for
simplicity an uniform evaporation rate over the
wet film. In this article, we go a step further
and investigate the effect of multi-dimensional
vapor mass transfer in the gas phase on Lev
and hd in the specific case of colloidal disper-
sions. Using simplified models, we first provide
analytical expressions in asymptotic cases cor-
responding to 1D or 2D diffusive vapor trans-
port. These theoretical investigations then led
us to show that Lev is independent of the evap-
oration rate amplitude, and roughly indepen-
dent of its spatial distribution. Conversely, hd
strongly depends on the characteristics of va-
por mass transfer in the gas phase, and differ-
ent scaling laws are obtained for the 1D or the
2D case. These theoretical findings are finally
tested by comparison with experimental results
supporting our theoretical simplified approach.

Introduction
Flow coating techniques, such as knife-coating,
blade-coating, or doctor-blade, have now be-
come essential processes to coat continuously
functional layers on solid substrates starting
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from dilute inks, and for applications ranging
from organic electronics to optical coatings.1–3
Figure 1 shows schematically a typical blade-

coating setup for the specific case of a colloidal
dispersion. A liquid film is drawn out of a liq-
uid reservoir confined between a fixed blade and
a moving substrate at a velocity V . The fine

Figure 1: (a) Perspective view of a blade coat-
ing process in the evaporative regime. A dry
film is continuously withdrawn from the reser-
voir by the substrate moving at a velocity V .
(b) Side view evidencing the specific case of a
colloidal dispersion. A solvent-saturated film
is drawn out of a liquid reservoir and main-
tained by capillary forces between the blade and
the moving substrate. Solidification occurs at a
distance x = Lm, followed by a pore-emptying
front at x = Lev; arrows show schematically the
local evaporative flux vev (m/s, see text).

description of such flow-coating processes, and
particularly the prediction of the final deposit
thickness hd as a function of the process param-
eters and physico-chemical features of the ink,
is still a major issue. Many works previously re-
ported in the literature have clearly identified
two regimes for such flow-coating-like processes
depending of the coating speed V .4–6 At high V ,
a liquid film is drawn out of the reservoir and
dries later on. In this regime, often referred to
as the Landau-Levich regime, drying and coat-
ing are separated in time, and the height of the

liquid film results from a balance between sur-
face tension and viscous friction induced by the
substrate motion.7,8 At low V , solvent evapora-
tion cannot be neglected during the film with-
drawal, and the coating process yields directly
a dry deposit: this is the evaporative regime.
In the last few years, many groups performed

experimental and theoretical investigations of
this evaporative regime for dilute inks rang-
ing from colloidal dispersions5,9–14 to solutions
of polymers and small molecules.4,14–16 Despite
the wide complexity of the process and the
wide variety of reported phenomena, including
streaks or stripes formation,17–19 cracks and de-
lamination20 to name a few, many of the above
cited works reported the following scaling:

hd ∝
ϕ0

V
, (1)

for the dry deposit thickness hd as a function of
the substrate velocity V and the reservoir par-
ticle volume fraction ϕ0. Such a robust scaling
suggests a common explanation based on mass
conservation arguments only. Assuming that
coatings are uniform along their width (invari-
ance to translation along the y-direction, see
Figure 1), simple mass balances for a binary
mixture (volatile solvent + non-volatile solute)
provide the following relation for the deposit
thickness:9

hd =
ϕ0

ϕc(1− ϕ0)

Qev

V
, (2)

where ϕ0 and ϕc are the volume fractions of the
non-volatile solute in the bulk and in the dry
film, respectively, and Qev (m2/s) is the solvent
volume rate of evaporation per unit of widthW .
Eq (2) points out the important role played by
the solvent mass transfer in the vapor phase to
get a quantitative prediction of Qev and thus
hd.
One recovers the scaling reported experimen-

tally and given by eq (1) in the case of a dilute
ink ϕ0 � ϕc and assuming that Qev does not
depend on ϕ0, ϕc and V . This behavior was for
instance observed in previous experiments per-
formed in dip-coating-like configurations.4,5,14
Qev was shown to depend only on drying air
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characteristics (temperature, humidity,...) and
evaporation occurred over a constant length of
the order of the meniscus size Lm.14
Recently, several groups suggested that the

case of colloidal dispersions is expected to
be more intricate than the case of molecu-
lar solutes, and a significant departure from
scaling (1) was even reported by Joshi and
Gilchrist.21 Indeed, the coating flow first leads
to a wet film of densely-packed colloids, which
ultimately dries later on at a distance Lev ≥ Lm
from the static blade, see Figure 1(b). This
specific feature is related to the porous na-
ture of the dry deposit, which can thus remain
wet when capillary forces are strong enough
to prevent the receding of the solvent through
the pores of the coating, the so-called pore-
emptying.22,23 In the case of colloidal disper-
sions, the evaporation length Lev now becomes
a function of the process parameters, and can
modify the solvent volume rate of evaporation
Qev, as, in some cases, Lev can be much larger
than the meniscus length Lm.
Jung and Ahn24 along with Joshi and

Gilchrist21 have considered Darcy’s law to
model solvent transport in the wet porous film
and have assumed the uniformity of evapora-
tion velocity vev along the film, where vev (m/s)
is the local volume evaporation flux per unit of
surface. This results in the expression

Qev ' vevLev. (3)

They further derived the following scaling

hd ∝
ϕ2

0 vev
V 2

, (4)

for dilute dispersions ϕ0 � ϕc, assuming a cri-
terion for estimating the pore-emptying front
from the liquid pore pressure. The latter scaling
fits correctly the data sets reported by Joshi and
Gilchrist.21 However it fails to describe the ex-
periments of refs5,11,14 which support scaling (1)
for colloidal dispersions, as well as measure-
ments of the evaporation length Lev reported by
Jung and Ahn.24 However, in the theories21,24
evaporation is assumed to be dominated by the
wet film only, i.e. Lev � Lm, and the contribu-
tion of the meniscus to the overall evaporation

rate Qev is neglected. In a recent study,25 we
included this contribution, still assuming uni-
form evaporation as above, and we recovered
scalings (1) and (4) as two asymptotic limits
of the same model, the latter corresponding to
Lev � Lm, the former to Lev ' Lm. We fur-
ther showed that this continuous model agrees
with the measurements of Lev performed by
Jung and Ahn,24 as their experiments were per-
formed in the transition regime between scal-
ings (1) and (4).
It is important to underline that all these

models are based on the assumption of a uni-
form evaporation velocity vev over the meniscus
and the wet film. Indeed, eq (3) implicitly con-
tains the assumption of 1D vapor mass transfer
in the gas phase. Real configurations, such as
the experimental case described in Figure 1, are
expected to yield multi-dimensional mass trans-
fer (2D or even 3D), with spatial variation of vev
all along the evaporation region. Indeed, the
function Qev(Lev) should depend on the mech-
anisms which drive the vapor transport in the
gas phase: free or forced convection, laminar
or turbulent flow, etc. For instance, eq (3)
would be recovered for turbulent free convec-
tion, from which proportionality between Lev
and Qev is expected, as derived by estimating
mass transfer coefficients from empirical corre-
lations (as available for instance in the book,26
and by using analogy between heat and mass
transfer). In case of 3D vapor diffusion in qui-
escent air from a rectangular solvent puddle, a
logarithmic dependence of Qev on the evapora-
tion length is expected (cf. section Theory for
more details).
The main objective of the present article is

to investigate the effect of multi-dimensional
mass transfer in the gas phase on the evapo-
ration length Lev and the deposit thickness hd,
for blade-coating of colloidal dispersions in the
evaporative regime.
Using simplified models, we first provide ana-

lytical expressions of Lev and hd in asymptotic
cases corresponding to 1D or 2D vapor trans-
port. These theoretical investigations help us
to show that Lev is independent of the evapo-
ration intensity, and nearly independent of the
mass transfer geometry, 1D or 2D. Conversely,

3



the deposit thickness strongly depends on va-
por mass transfer in the gas phase, and differ-
ent scaling laws are obtained for the 1D and 2D
cases.
We finally compare these theoretical predic-

tions to experimental results obtained with a
custom-made blade-coating setup for a wide
range of parameters (concentration, colloid di-
ameter, coating speed) and to data previously
reported in the literature.

Theory
Building a model yielding an accurate descrip-
tion of a flow-coating-like process for colloidal
dispersions in the evaporative regime is a hard
task. Indeed, such a model should include
a description of vapor mass transfer in the
gas phase. Depending on the specific physical
mechanism occurring in a given coating device,
one should address a 3D diffusion problem if air
is motionless, or a problem involving Navier-
Stokes equations if the convection is relevant.
Then this gas phase model must be coupled to
governing equations of the liquid solvent flow
within the meniscus and the wet film. Such an
approach to our opinion is too complex and its
feasibility currently questionable.
Regarding mass transfer in the gas phase, we

use a simplified approach, based on analyti-
cal solutions of a 2D diffusion problem with a
prescribed and constant boundary layer thick-
ness Λ. We show in the next section that this
2D model qualitatively reproduces character-
istic behaviour of more complex mass trans-
fer mechanisms, from 3D diffusive transport to
turbulent free convection. Therefore our ap-
proach, although simplified, is expected to pro-
vide physically relevant scaling laws for Lev and
hd.

Mass transfer in the gas phase

The 2D geometry on which our theoretical anal-
ysis is based is shown in Figure 1(b). Fur-
thermore, we assume the existence of a bound-
ary layer of constant thickness Λ much larger
than the height of the liquid film. We thus

neglect the liquid height in the gas phase de-
scription and we use a simple rectangular ge-
ometry shown in Figure 2, with 0 < x < ∞
and 0 < z < Λ. To mimic the experimental
geometry where a vertical wall blocks the va-
por diffusion, we assume impermeability at the
boundary x = 0. The wet film extends from
x = 0 to x = Lev, at z = 0.
The 2D vapor concentration field c(x, z) in

the gas domain, shown in Figure 2, satisfies
the Laplace equation ∂xxc + ∂zzc = 0 with the
boundary conditions:

x = 0 and 0 < z < Λ : ∂xc = 0 ; (5)
z = 0 and 0 < x < Lev : c = csat ; (6)
z = 0 and x > Lev : ∂zc = 0 ; (7)
z = Λ and x > 0 : c = c∞. ; (8)

with csat the saturated vapor concentration at
the liquid/gas interface (kg/m3), and c∞ the
ambient vapor concentration far from the in-
terface (kg/m3).
The evaporation velocity in this wet film re-

gion (0 < x < Lev) is given by the Fick’s law
vev = −Dv/ρ ∂zc, where Dv (m2/s) is the vapor
diffusivity in air and ρ the liquid solvent den-
sity (kg/m3). The volume rate of liquid which
evaporates between the origin and any abscissa
x reads finally Qev(x) =

∫ x
0
vev(ξ)dξ.

This problem is very similar to the one solved
by Deegan et al for the coffee stain effect.27
These authors considered a 3D axi-symmetric
geometry (liquid droplet), while we consider a
2D Cartesian geometry (liquid film). In the lat-
ter case, the problem in the upper half-space
(Λ → ∞) has no solution in the steady state
(see section 2.2 of ref28 for a demonstration).
However a solution exists when the boundary
condition (8) is prescribed at a finite height Λ.
The analytical solution of the Laplace equa-

tion with boundary conditions (5-8) has been
obtained with a method of conformal trans-
form. Calculations are detailed in Supporting
Information (SI). The resulting evaporation ve-
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Figure 2: Gas domain. Solid lines represent
isovalues of the concentration field c(x, z) and
arrows the diffusive flux.

locity vev is

vev(x) =
πβ

2ΛK(k)

{[
exp

(
π(Lev + x)

Λ

)
− 1

]
[
exp

(
−π(Lev + x)

Λ

)
− exp

(
−2πLev

Λ

)]}−1/2

,

(9)

where β = Dv(csat − c∞)/ρ, k = exp (−π Lev
Λ

)
and K(k) is the complete elliptic integral of the
first kind.
vev and its integral Qev(Lev) are plotted in

Figure 3. Depending on the value of the ratio
Λ/Lev, there are two asymptotic limits:

• Λ/Lev � 1. The evaporation velocity is
constant, except at the very end of the
film, over a distance of the order of Λ.
For the inner part of the film, such that
x . Lev−Λ, the diffusion problem reduces
to the 1D case with a uniform evaporation
velocity, and vev ' β/Λ, where

β = Dv csat (1−Hr)/ρ, (10)

with Hr = c∞/csat the ambient relative
humidity. The evaporation flux corre-
sponding to this part of the film is thus
proportional to the ratio (Lev − Λ)/Λ '
Lev/Λ. It therefore diverges as Λ/Lev →
0.

Using eqs (S16-S17) of the SI, it can be
shown that the evaporation flux corre-
sponding to the very small zone at the

tip of the film (of the order of Lev − Λ .
x < Lev) remains finite as Λ/Lev → 0 and
can be neglected. The total evaporation
flux is therefore

Qev(Lev) ' β
Lev
Λ
. (11)

• Λ/Lev � 1. The diffusion problem is
fully 2D. The total evaporation flux is
now much less sensitive to Λ/Lev, since it
is inversely proportional to its logarithm:

Qev(Lev) '
πβ

2 ln[16Λ/(πLev)]
. (12)

These two asymptotic regimes thus differ for
two main reasons: (1) the local evaporation ve-
locity vev is nearly uniform in the 1D case, but
varies all along the evaporation length in the
2D case; (2) the total evaporation flux is pro-
portional to the evaporation length Lev in the
1D case, while it depends weakly on Lev in the
2D case.
It is worth noting that our simplified model

qualitatively reproduces limit cases that would
be expected with more detailed descriptions of
vapor mass transfer. Indeed, eqs (11) and (3)
both exhibit proportionality between Lev and
Qev. This strong dependence of Qev on Lev may
represent turbulent free convection as stated in
the introduction.
A weak logarithmic dependence similar to eq

(12) may be obtained in 3D diffusion configura-
tion. Indeed 3D vapor diffusion in quiescent
air from a rectangular solvent puddle of size
Lev ×W , a geometry close to the case depicted
in Figure 1, would give a volume evaporation
rate26

Qev =
πβ

ln(4W/Lev)
, (13)

with the assumption Lev � W and using equiv-
alence between heat and mass diffusion.
In the following, we investigate the conse-

quences of the two above asymptotic cases (1D
and 2D) on the scaling laws for the evaporation
length Lev and the deposit thickness hd.
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Figure 3: (a) local evaporation velocity vev as a
function of x/Lev for different values of Λ/Lev
[from eq (9)]. (b) total evaporation volume rate
Qev as a function of Λ/Lev; the general case
(black solid line) corresponds to numerical in-
tegration of eq (9).

Governing equations in the liquid
phase

The global and particle mass balances provide
a relation between the deposit thickness hd and
the evaporation flux Qev(Lev):4,9,25

hd =
ϕ0

ϕc(1− ϕ0)

Qev(Lev)

V
. (14)

Eq (14) contains an implicit relation between
two unknowns, the deposit thickness hd and the
evaporation length Lev1. A second relation can
be derived from the Darcy’s law and the solvent
mass conservation in the wet film region (cf.
Figure 1):

∂xpliq = − η0

k(ϕc)
(1− ϕc)(u− V ), (15)

hd(1− ϕc)∂xu = −vev(x), (16)

where pliq, η0 and u are the solvent pressure, vis-
cosity and velocity, respectively, ϕc is the close-
packing particle volume fraction. We used the
Koseny-Carman equation29 for estimating the
permeability of the densely-packed wet coating

k(ϕc) =
2a2 (1− ϕc)3

90ϕ2
c

, (17)

where a is the particle radius. Eq (17) is em-
pirical for random packings; it also predicts the
permeability of periodic arrays of spheres with
an error less than 30 % at high volume frac-
tion.30
Since Lev is unknown, the resolution of eqs

(15-16) requires three boundary conditions. A
first condition is obtained at x = Lm assum-
ing that the capillary pressure in the wet film,
fixed by the pore size of the order of the particle
radius a, is much larger than the capillary pres-
sure in the meniscus of macroscopic curvature
C0. We thus make the approximation

pliq(Lm)− patm = 0, (18)
1Note that we derived previously in our earlier

work a slightly different relation [hdV (ϕc − ϕ0) =
ϕ0Qev] as we developed deliberately a continuous model
solvent+colloids. Both relations however are equivalent
for dilute dispersions ϕ0 � ϕc.

6



where the meniscus length Lm is assumed to be
constant, and equal to its value when there is
no flow (this last assumption has been validated
by numerical simulations, see ref25). Two other
conditions are obtained at x = Lev. Assuming
a negligible flux of water into the dry film yields

u(Lev)− V = 0 , (19)

and pore-emptying occurs for a critical capillary
pressure given by

pliq(Lev)− patm = −κγ/a. (20)

For monodisperse spheres, we use

κ = 3ϕc/(1− ϕc), (21)

as suggested in ref.31
Solving eqs (15-16) with boundary conditions

(18-20) yields

hd =
aη0

κγk
[ (Lev − Lm)Qev(Lev)

−
∫ Lev

Lm

Qev(x)dx ]. (22)

We introduce now the dimensionless quan-
tities x̃ = x/L, L̃m = Lm/L, L̃ev = Lev/L,
Λ̃ = Λ/L, h̃d = hd/h and Q̃ev = Qev/Q. The
scales L, h and Q are defined by taking as a
reference the case corresponding to Lev = Lm.
We thus get L = Lm, h = ϕ0Q/[ϕc(1 − ϕ0)V ],
and Q =

∫ Lm
0

vev(x)dx where Lm has been sub-
stituted to Lev in the expression of vev(x) in
eq (9).
Using eqs (14) and (22) to eliminate hd and

turning to dimensionless variables, we get the
equation to be solved to get L̃ev:

L̃ev −
1

Q̃ev(L̃ev)

∫ L̃ev

1

Q̃ev(x̃)dx̃ = 1 +M ,

(23)

where

M =
ϕ0

ϕc(1− ϕ0)

κγk

V η0aLm

=
ϕ0

1− ϕ0

γ/η0

V

2a

Lm
f(ϕc) (24)

and f(ϕc) = (1 − ϕc)
2/(30ϕ2

c). The dimen-
sionless number M compares the pore pres-
sure at pore-opening (κγ/a) to the scale of the
evaporation-induced pressure drop in a wet film
of length Lm.25 M depends on the process ge-
ometry, dispersion properties and substrate ve-
locity but not on the vapor mass transfer in
the gas phase. Thus it may be easily estimated
for a given configuration. As seen in the ex-
perimental results, it varies on several orders of
magnitude in our experiments.
We see from eq (23) that L̃ev does not de-

pend on evaporation intensity, but only on the
shape of the function Q̃ev(x) [indeed, multi-
plying Q̃ev(x) by a constant has no effect on
eq (23)]. The reason is that increasing the over-
all evaporation rate increases in the same pro-
portion the deposit thickness and the liquid flow
rate through the wet film. These two effects
compensate each other, and the pressure drop
in the wet film is unchanged [see Eqs (15)-(16)].
Eq (23) can be solved numerically to get L̃ev.

Once L̃ev is known, the deposit thickness h̃d
is obtained from the dimensionless version of
eq (14):

h̃d = Q̃ev(L̃ev). (25)

Asymptotic regimes

We first examine simplifications of eq (23) for
the 1D and 2D cases.

• Λ̃/L̃ev � 1 (1D case). From eq (9),
Qev(x) ' βx/Λ. Eq (23) reduces to a sec-
ond degree algebraic equation whose so-
lution is

L̃ev ' (1 +M) +
√

(1 +M)2 − 1. (26)

This is the solution already found in ref.25

• Λ̃/L̃ev � 1 (2D case). The integration of
eq (9) yields

Qev(x) ' β
arcsin(x/Lev)

ln [16Λ/(πLev)]
. (27)

Plugging eq (27) into eq (23) provides an
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equation for L̃ev:√
L̃2
ev − 1 + arcsin (1/L̃ev) '

π

2
(1 +M).

(28)

Table 1 summarizes the analytical expres-
sions of L̃ev corresponding to the four asymp-
totic cases obtained by combining eq (26) and
eq (28) with additional assumptionsM� 1 or
M� 1. There is no difference between 1D and
2D cases forM � 1. ForM � 1, L̃ev is pro-
portional to M in both cases, and numerical
prefactors differ only by 20% (for a confirma-
tion, cf. solid and dashed lines in Figure 5(b),
in the section dedicated to the comparison with
experimental results).
These results lead to the following conclu-

sions about the evaporation length. We already
pointed out that evaporation intensity has no
effect on L̃ev; we see now that L̃ev is also weakly
sensitive to the distribution of evaporation ve-
locity along the wet film. In practice, the sim-
ple eq (26), although obtained in 1D, provides
a reasonable estimate of L̃ev when applied to a
2D problem.

Table 1: Analytical expressions of the dimen-
sionless evaporation length L̃ev = Lev/Lm for
all asymptotic cases.

Λ/Lev � 1 Λ/Lev � 1

(1D case) (2D case)

M� 1 L̃ev = 1 L̃ev = 1

M� 1 L̃ev = 2M L̃ev = π
2
M ' 1.6M

Analytical expressions of hd deduced from
eq (25) are reported in Table 2 for all asymp-
totic cases. Scaling (4) (deposit thickness vary-
ing as 1/V 2) is recovered for the 1D case
(Λ/Lev � 1) at M � 1. It corresponds to
the proportionality between Lev and Qev. In
all other situations, a scaling more or less con-
sistent with eq (1) (deposit thickness varying
as 1/V ) is recovered. Eq (1) is obtained for
M � 1. For the 2D case (Λ/Lev � 1) at
M� 1, hd weakly depends on the terms under
the logarithm, and their effect can hardly be

detected experimentally. So for this case too,
scaling (1) is expected in experiments. Parti-
cle size affects the deposit thickness in the case
M� 1 only. The dependence is significant in
the 1D case (proportionality) but small in the
2D case (logarithmic term).
As a conclusion on the role of vapor mass

transfer in the evaporative regime, these asymp-
totic models show that, unlike Lev, the behavior
of hd depends on the regime occurring in the gas
phase.

Experimental results

Experiments

To check the validity of the above theoretical
scalings, we developed a blade-coating setup.
We measured both Lev and hd for a wide
range of coating speeds (V ) and for differ-
ent model colloidal dispersions, more precisely
monodisperse charge-stabilized latex nanopar-
ticles of different sizes and volume fractions
(ThermoFisher and Sigma Aldrich Latex beads
(PS), dilution with deionised MilliQTM water),
see Table 3. All our experiments were per-
formed at room temperature T = 19.5 ± 1◦C,
and for external relative humidities Hr rang-
ing from 35% to 60%. Eq (10) gives β '
(2.3 ± 0.7) × 10−10 m2.s−1, using Dv = 2.5 ×
10−5 m2.s−1 and ρ = 997 kg.m−3. csat is derived
from the ideal gas law with the water saturated
vapor pressure Pvs = 2300 Pa at 19.5◦C.
Figure 4(a) shows schematically our experi-

mental setup. It consists in a microscope slab
(thickness ' 170 µm) glued on a thicker glass
slab (thickness ' 1 mm) for mechanical stabil-
ity and fixed to a first translation stage along
z-axis (labeled 1 on Figure 4) to control the
reservoir height H. Indeed, this stage is used to
confine a small amount of colloidal dispersions
(1 m` ) between the blade and a glass substrate
holded on another translation motorized stage
moving along x-axis at speed V (labeled 2 on
Figure 4, Märzhäuser Wetzlar). This motor-
ized stage is itself mounted on another motor-
ized translation stage along x-axis supporting
the blade setup (labeled 3 on Figure 4) which
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Table 2: Analytical expression of deposit thickness hd for all asymptotic cases.

Λ/Lev � 1 (1D case) Λ/Lev � 1 (2D case)

M� 1 hd = ϕ0

ϕc(1−ϕ0)
β
V
Lm
Λ

hd = ϕ0

ϕc(1−ϕ0)
β
V

π

2 ln[ 16Λ
πLm

]

M� 1 hd = 2a
ϕ2

0

ϕc(1−ϕ0)2
β
V 2

γf(ϕc)
η0Λ

hd = ϕ0

ϕc(1−ϕ0)
β
V

π

2 ln

[
16Λ
π2

(
2a ϕ0

1−ϕ0

γ/η0
V

f(ϕc)
)−1

]

is fixed on an inverted microscope (Olympus,
IX71). This original configuration allows us to
monitor the coating process in-situ with the ac-
curacy of bright field microscopy, and all along
the coating by moving stage 3 over its transla-
tion range (50 mm).
For each experiment, we proceed as follows.

We first clean the glass substrate (width =
50 mm, length = 75 mm and thickness = 1 mm)
using a Piranha treatment (20 minutes in a
50/50 vol. sulfuric acid/hydrogen peroxide so-
lution, storage in MilliQ water after rinse) to
ensure reproducible hydrophilic properties. We
then confine a small volume of a colloidal dis-
persion (1 m` ) as shown schematically in Fig-
ure 4, and a static meniscus of typical size
Lm ≈ 100 µm is formed for H = 500 µm
all along the width W of the substrate. The
typical angle that forms the blade with the
glass substrate is of a few degrees, the thick-
ness of the coating blade is 170 µm, and its
width is 40 mm. We then apply a constant
speed V = 500 µm/s to deposit a first coat-
ing on a distance ≈ 5 mm in order to avoid
transient and edge effects (pining of the line for
instance), and we then apply a constant V to
coat the remaining blade, typically on a length
≈ 35 mm. We then monitor the steady coating
process using a 1.25X objective (Olympus) on a
sCMOS camera (OrcaFlash, Hamamatsu) with
a field of view of 1.3×1.8 mm2. We finally use
stage 3 (synchronised with the image acquisi-
tion) to acquire composite images over a wider
field of view, typically 5.2×1.8 mm2.
Figure 4(b) shows a typical example of such

an extended image for set # 3 listed in Table 3
(V = 5 µm/s). The transition from the wet
film to the the dry coating occurs at a distance

Lev = 2100± 300 µm in this case, as easily ob-
served using the change of refractive index ow-
ing to the invasion of the pores by air. In some
conditions, the coatings display regular stripes
(with typical wavelength 300 ± 20 µm) which
actually correspond to modulations of the de-
posit thickness of the order of a few µm, see
later. After full coating, the mean final thick-
ness hd is estimated using a mechanical stylus
profilometer (Dektak Veeco). To estimate cor-
rectly hd, we measured the coating thickness
in-between two parallel scratches separated by
≈ 1 mm performed on the coating in the x di-
rection. For undulating conditions, hd corre-
sponds to the mean thickness, and the typical
undulations are of the order of 6 ± 1.5 µm, of
the order of 15− 20% hd.
To estimate the evaporation rate Qev in our

configuration for different Lev, we proceed as
follows. We glue different glass pieces to form a
rectangular tank of width 50 mm, depth 1 mm,
and of different lengths Lev ranging from 5 to
10 mm. We then fill the tank to the brim with
pure water to mimic the conditions of blade-
coating shown in Figure 4(b). The whole setup
is then placed on a precision balance, and we
record the temporal evolution of its mass over
typically 1 hour as well as the external rela-
tive humidity and room temperature to further
estimate β. Qev is finally estimated from the
temporal derivative of such data, and typical
uncertainties are of the order of ' 10%.
To estimate the colloid volume fraction ϕc,

we acquired top images of the coatings using
scanning electron microscopy (SEM, Hitachi
TM3030), see Supporting Information for a typ-
ical SEM image. We then constructed pair cor-
relation functions g(r) from such images, and
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extracted the surface fraction occupied by the
colloids from the first peak of g(r), see ref32 for
details. Assuming the isotropy of the densely-
packed colloidal assembly, we finally estimate
ϕc = 0.7 ± 0.02 for different experimental con-
ditions.

stage 2

Lm

H

st
ag

e 
1

Lev(...)

V 

stage 3 objective

(a)

V W 

(b)

glass slide

Lev

Lm

z 

x 

z 
x y 

Figure 4: (a) Schematic cross-section of our
custom-made blade coating setup mounted on
a microscope. The all coating setup is mounted
on stage 3 which makes it possible to visualize
the film during the coating process at differ-
ent locations and with the accuracy of optical
microscopy. The inset shows schematically a
perspective view of the setup. (b) Typical ex-
tended image recorded using the setup shown
in (a), Lev = 2100± 300 µm.

In the next section, we include in our analy-
sis measurements of close-packed region length
from Jung and Ahn24 and Joshi and Gilchrist.21
These data were obtained in the following way.
Jung and Ahn used a vertical plate immersed in
a dilute dispersion of silica particles in ethanol.
The plate is immobile, and the relative motion
of the contact line is due to solvent evaporation
from the bath (the substrate relative velocity is
then equal to the mean evaporation velocity).
The meniscus length reads Lm =

√
2`c, where

`c is the solvent capillary length.
Joshi and Gilchrist21 used silica particles in

DI water, and the same device as that repre-
sented in Figure 1, but with a plate angle larger

than 90◦. They do not provide any estimation
of the evaporation rate. We assumed a menis-
cus length Lm equal to the radius of curvature
of the meniscus with zero effective contact an-
gle (see SI of ref33). Lm ranges from 0.3 mm to
0.9 mm, much lower than Lev in all cases. We
disregarded experimental results corresponding
to mean deposit thickness lower than particle
diameter. Notice that for Jung and Ahn data
as well as Gilchrist data, we assumed ϕc = 0.74
as these authors did so in their models.

Evaporation length

Experimental values of the evaporation length
Lev are shown in Figure 5(a). The substrate ve-
locity spreads over three and a half decades, and
Lev over two decades. Figure 5(b) shows that
our data and that of Jung and Ahn collapse on
the same master curve, which coincides with the
theoretical prediction. Joshi and Gilchrist data
are significantly above the master curve, but
still obey the scaling law predicted by theory.
This discrepancy may be explained by a shift in
the estimation ofM due to (i) the uncertainty
on ϕc (Joshi and Gilchrist data collapse on the
master curve if we adopt ϕc ' 0.61 instead
of 0.74), (ii) the law used to estimate κ, the
prefactor of the pore-emptying criterion. We
used eq (21) as suggested in ref31 for a random-
packing of monodisperse spheres, but κ values
ranging from 2 to ' 13 have been used by dif-
ferent groups, depending on the exact packing
and particles wetting properties, see e.g. ref.34
Considering that main simplifications in our

model lies in the description of vapor mass
transfer in the gas phase, these results confirm
that the intensity of the overall evaporation rate
as well as the shape of the evaporation velocity
vev(x) have only a minor effect on the evapo-
ration length Lev. An important result is that
eq (26), although based on a simple 1D model of
the gas phase, provides a rather fair estimation
of Lev, provided ϕc is known.

Deposit thickness

Experimental data of hd are reported in Fig-
ure 6 for our experiments (Jung and Ahn did

10



Table 3: Experimental data sets (symbols in the last column are used in Figures 5 and 6).

Source Set # 2a / nm V / µm.s−1 ϕ0 Symbol

This work

1 310 [1, 30] 0.048

2 310 [0.5, 20] 0.0095

3 310 [2, 100] 0.096

4 170 [2, 100] 0.077

5 170 [1, 50] 0.038

6 800 [5, 50] 0.096

7 800 [1, 20] 0.048

Jung and Ahn24
8 200± 14 0.097 [0.001 , 0.01] ×
9 200± 14 [0.036, 0.097] 0.0025 +

Joshi and Gilchrist21 10 1010± 20 [27, 74] 0.2 •

not perform thickness measurements and data
in real units were not available in Joshi and
Gilchrist work).
Each symbol corresponds to an experimental

data set performed with the same particle di-
ameter and the same reservoir particle volume
fraction. From Figure 6(a) it appears that, for
each data set, hd is roughly proportional to the
inverse of V , following scaling (1). In addition,
multiplying hd by ϕ0/[ϕc(1 − ϕ0)] significantly
gathers the data [Figure 6(b)].
The asymptotic models corresponding to scal-

ing (1) predict a negligible (logarithmic) depen-
dence of the deposit thickness on the particle di-
ameter, or no dependence at all. To go further
in the comparison between model and data, we
define the quantity C̄ as the mean value of the
expression hd V ϕc(1 − ϕ0)/ϕ0 for each experi-
mental data set, and we plot it in the inset in
Figure 6(b) as a function of the particle diam-
eter 2a. Despite the dispersion of the data, a
weak dependence of C̄ with the particle diam-
eter can be observed. This weak dependence is
not captured by the model, likely because mass
transfer in the gas phase has been oversimpli-
fied.
Nevertheless, hd is closer to scaling (1) than

scaling (4). In addition, large variations of Lev
are observed in Figure 5 for the same sets of
control parameters. These large variations of
Lev for values ofM� 1, together with scaling
(1) for hd implies that Qev must depend only

weakly on Lev [cf. eq (12)]. To confirm this
point, a few measurements of Qev have been
performed (see description above in the Exper-
iment section), in order to investigate its de-
pendence with Lev. While Lev has been var-
ied on two orders of magnitude, Qev increases
only by a factor of about 4 (see Figure 7 and
SI for detailed comments). This confirms that
our experiments are done in a regime such that
the evaporation rate Qev weakly depends on the
evaporation length Lev. Our experimental re-
sults are thus consistent with our theoretical
findings.

Conclusion
In flow coating processes, the use of col-
loidal dispersions in the evaporative regime de-
serves special attention, because the evapora-
tion length can be significantly increased by
the water flow in the wet porous deposit. In
the present work, the effect of the vapor mass
transfer on the evaporation length and deposit
thickness has been discussed in-depth. We pro-
posed a 2D model simple enough to derive ana-
lytical solutions, yet realistic to predict scaling
laws observed in experiments.
We conclude from the theoretical analysis

that the evaporation length Lev does not de-
pend on the overall evaporation rate, and
weakly depends on the shape of the local evap-
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Figure 5: Evaporation length (see Table 3 for
symbols). (a) experimental data. (b) master
curve (M has been estimated with ϕc = 0.7 for
our data, and ϕc = 0.74 for data from refs21,24) ;
the solid and dashed lines correspond to asymp-
totic cases Λ/Lev � 1 [eq (26)] and Λ/Lev � 1
[eq (28)], respectively.
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Figure 6: Experimental deposit height. (a) hd
and (b) hd ϕc(1− ϕ0)/ϕ0 as a function of sub-
strate velocity V . Dashed and dotted lines are
power laws with −1 and −2 exponents, respec-
tively. See Table 3 for symbols. Inset : param-
eter C̄ defined as the mean value of the expres-
sion hd V ϕc(1 − ϕ0)/ϕ0 for each experimental
data set, as a function of particle diameter 2a
(errorbars represent the standard deviations).
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rate Qev/β as a function of the evaporation
length Lev.

oration velocity. For this reason, a model based
on 1D vapor mass transfer still provides fair es-
timates of Lev, when compared to experimental
data obtained in a 3D configuration.
On the contrary, an accurate model of va-

por mass transfer is required for the predic-
tion of the deposit thickness hd, in order to
describe precisely how the overall evaporation
rate Qev depends on the evaporation length Lev
(this is specific to colloidal dispersions, as Lev
slightly varies for polymers or small solutes so-
lutions35). The scaling law relating hd to pro-
cess control parameters strongly depends on the
driving mechanism acting in a given experimen-
tal setup. We believe that scalings (4) and (1)
are two limiting cases, the latter correspond-
ing to weak variations of Qev with Lev, as ex-
pected for diffusion in semi-infinite quiescent
air (essentially a 3D process), the former re-
sulting from proportionality between Qev and
Lev, as would be expected for instance for tur-
bulent free convection. Intermediate scalings
should be possible with other vapor mass trans-
fer mechanisms.
Our theoretical work also demonstrates that

the comparison between measurements of Lev
and the predictions given in Table 1, is a pos-
sible way to estimateM, the dimensionless pa-
rameter defined by eq (24). Such estimates
are quite robust as our model shows that Lev
does not depend on the global evaporation rate,

and is nearly insensitive to the distribution
of the local evaporation flux. Our measure-
ments are thus an indirect way to estimate pre-
cisely the product of the pore pressure at pore-
opening with the value of the permeability of
the densely-packed wet film, see eq (24). This
quantity is key to predict the receding of wa-
ter during horizontal drying of films or sessile
drops,20,23,34 but also for all unidirectional ge-
ometries such as the 1D drying of gels or of
dispersions confined within capillaries.36–38
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