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Abstract

This study is devoted to the effective plastic flow surface of a biporous polycrystalline
material, with an intragranular porosity consisting of spherical voids, and an intergranular
porosity consisting of larger elongated voids along the grain boundaries. These two popu-
lations of voids (or bubbles) with well separated scales and shapes are saturated by a fluid
and therefore are subjected to internal pressures. The effect of the intragranular voids is
modeled through a GTN (Gurson-Tvergaard-Needleman) criterion in the matrix. Numer-
ical simulations are performed with a FFT-based (Fast Fourier Transforms) method. A
particular attention is paid to the effect of the distribution of the intergranular bubbles on
the effective plastic flow surface. Different microstructures with different volume fractions
and sizes for the intergranular bubbles are tested under three loading conditions (the mean
size of the grains being fixed). Two main results are exhibited. First, it is shown that the
effect of the relative size of the intergranular bubbles on the effective plastic flow surface
depends on the loading direction. Secondly, a comparison is made with the analytical
model of (Vincent et al., 2014) and a correction of the porosity relative to the intergranu-
lar bubbles is introduced in this analytical model in order to take into account the specific
distribution of the intergranular bubbles along the grain boundaries. This correction is
expressed as a sum of two power law functions, each of them being significant either for
low or for large values of the porosity of intergranular bubbles.
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1. Introduction

This study is devoted to the effective plastic flow surface of a polycrystalline material
exhibiting two populations of voids: spherical voids which are located inside the grains, and
larger elongated voids along the grain boundaries. The intragranular voids are randomly
distributed inside the grains and are much smaller than the intergranular voids. Moreover,
these two populations of voids (or bubbles) are saturated by a fluid and therefore are sub-
jected to internal pressures. These bubbles may have a strong influence on the mechanical
behavior. The aim of this work is to improve an existing analytical model for the effective
plastic flow surface of such a biporous saturated material Vincent et al. (2014a,b). Such a
model is useful in specific engineering problems where the plasticity must take into account
the dilatational effects due to the presence of bubbles.
As an example of a real material, we can cite the irradiated uranium dioxide (UO2), which
exhibits, as a first approximation, such a specific microstructure. UO2 is commonly used
as fuel in nuclear reactors and its mechanical behavior is a topic of continuous research in
order to estimate the safety of nuclear reactors. The effects of irradiation on the uranium
dioxide fuel are complex. The irradiation leads to the creation of defects (vacancies,
interstitials), and gazeous fission products (such as xenon and krypton). The interaction
of vacancies and fission gas atoms leads to the formation of two populations of bubbles:
micrometric intergranular bubbles with a lenticular form, and smaller, almost spherical,
intragranular bubbles. The reader is referred to (Kashibe and Une, 1991; Kashibe et al.,
1993; Lösönen, 2000) in order to get more information about the formation and the size of
these voids. As they retain gases, the bubbles are pressurized. Their volume, shape and
pressure evolve with temperature and irradiation. Several studies in micromechanics have
been devoted to the influence of bubbles on UO2 mechanical behavior (Vincent et al., 2008,
2009a,b; Julien et al., 2011; Vincent et al., 2014a,b).

Vincent et al. (2009a,b, 2014a,b) have investigated the effective plastic flow surface of
a material with a bimodal population of pressurized bubbles. In these studies, the in-
tragranular behavior is considered as already pre-homogenized: the effect of pressurized
intragranular bubbles is described through a Gurson-Tvergaard-Needleman (GTN) plastic-
ity criterion (Gurson, 1977; Koplik and Needlemann, 1988; Tvergaard, 1990). Vincent et al.
(2014a,b) have derived a simple analytical expression for the effective plastic flow surface
and its accuracy has been assessed by comparison with full-field numerical simulations. In
order to improve the accuracy of this model, the present study investigates the effect on
the effective plastic flow surface of a distribution of lenticular bubbles on and along the
grain boundaries in a Gurson-like material. The main difference with the previous study,
is not the shape of the bubbles, ellipsoidal versus lenticular, but the more realistic dis-
tribution of the bubbles along the grain boundaries, instead of randomly distributed and
oriented bubbles. In both cases, the microstructures are macroscopically isotropic: ran-
domly oriented and distributed ellipsoidal bubbles in an isotropic matrix in (Vincent et al.,
2014a,b), lenticular bubbles on and along randomly oriented fictitious grain boundaries
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in an isotropic matrix for the present study. The key point is that, here, the lengths of
the lenticular bubbles are smaller than the lengths of the fictitious grains, so that several
bubbles can be located along the same grain boundary. It leads to specific microstructures
with strings of bubbles along the grains boundaries (as typically observed in irradiated
UO2). During a loading, the local fields such as the plastic strain rate, can be strongly
influenced by the distribution of the voids inside the matrix. The objective is then to catch
the effect of such a specific distribution of bubbles on the effective (or macroscopic) plastic
flow surface.

The present paper is organized as follows. The second section discuses the pertinent
microstructural parameters with a particular attention paid to those concerning the shape
and the size of the voids. The third section details the modeling of the microstructure. The
fourth section exhibits the numerical tools to simulate the mechanical behavior of periodic
cells with a Fast Fourier Transforms method (Michel et al., 2001; Moulinec and Silva, 2014).
Section 5 shows the test matrix (different sets of parameters describing the microstructure
and the loadings), the results of the calculations and their analysis. Then, in section 6,
the analytical model of the previous study of Vincent et al. (2014a,b) is recalled, from
which a corrected porosity is designed to take into account the specific distribution of the
intergranular bubbles.

2. Microstructural data

2.1. General microstructure

The materials addressed in this study can be considered as bi-porous materials charac-
terized by the presence of two populations of voids with well separated sizes: (1) spherical
intragranular bubbles at a very small scale, and (2) elongated (along grain boundaries)
intergranular bubbles at a larger scale (Figure 1 b)). As the scales of the two populations
are well separated, the effective plastic flow surface of such a material can be obtained by
two successive homogenization steps as in (Vincent et al., 2014b):

• the first step, corresponding to the scale of the intragranular bubbles, by the way of
a Gurson-like plasticity criterion,

• the second step, corresponding to the scale of the intergranular bubbles, via full-field
numerical simulations based on a FFT (Fast Fourier Transforms) method.

The main originality of the study is the distribution of voids along the grain boundaries.
The effect of this distribution is of interest in several situations. Two main examples can be
cited : materials exhibiting intergranular ductile fracture may present such intergranular
porosities and irradiated materials.

Nuclear fuel pellet of UO2 was taken as an example to determine microstructural pa-
rameters close a real case :
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UO2 is, at the microscopical level, a polycrystal with a typical grain size of about 10
µm, (Killeen, 1980; Kashibe and Une, 1991; Kashibe et al., 1993; Dherbey et al., 2002).
The nuclear reaction creates rare gases such as xenon and krypton, which are trapped in
the material and can form pressurized bubbles inside the grains or at the grain boundaries.
Intragranular bubbles are typically considered as almost spherical in shape and their radii
can be of the order of nanometer in some observations by transmission electron microscopy
(TEM) and could reach a few hundred of nanometers in a fuel submitted to a strong
irradiation test (power ramp) (Kashibe et al., 1993; Lösönen, 2000). Intergranular bubbles
have a lenticular form, elongated along the grain boundaries, due to enhanced diffusion of
vacancies and gases atoms through the grain boundaries.

Figure 1 a) shows a microstructure obtained by Scanning Electron Microscopy (SEM)
of an irradiated UO2 (Dubourg et al., 2005) illustrating bubbles sizes, morphologies and
localization.

a) b)

Figure 1: (a) Microstructure of a 23 GWd/t irradiated UO2 after a heat treatment (temperature holding 3
hours at 2000 K) (Dubourg et al., 2005). (b) Idealized microstructure (for FFT simulations).

2.2. Intergranular bubbles

Several microstructural parameters are necessary in order to describe accurately the
intergranular cavities. Like in many studies, the intergranular bubbles are characterized
by the porosity fe (volume fraction of the intergranular voids) and by their shape, size and
distribution.

As mentioned, the intergranular cavities are elongated along grain boundaries, but their
distribution is not described by a scalar or a tensorial parameter. It derives directly from
the position of the grains boundaries.

In the present study, a broad range of porosity (0.1 to 6 %) is investigated in order
to determine the effects of the volume fraction. At high volume fractions, bubbles may
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form an interconnected network. According to White (2004), in UO2 fuel intergranular
bubbles interlinkage begins to occur when the fractional coverage of the grain boundaries
exceeds 17–18 % in agreement with statistical models of coalescence on plane surfaces. In
the present study, it is chosen to limit the analysis to the non-interconnected bubbles, even
for high fractional coverages. For the sake of simplicity, the bubbles located at triple point
(at the intersection of three or more grains) were also neglected.

For a more realistic representation, it is supposed that the intergranular cavities have
a lenticular shape (see Figure 2 and Appendix A). This is in line with the observations
of Reynolds et al. (1971), Hodkin (1980), Une (1988) and Zacharie et al. (1998) realized
by TEM and/or SEM on a UO2 fuel. The lenticular shape is characterized by the contact
angle, θ, between the grain boundary plan and the surface of the bubble. Physically, the
contact angle depends on the surface energy of the bubble and on the grain boundary energy
(Reynolds et al., 1971). These energies themselves depend on misorientation between the
grains. Therefore, the contact angle is not the same from one grain boundary to another.
For example, Reynolds et al. (1971) found values between 34◦ and 52◦ in the same sample.
A fixed value of the contact angle is classically chosen to simulate the bubbles, and they
are considered to have all the same shape. In this study a fixed value of 45◦ for the contact
angle is set in the following.

re

h e
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s

bubble 1

security zone

grain boundaryθ

Figure 2: Notations for the intergranular bubbles. Definition of the security zones around the intergranular
bubbles.

The size of intergranular cavities can vary a lot from one cavity to another. For lentic-
ular shapes it is characterized by the radius re (Figure 2 and Appendix A) and by the
height he = re tan θ

2 of the lenticular zone. Few bibliographic results give information on
the populations of cavities. But, Noirot et al. (2004) give very precise results for a UO2

LWR fuel irradiated at 61 GWd/t. The measured intragranular and intergranular porosi-
ties are around 1 %, the diameter of the intergranular bubbles is comprised between 100
nm and 1 µm with a mean value around 700 nm and the diameter of intragranular bubbles
is around 300 nm. In the present study, the relative sizes of the bubbles are chosen to avoid
spatial resolution problems and therefore correspond only to the biggest observed bubbles.

The microstructural parameters used for our numerical study are summarized in Table
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1.

Bubble Parameter Notation Min Max

Intragranular Local porosity inside the grains fb 0.7 % 6 %

Intergranular Porosity fe 0.1 % 6 %
Relative radius (on the grain boundary) re/rg 0.1 0.32

Contact angle θ 45◦ 45◦

Normalized minimal distance rs/re 1.25 1.75
between two bubbles centers

Table 1: Microstructural parameters for the simulations. The mean radius of the grains is denoted by rg.

3. Microstructure modeling

The porosity due to the intragranular bubbles is taken into account through a GTN
model (Gurson, 1977; Koplik and Needlemann, 1988; Tvergaard, 1990). Only the inter-
granular bubbles are geometrically discretized in V , the representative volume element
(RVE). In the simulations, this volume is considered as a cube with a length L and the
mean radius of the grains rg is defined as:

rg
L

=

(
3

4πN

)1/3

, (1)

where N denotes the number of grains in V .
As specified in section 2.2, the intergranular bubbles are elongated along the grain

boundaries and have a lenticular form. Let us define a simple grain boundary as the
boundary between exactly two grains, and the triple boundary as the boundary between
three or more grains. Here, the intergranular bubbles have the following characteristics:

• located only on simple grain boundaries,

• lenticular with a long axis along the grain boundary,

• with identical size (re) and shape (same contact angle, θ).

An algorithm has been developed for this specific microstructure. Its main concept is
to mimic the growth of the bubbles along the grain boundaries. The microstructure is
generated in four successive steps:

i generate a polycrystal with a Voronoi tesselation,

ii identify the grain boundaries,
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iii generate random seeds for the bubbles on the grain boundaries,

iv let the bubbles grow until they reach their final size.

In particular, the fourth step consists in making easier the growth of the bubbles along
the grain boundaries rather than inside the grains. For each bubble, the growth is stopped
when the desired radius re is reached. This process tends to create bubbles with the desired
final radius along the grain boundary (re) and the desired contact angle (θ). The general
process is illustrated in Figure 3.

Moreover, to avoid overlapping between the bubbles, a security radius (rs) has been
introduced. The growth of the security zones follows the same algorithm as the one for the
bubbles growth with the same seeds, the same shape (same aspect ratio wl = hs/rs = he/re,
see Figure 2), but with a size of rs instead of re. Two security zones of two distinct bubbles
can not overlap. So this process not only avoids overlapping between the bubbles but also
ensures a minimal distance between two bubbles centers along a grain boundary of 2 rs
(rs ≥ re) in the microstructure, as illustrated in Figure 2.

Polycristal Elongated voids Final two-phases
Voronoi tesselation along the grain boundaries microstructure

Figure 3: Procedure for the generation of the microstructures.

4. Numerical determination of the effective flow surface

4.1. FFT method

Full-field numerical simulations are performed using the CraFT software as presented
in Suquet et al. (2012). The software is based on the FFT method initially proposed in
Moulinec and Suquet (1994, 1998) to investigate the effective properties of periodic compos-
ites. The first algorithm developed on that basis, called in this article ”basic algorithm”,
was described in Moulinec and Suquet (1998) and Michel et al. (2001). This iterative
method is based on the exact expression of the Green function for a linear elastic, homoge-
neous reference material. To improve the convergence of this algorithm on composites with
high contrasts, some ”accelerated schemes” were derived from the basic one, for example
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the augmented Lagrangian (Michel et al., 2000), the Eyre-Milton algorithm (Eyre and Mil-
ton, 1999), or the Monchiet-Bonnet algorithm (Monchiet and Bonnet, 2012). Moulinec and
Silva (2014) have proven that the augmented Lagrangian and the Eyre-Milton algorithm
are particular cases of the Monchiet-Bonnet algorithm (the values of the scalar parame-
ters α and β in equation (3) are equal to 1 for augmented Lagrangian and to 2 for the
Eyre-Milton algorithm). Moreover, the FFT method was extended to elasto-viscoplastic
composites using a step-by-step time integration (Idiart et al., 2006). This method can be
readily used in accelerated schemes.

The method works as follows: at each time step, a fixed point algorithm is used to
determine the local strain and stress fields (respectively denoted by ε and σ). The fixed
point algorithm for the basic and accelerated schemes can be written by the following set
of equations (Monchiet and Bonnet, 2012; Idiart et al., 2006). At each iteration i, σi, εi

are known from the last iteration and σi+1, εi+1 are determined as follows:
Basic scheme: {

εi+1 = εi − Γ0 ∗ σi
σi+1 = f(εi+1, vint),

(2)

Accelerated scheme:
τ i+1 = τ i − αC0 : Γ0 ∗ σi − β∆0 ∗ εi − βC0 : (< εi > −E)
σi+1 = f(εi+1, vint)
τ i+1 = σi+1 +C0 : εi+1,

(3)

where < . > is the spatial average, E is the macroscopic deformation, C0 is the stiffness
tensor of the reference material, Γ0, the Green operator associated to C0, ∆0, the so-called
”stress Green’s tensor” (Kröner, 1972; Bhattacharya and Suquet, 2005), vint is a vector of
internal variables, and f is a general function relative to the constitutive relations.

For both schemes, the first equation (in (2) and (3)) ensures the global equilibrium of
the system, and the second equation (in (2) and (3)) ensures the respect of the constitutive
relations at each point. It is worth noting that the accelerated scheme does not require
to solve σ = f(ε, vint) anymore (where the known tensor is the local strain ε and the
unknown is σ), but the set (τ = σ + C0 : ε, σ = f(ε, vint)) (where the known tensor is
the polarization τ and the unknowns are σ and ε).

4.2. Time-integration of the constitutive relations

The matrix (the domain surrounding the intergranular bubbles) is an isotropic elastic
perfectly plastic material obeying a GTN criterion (Gurson, 1977; Koplik and Needlemann,
1988; Tvergaard, 1990). As an uniform internal pressure Pb is prescribed in the bubbles,
the general form of the Gurson surface is preserved, with a shift of Pb along the hydrostatic
axis (Vincent et al., 2009a):

F (σ) = q3

(
σeq
σ0

)2

+ 2q1fb cosh

(
3(σm + Pb)

2σ0

)
− 1− (q1fb)

2, (4)
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where fb is the local intragranular porosity; σ0 is the yield stress of the unvoided material;

σeq is the Von Mises stress; σm the hydrostatic stress; σm = 1
3Tr(σ); σeq =

√
3
2σD : σD;

σD = σ − σmi; i is the second order identity tensor and q1, q3 are two scalars introduced
by Koplik and Needlemann (1988) and Tvergaard (1990) for a better match to numerical
results.

For the purpose of this study, the values of q1 and q3 have been fixed to 1 (as in the
original Gurson criterion). This choice is motivated by the following considerations. First,
one should remark that the effect of q1 is to enhance the effect of local porosity fb in the
criterion. As the effect of fb on the final result of the present analysis is especially studied
in section 6.3.1, the parameter q1 is here fixed to 1 without loss of generality. Secondly, an
expression for q3 has been proposed by Leblond et al. (1994) in order to satisfy the upper
bound of Ponte Castañeda (1991) for a purely deviatoric loading: q3 = 1 + 2

3fb. As the
calculations of the present analysis are performed with moderate values for fb (less than 6
%), this expression for q3 remains close to 1. For the sake of simplicity, q3 has been fixed
to 1 in the present analysis.

It is worth noting that our main objective is to derive the instantaneous effective plas-
tic flow surface in the sense of Ponte Castañeda and Zaidman (1996). Therefore, the
microstructure is supposed to be fixed: there is neither evolution of the porosities nor of
the geometry of the microstructure. As a result, using the small strain hypothesis, the
constitutive law for the matrix reads as:

σ̇ = C : (ε̇− ε̇p)

ε̇p = λ̇
∂F

∂σ
λ̇ ≥ 0, F (σ) ≤ 0, λ̇F (σ) = 0,

(5)

where C is the elastic tensor of the porous matrix, εp is the plastic part of the strain, and
λ is the plastic multiplier. For the time integration of the constitutive equations, the strain
increment (ε̇δt) is supposed to be known. To use a radial return method (Wilkins, 1964),
let us define a trial stress, σT , as σT = σt0 +C : ε̇δt, where σt0 = σ(t− δt) is the known
value of the stress at the previous time step. The algorithm for solving the set of equations
(5) can be written as:

• compute the trial stress,

• if F (σT ) < 0, then σ = σT ,

• otherwise, σ is determined by solving the set of equations (5), where the last line is
replaced by F (σ) = 0. It leads to the following set of equations:
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

σm = σTm − 9kfb
λ

σ0
sinh

(
3(σm + Pb)

2σ0

)
σD = σTD − 6

µλ

σ20
σD(

σeq
σ0

)2

+ 2fb cosh

(
3(σm + Pb)

2σ0

)
− 1− f2b = 0.

(6)

The bulk and shear moduli for the elastic part are denoted by k and µ. The plastic
multiplier, λ, can be expressed as a function of the hydrostatic stress from the first equation
of (6):

λ =

 σTm − σm
9kfb sinh

(
3(σm+Pb)

2σ0

)
σ0. (7)

The second line of the set (6) shows that the deviatoric part of the trial stress and the
deviatoric part of the stress are collinear. Therefore this equation reduces to a scalar
equation for the equivalent stress:

σeq =

(
σ20

σ20 + 6µλ

)
σTeq. (8)

Replacing the expression of λ and σeq in the last line of (6) shows that the set of equations
(6) is then reduced to one scalar equation with one scalar unknown, σm:(

3kσTeqG(σm)
)2

+
(
3kσ0G(σm) + 2µ(σTm − σm)

)2
H(σm) = 0, (9)

with:

G(σm) = fb sinh

(
3(σm + Pb)

2σ0

)
, (10)

H(σm) = 2fb cosh

(
3(σm + Pb)

2σ0

)
− 1− f2b . (11)

Once σm has been determined, λ is computed from equation (7) and σD is computed from
the second line of (6). The stress σ is then fully determined.

Equation (9) is numerically solved. It has been observed that the function to nullify is
close to a parabola in the vicinity of the solution. Therefore, the Müller method (Müller,
1956), based on parabola roots search seems well adapted to solve this equation. Note that
the condition (λ > 0) is equivalent to the condition (σm comprised between −Pb and σTm).
This bounding condition is used to initialize the Müller method.

The integration in the FFT scheme is straightforward concerning the basic scheme, by
setting ε̇δt = εi+1 − εt0 and σ = σi+1 (where εt0 is the known value of the strain at
the previous time step). For the accelerated scheme, the integration of the constitutive
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relations has to be rewritten following the same approach and introducing the increment
of polarization τ̇ δt = τ i+1 − τ t0 (where τ t0 is the known value of the polarization at the
previous time step). The direction of σD is obtained from the equation:

σi+1
D

(
1 +

µ

µ0
+

6µλ

σ20

)
=

µ

µ0
(τ i+1

D − τ t0D) +

(
1 +

µ

µ0

)
σt0D (12)

and the non-linear equation to solve (as a function of σi+1
m ) reads as:

3

2

 3kG(σi+1
m )

3kσ0

(
1 +

µ

µ0

)
G(σi+1

m ) + 2µL(σi+1
m )


2

M +H(σi+1
m ) = 0, (13)

with:

L(σi+1
m ) =

k

k0
(τ i+1
m − τ t0m ) +

(
1 +

k

k0

)
(σt0m − σi+1

m ), (14)

M =

(
µ

µ0
(τ i+1

D − τ t0D) +

(
1 +

µ

µ0

)
σt0D

)
:

(
µ

µ0
(τ i+1

D − τ t0D) +

(
1 +

µ

µ0

)
σt0D

)
, (15)

where (k0, µ0) are the bulk and shear moduli of the reference material. This equation is
solved as for the basic scheme equation, by the mean of the Müller method. Finally, the
equations (7) and (12) lead to the stress σi+1. The strain εi+1 is then obtained through
εi+1 = C−10 : (τ i+1 − σi+1). In the next section, numerical simulations are performed by
means of the augmented Lagrangian accelerated scheme, in order to solve the elasto-plastic
problem of a porous phase in a matrix governed by a GTN criterion (without evolution of
the porosities nor of the geometry of the microstructure).

Following Vincent et al. (2014b), the effective flow surface can be characterized, in the
present context, as the overall stress states obtained as asymptotic limits of the average
stress along specific loading paths. Moreover, the effective extremal surface does not depend
here on the type of plasticity theory, incremental or deformation theory, used for the
individual constituents. In Vincent et al. (2014b), a deformation theory has been used,
whereas, in the present article, an incremental theory has been adopted. But here, in the
present context, both models will lead asymptoticaly to the same effective flow surface.

5. Numerical full-field simulations

5.1. Spatial resolution

Five unit cells are considered to calibrate the spatial resolution of the numerical simu-
lations. Each cell is a cubic structure containing a lenticular void at its center. They are
designed such that the cells have the same porosity (2 %) and the same shape parameter
(wl = 0.5, see Appendix A). The matrix is an elastic perfectly plastic material with a Gur-
son criterion such as described in section 4.2, with k=28 GPa, µ=21 GPa, σ0=1 GPa, fb=
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2 % and Pb =0. The cubic cells corresponds to distinct discretizations into 463, 643, 1283,
2563, and 5123 voxels. Each cell is tested under two loading conditions: a simple traction
test condition along the direction of the revolution axis of the void (Σ11 6= 0, Σ22 = 0,
Σ33 = 0, Σij,i6=j = 0) and a purely hydrostatic test (Σ11 = Σ22 = Σ33, Σij,i6=j = 0).
Note that, in this work, only the direction of the overall stress (or macroscopic stress Σ)
is prescribed following a procedure described in (Michel et al., 1999) and (Michel et al.,
2000).

The relative error (with respect to the highest resolution) on the macroscopic stress
Σ11 are plotted in Figure 4. The error is lower than 2.2 % for the lowest discretization.
In the following work, a minimal value of 2000 voxels for the discretization of one bubble
is adopted, leading to a good compromise between size and accuracy (it would correspond
here to a cell with 105 voxels).
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Figure 4: Single lenticular bubble void in a cubic cell. Influence of the spatial resolution. Relative error
(with respect to highest resolution) on the macroscopic stress Σ11 for two loading conditions: simple traction
(circles) and purely hydrostatic traction (crosses) and five discretizations of the cell.

5.2. Volume elements and loadings

5.2.1. Microstructural parameters

In order to limit the size of the calculations, the discretization of the periodic cells is
limited to 5123 voxels. For a cell with 80 grains, 2000 voxels per bubble means that the
minimal relative size for the bubbles is around 0.16 (relative with respect to the mean grain
size). To investigate smaller bubbles, a second cell is generated with 21 grains. In this
second cell, the minimal relative size for the bubbles is 0.1. Several values for the porosity
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of the intergranular bubbles, fe, and for the radius of the bubble projected on the grain
boundaries, re, and for the security radius, rs, are tested. The test matrix is summarized
in tables 2 and 3. Saturated grain boundaries means that the number of the bubbles is not
prescribed, but that the bubbles are randomly drawn one by one until no more bubbles can
be added (with respect to the security zones, as described in section 3). In this process,
the bubbles are not moved or redrawn in order to increase their number. The test matrix
leads to a total amount of 25 sets of parameters for the microstructures. Two examples of
microstructures are shown on Figure 5.

grains re/rg fe (%)

21 0.1 0.16 0.2 0.1
0.1 0.16 0.2 1

80 0.16 0.32 0.1
0.16 0.32 1

Table 2: Test matrix for the microstructures with rs/re = 1.75 and a controlled volume fractions fe.

grains re/rg
0.1 0.16 0.2

21 rs/re 1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75
fe (%) 3.42 2.38 1.76 4.18 2.87 2.11 4.40 3.13 2.24

0.16 0.32
80 rs/re 1.25 1.5 1.75 1.25 1.5 1.75

fe (%) 5.08 3.56 2.58 6.04 4.30 3.19

Table 3: Test matrix for the microstructures with saturated grain boundaries.

The matrix behavior parameters are those specified in section 5.1.

5.2.2. Loading parameters

Each microstructure is submitted to three distinct loading conditions with imposed
macroscopic stress direction:

• a purely hydrostatic traction,

• a purely deviatoric axisymmetric loading (Σ33 = −2Σ11 = −2Σ22, Σij,i6=j = 0),

• an intermediary axisymmetric sollicitation with a high (but finite) triaxiality ratio
(Σm/Σeq = 4, Σ33 = 1.27 Σ11 = 1.27 Σ22, Σij,i6=j = 0, Σm and Σeq being the hydro-
static and equivalent parts of Σ).
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a) rs/re = 1.25 b) rs/re = 1.75

Figure 5: Examples of unit cells used in the FFT simulations: microstructures of a polycrystal with
intergranular bubbles saturating the grain boundaries. Effect of two distinct minimal spacings between the
bubbles. Red : grain boundaries. White : bubbles.

Moreover, one particular microstructure (21 grains, saturated boundaries, re/rg = 0.2,
rs/re = 1.5) is tested under 16 different loading directions to estimate the overall shape for
the effective plastic flow surface. This is also useful to assess the role of the third invariant
of Σ on the effective plastic flow surface.

5.2.3. Representativeness

The representativeness of a volume element is still an open matter especially for non
linear materials. The very first property of a representative volume element is its sta-
tionarity. For finite volumes, such as the ones corresponding to specific realizations of a
unit-cell, one can only require that the deviation from stationarity should be less than a
given threshold. In fact, this definition is strongly related to the quantity of interest. In the
present study, the effective yield stress is the quantity of interest but the elastic properties
are not. The stationarity can be controlled by drawing different polycrystals with the same
intergranular parameters and by comparing their effective yield stresses.

Secondly, since the voided materials in this study are made of an isotropic matrix con-
taning voids located on untextured grain boundaries, macroscopic isotropy is a requirement
for which the results should be checked. As explained in Vincent et al. (2014b), there are
several possible definitions of the isotropy for a volume element. The isotropy of a volume
element can be evaluated either by studying geometrical arrangement of the phases or by
studying the mechanical response under the application of mechanical loadings for given
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constitutive relations of the phases. The first method can be called ”geometrical isotropy”.
It can be assessed by considering the covariograms of the phases, as proposed by Kanit et al.
(2003). The second method can be called ”mechanical isotropy”. A measure of deviation
from mechanical isotropy was introduced by Vincent et al. (2014b). This measure is not
recalled here and the reader is refered to Vincent et al. (2014b) to get more informations
about it. The Tables B.5 and B.6 in Appendix B give the different isotropy deviations
calculated after full-field simulations by means of this measure. As expected, different con-
figurations may present significant deviations from the mechanical isotropy. However, it is
worth noting that, for a given configuration, the deviation from the mechanical isotropy
also depends on the loading direction : the deviation is important in the purely hydrostatic
case (9 to 32 %), moderate in the case with a triaxiality ratio of 4 (2 to 15 %), and low
in the purely deviatoric case (0 to 5 %). This evolution with the loading direction was
already observed in Vincent et al. (2014b). As in (Vincent et al., 2014b), when averages
of several configurations are taken, the deviation from isotropy is small: the line of the
Table B.5 mentioning the word ”mean” corresponds to the average obtained on three dif-
ferent realizations. As well, the deviation from isotropy for saturated grain boundaries are
significantly lower in the case of a 80 grains volume than for a 21 grains volume.

The variations of the mechanical responses between different realizations of polycrystals
with the same parameters for the bubbles is evaluated through three realizations for two
sets of parameters (21 grains, saturated grain boundaries, re/rg = 0.1, rs/re=1.25, and
21 grains, saturated grain boundaries, re/rg = 0.2, rs/re = 1.5). The greatest difference
between the effective yield stresses of two realizations with the same set of microstructural
parameters is less than 1% of the mean calculated effective yield stress. Therefore, despite
the rather high anisotropy, it appears that only one realization with 21 grains is sufficient
to investigate the effective plastic flow surface.

5.3. Numerical results

5.3.1. Purely hydrostatic loading

Figure 6 shows the effective hydrostatic stress obtained by the full-field simulations
as a function of the volume fraction fe. As expected, the bubbles have a softening effect
on the effective yield surface (the hydrostatic yield stress decreases when the porosity fe
increases). Moreover, a significant effect of the relative size of the bubbles is identified. It
is recalled here that it is a relative size, keeping in mind that the mean size of the grains
has been fixed. For example, for a given volume fraction fe ≈ 2%, dividing by two the
bubble radius may lead to a 20% supplementary decrease of the yield stress. The results
plotted in Figure 6 suggest that, for a given volume fraction fe, the effective hydrostatic
stress reduces when decreasing the relative size of the bubbles.

5.3.2. Purely deviatoric loading

Figure 7 shows the effective equivalent stress obtained by the full-field simulations as
a function of the volume fraction (fe) for purely deviatoric axisymmetric loading. As for
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Figure 6: Effective hydrostatic stresses obtained by full-field simulations for a purely hydrostatic loading
as a function of the volume fraction fe for different relative sizes of the bubbles (re/rg).

the purely hydrostatic case, the intergranular cavities lead to a softening of the material.
The relative size of the bubbles has a non neglectable effect. Nevertheless, this effect is
less important compared to the case of a purely hydrostatic loading. A factor of two on
the bubble radius from 1 µm to 2 µm for a volume fraction of 3.5 % leads to only 4 %
supplementary decrease of the yield stress.

5.3.3. Intermediate loading

Figure 8 shows the effective hydrostatic stress obtained by the full-field simulations as a
function of the volume fraction fe, for a high but finite loading triaxiality ratio (Σm/Σeq =
4, Σ33 = 1.27 Σ11 = 1.27 Σ22, Σij,i6=j = 0). As for the purely hydrostatic and purely
deviatoric loadings, the points can not be connected in a single curve. Therefore the
relative size of the bubbles can not be neglected. A factor of two on the bubble radius
may lead to a 20 % variation of the effective hydrostatic stress, as in the case of the
purely hydrostatic loading. As expected, the same evolution of the effective stress with the
relative size of the bubbles appears than for the purely hydrostatic loading and the purely
deviatoric loading.

5.3.4. Conclusions

From the numerical full-field simulations, it can be concluded that:

• the intergranular bubbles have a softening effect on the material;

• the relative size of the bubbles has a significant influence on the effective plastic flow
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Figure 7: Effective yield stresses obtained by full-field simulations for a loading with imposed stress direction
(Σ33 = −2 Σ11 = −2 Σ22, Σij,i 6=j = 0) as a function of the volume fraction fe for different relative sizes of
the bubbles (re/rg).
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Figure 8: Effective hydrostatic stresses obtained by full-field simulations for a loading with imposed stress
direction (Σ33 = 1.27 Σ11 = 1.27 Σ22, Σij,i 6=j = 0, Σm/Σeq = 4) as a function of the volume fraction fe for
different relative sizes of the bubbles (re/rg).

stress for a purely hydrostatic stress loading (for a given volume fraction of bubbles,
the flow stress decreases when the relative size decreases).

• the relative size of the bubbles has a less important influence on the effective plastic
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flow stress for a purely deviatoric axisymmetric stress loading (for a given volume
fraction of bubbles, the flow stress also decreases when the relative size decreases).

Again, one should keep in mind that the mean size of the grains is fixed, so that the sizes
of the bubbles introduced here are in fact relative sizes.

These observations are in good agreement with those of Bilger et al. (2005) who have
carried 3D simulations of porous media composed of a perfectly plastic matrix weakened
by stress-free voids, with random position of the voids or with connected or disconnected
clusters of voids. A simulated clustered microstructure with connected voids clusters is
obtained from a microstructure with randomly distributed voids by removing voids in
large disconnected spherical zones. Therefore distributing the void along grain boundaries
is close to distributing them into connected clusters. The simulations exhibited a strong
effect of connected cluster (compared to random distribution) on the yield stress during
an hydrostatic loading but almost no effect on purely deviatoric loading as in the present
study.

5.4. Local plastic strain field

Figures 9 and 10 show the typical aspect of the plastic strain field inside the microstruc-
ture for a purely hydrostatic loading and an axisymmetric purely deviatoric loading, re-
spectively. For the purely hydrostatic loading test, the plasticity is located along the grain
boundaries. For the purely deviatoric test, the cumulated plastic strain is high in some
grain boundaries, but some plasticity also develops inside the grains. Such results may
explain the difference observed in the influence of the relative size of the bubbles with the
loading direction.

Figure 11 shows the difference between the plasticity localizations of two purely devia-
toric stress loadings with different third invariants on the same microstructure. In the first
case, the solicitation is (Σ33 = −2 Σ11 = −2 Σ22, Σij,i6=j = 0) close to a uniaxial compres-
sion along (Oz) axis. The plasticity is therefore activated in the weakest plans having a 45◦

angle with (Oz) axis. In this case, they correspond to some grain boundaries. In the second
case, the solicitation is pure shear along Σ13. The plasticity is therefore activated in the
weakest plans having a 45◦ with the axis (O,(1,0,1)). Thus it corresponds to plans orthog-
onal to (Oz) or (Ox). Surprisingly, only one plan is activated in the whole volume instead
of different pieces of plans as in the first case: it shows that this specific microstructure
under this specific loading has a weakest plan and that it is not fully isotropic with respect
to the local cumulated plastic strain field. It illustrates the fact that the microstructure
can be isotropic with respect to the effective plastic flow surface but anisotropic for local
fields such as the cumulated plastic strain.

6. Identification of a simplified analytical model

6.1. Analytical model

Vincent et al. (2014a,b) have derived a simplified analytical model for a biporous mate-
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a) microstructure b) cumulated plastic strain

Figure 9: Two slices of the microstructure with 21 grains, saturated grain boundaries, re/rg = 0.2, rs/re =
1.5. Cumulated plastic strain fields for a purely hydrostatic overall stress.

rial, with small intragranular spherical bubbles and bigger ellipsoidal intergranular bubbles.
An approximation of the effective plastic flow surface was identified. It is similar in the
form to a Gurson, or GTN, model. It reads as:

1

β

(
Σeq

σ0

)2

+
1

α
cosh

(
3

2

(
Σm

σ0
− Σ̄+

m + Σ̄−m
2σ0

))
− 1 = 0, (16)

where Σm is the macroscopic hydrostatic stress and Σeq is the Von Mises stress. Σ̄+
m and Σ̄−m

are the flow stresses of the material under hydrostatic stress (corresponding respectively
to a contraction and a dilatation of the material). α and β are the two scalar functions:
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a) microstructure b) cumulated plastic strain

Figure 10: Two slices of the microstructure with 21 grains, saturated grain boundaries, re/rg = 0.2,
rs/re = 1.5. Cumulated plastic strain fields for a purely deviatoric overall stress (Σ33 = −2 Σ11 = −2 Σ22

and Σ12 = Σ13 = Σ23 = 0).

α = cosh

(
3

4

(
Σ̄+
m − Σ̄−m
σ0

))
, (17)

β =

(
Σ̄eq

σ0

)2
α

α− 1
, (18)

where Σ̄eq is the flow stress of the material under purely deviatoric strain-rate. Σ̄eq, Σ̄+
m

and Σ̄−m depend on the shape and volume fractions of the two populations of voids and
on the internal pressures, Pb of the intragranular cavities, Pe of the intergranular cavities.
Thus, the proposed criterion is a generalized Gurson criterion passing through the three
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Figure 11: Cumulated plastic strain fields for two different purely deviatoric tests on the same microstructure
(21 grains with saturated grain boundaries, re/rg = 0.2, rs/re = 1.5).

specific points Σ̄eq, Σ̄+
m and Σ̄−m. The identification method is fully described in (Vincent

et al., 2014a,b).
A comparison with numerical results obtained by full-field calculations with the FFT

method was performed by Vincent et al. (2014b). It has shown the necessity to use a cor-
rected volume fraction in the analytical model to achieve a good match with the numerical
experiments. The correction depends on the aspect ratio we (of the equivalent ellipsoidal
cavities, see Appendix A) and the volume fraction, fe, of the intergranular cavities. Due
to the specific geometries considered here (elongated bubbles on grain boundaries), a new
correction has to be identified.

6.2. Identification of the corrected volume fraction

Let us define the corrected volume fraction f∗ as the porosity to be considered in
the analytical model instead of the true porosity fe, in order to get, with the model, the
overall stress obtained by numerical simulation. Figure 12 shows the existence of two
separated domains, whatever the loading direction (purely hydrostatic or deviatoric), with
a transition zone around fe = 0.01. The first domain corresponds to low volume fractions.
In that domain, the relative size of the bubbles has a small influence on the effective yield
stress, which depends mainly on the volume fraction of the bubbles. On the contrary, for
high intergranular bubble volume fractions, both the volume fraction and the relative size
of the bubbles play a role on the effective yield stress and it is more pronounced in the
purely hydrostatic case than in the purely deviatoric case.

Thus, it appears that it depends on the loading direction. But, as only three specific
values have to be identified for the analytical model (Σ̄eq, Σ̄+

m, and Σ̄−m), only two corrections
are required. The first one, denoted by f∗h , corresponds to the purely hydrostatic loading
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and is relative to Σ̄−m and Σ̄+
m. The second one, denoted f∗d , corresponds to the purely

deviatoric loading and is relative to Σ̄eq. These functions are searched in the following
form:

f∗h,d = gh,d(fe) + hh,d(fe, re/rg). (19)

The functions gd and gh are identified by the least squares method from Figure 12
(brown curve) by considering only the points in the region where fe ≤ 0.01. The functions
hh and hd are supposed to be power law functions with respect to two variables, the volume
fraction of the intergranular bubbles fe and the normalized size of the bubbles (re/rg). A
straightforward analysis using the least squares method on the functions f∗h,d − gh,d leads
to the following empirical relations:

f∗d = 1.9fe + 25

(
rg
re

)2

f
7/2
e , (20)

f∗h = 0.5f
3/4
e + 4.3

(
rg
re

)2

f
5/2
e . (21)

The calculated (full-field simulations) and estimated (analytical model) effective yield
stresses with the identified f∗h,d are plotted in Figure 13. As a result, the simple analytical
expression of the effective flow surface of Vincent et al. (2014a,b) is proposed (equations
(16), (17), (18)) with corrected volume fractions: Σ̄−m and Σ̄+

m are evaluated with f∗h instead
of the true porosity fe, and Σ̄eq is evaluated with f∗d instead of the true porosity fe.

6.3. Validation and discussion

6.3.1. Intragranular porosity

The proposed corrected bubbles volume fractions f?d and f?h are independent of the
local intragranular porosity fb which here is a parameter of the GTN model. Since fb and
fe are both void volume fractions, it is worth verifying that the expressions of f?d and f?h
are valid for different values of fb.

In Figure 14, the calculated effective yield stresses are compared with those predicted by
the analytical model with corrected bubbles volume fraction for two different intragranular
porosities: fb = 6 % and of fb = 0.7 %. The agreement between the model predictions and
the numerical simulations is good, for different microstructures and for both the purely
deviatoric case (Σ33 = −2 Σ11 = −2 Σ22, Σij,i6=j = 0) and the purely hydrostatic case.

6.3.2. Effective plastic flow surface

One specific microstructure (21 grains, saturated boundaries with re/rg = 0.2, rs = 1.5
re) is submitted to 16 different loadings. The differences between the effective yield stress
of the full-field simulations and the analytical model are below 5 %, as it can be seen in
Figure 15. Two types of loading are tested. Both are in the form:
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a) purely hydrostatic loading (brown line: f∗ = 0.5f
3/4
e )

b) purely deviatoric loading (brown line: f∗ = 1.9fe)

Figure 12: Identification of the corrected volume fraction f∗ (defined as the porosity to be considered in the
analytical model instead of the true porosity fe, in order to get, with the model, the overall stress obtained
by numerical simulation). For low volume fractions fe, the relative size of the bubbles has a small influence
on the effective yield stress. For high volume fractions fe, the relative size of the bubbles plays a role on
the effective yield stress. The transition zone is framed in red.
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b) purely deviatoric loading

Figure 13: Estimated (analytical model) versus calculated (full-field simulations) effective yield stress.

Σ =

 S 0 0
0 S 0
0 0 T

 . (22)

The first one corresponds to |T | > |S| and the second one to |T | < |S|. Couples of stress
directions can be made such that the directions of a couple have the same triaxility but
different third invariants. Figure 15 shows that the results corresponding to |T | > |S| have
systematically a lower yield stress than the case |S| > |T | . It has been checked that this
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a) purely hydrostatic loading b) purely deviatoric loading

Figure 14: Numerical results (calculated values) for fb =0.7 % (circles) and fb =6 % (disks) compared
to the analytical model. Three microstructures with 21 grains are tested: i. saturated grain boundaries,
re/rg = 0.2, rs/re = 1.5 (red), ii. saturated grain boundaries, re/rg = 0.1, rs/re = 1.25 (green), iii. fe =
1 %, re/rg = 0.1, rs/re = 1.75 (blue).

result remains true for two other polycrystals with the same microstructural parameters.
As a conclusion, the lower yield stress corresponding to the stress directions with |T | > |S|
is a third invariant effect and not an effect of a particular drawing of the polycrystal, as
already exhibited by Julien et al. (2011); Cazacu et al. (2013); Vincent et al. (2014b).

6.3.3. Saturated cavities

In the case where the bubbles are pressurized (pressure Pb inside the intragranular
bubbles and Pe inside the intergranular bubbles), Vincent et al. (2009a) have shown that
the effective flow surface can be obtained from the problem with drained intragranular
cavities (P̃b=0), provided that the pressure in the intergranular bubbles is set to P̃e =
Pe − Pb. Equivalently, it can be obtained from the problem with drained intergranular
cavities (P ∗e =0), provided that the pressure in the intragranular bubbles is set equal to
P ∗b = Pb − Pe. It was chosen to compare the analytical model with the corrected volume
fraction f∗ in the case where Pb = 0 and Pe 6= 0. Figure 16 shows a good agreement
between the model and the simulations for a specific microstructure and different stress
triaxiality ratios (the overall stresses are in the form (22)). Note that, for the full-field
calculations, the intergranular bubble pressure Pe increased linearly (Pe(t) = Pe0t) until it
reached a prescribed value, which is then kept constant. Thus, the problem starts with an
unloaded material. Otherwise, the pressure alone may load the material enough to reach
the flow surface.

25



0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Sm�Σ0

S
eq
�Σ

0

Figure 15: Numerical results (crosses: |T | > |S| , circles: |S| > |T |) compared to the analytical model
(solid line) (microstructure: 21 grains, saturated grain boundaries, re/rg = 0.2, rs/re = 1.5). Dashed lines:
estimate ± 5 %.
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Figure 16: Numerical results (crosses: |T | > |S|, circles: |S| > |T |) compared to the analytical model (solid
line) with Pe = 1.5σ0 instead of 0 (microstructure: 21 grains, saturated grain boundaries, re/rg = 0.2,
rs/re = 1.5).
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6.3.4. Average dilatation-rate in the matrix

The analytical model is based on an estimate of the average dilatation-rate in the
matrix. In order to assess its validity, the strain-rate field obtained through the FFT
simulations can be averaged over the matrix phase and compared to the estimate provided
by the analytical model. As pointed out by Vincent et al. (2014b), the average dilatation-
rate in the matrix is crucial when dealing with the evolution of the void volume fractions.
Indeed, the evolution of the porosity of the intergranular bubbles fe is governed by:

ḟe = 3(1− fe)
(
Ėm − 〈ε̇m〉M

)
, (23)

where Ėm is the hydrostatic overall strain rate and 〈ε̇m〉M is the average of the hydrostatic
strain rate in the matrix. As a result, an accurate prediction for the evolution of fe needs
an accurate estimate of 〈ε̇m〉M . Similarly, the evolution law for the local intragranular void
volume fraction fb, which, rigorously, varies from point to point, writes:

ḟb(x) = 3(1− fb(x))ε̇m(x). (24)

This relation is averaged to give:〈
ḟb

〉
= 3(1− fb)〈ε̇m〉M . (25)

Again, an accurate prediction for the evolution of fb needs an accurate estimate of 〈ε̇m〉M .
The average of the hydrostatic strain rate in the matrix obtained by means of the model

and the FFT simulations are compared on Figure 17 in the case of the purely hydrostatic
loading (the case where the evolution of the porosities is supposed to be predominant).
The computations are performed on the same microstructure as in 6.3.3. The case of the
equivalent drained intragranular voids P̃b = 0 is considered and several values for P̃e are
tested (Negative values of P̃e = Pe − Pb correspond to cases where Pb is higher than Pe).
A good agreement between FFT and model is observed, which confirms the validity of the
model.

6.3.5. Other topology of the grains

In the present study, the geometry for the grains is based on a Poisson-Voronoi diagram.
This choice is motivated by the recent study of Soulacroix (2014), who shows that this type
of diagram is quite representative of the microstructure for polycrystals without particu-
lar characteristic. In order to remain general, a Voronoi tesselation is employed in the
present study to generate the polycrystals. The potential effect of other topologies of the
grains on the present results is difficult to estimate. Indeed, the application of the present
method should be investigated for other types of tesselations, such as those of Johnson-
Mehl-Avrami-Kolmogorov and Laguerre. The curvy grain boundaries of such tesselations
could lead to meshing problem for finite element calculation (non convexity problems), but
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Figure 17: Average of the hydrostatic strain rate in the matrix (normalized by the hydrostatic overall
strain rate) obtained by means of the model (line) and the FFT simulations (crosses) with respect to the
intergranular internal pressure (normalized by the yield stress of the matrix without cavity).

present no difficulty for fast-Fourier-transforms method. As a preliminary study, 4 ad-
ditional microstructures with a Johnson-Mehl-Avrami-Kolmogorov tesselation have been
generated. Each microstructure contains 80 grains. A Johnson-Mehl-Avrami-Kolmogorov
tesselation is obtained with a constant radial growth rate (1.0 voxel.s−1 in our case) as for
Voronoi tesselation, but with different times at which each grain starts to grow (nucleation
time). For each grain, this start-time consists in a value from 0 to a specific upper bound
denoted by tmax (from a uniform distribution). The 4 microstructures considered here
have the following upper bounds tmax for the time interval: 0, 0.1s, 0.25s, 0.7s. Note that
tmax = 0 corresponds to a Voronoi tesselation. The same location for the seeds (centers of
the grains) is employed (from a uniform distribution). Nevertheless, some of the seeds did
not correspond to a grain because their apparition time is too late. To obtain 80 grains each
times, 80 seeds were drawn in the case t=0.1s, 96 in the case t=0.25s and 318 in the case
t=0.7s. Therefore the last case can be considered to have an almost completely different
seeds than the others. The obtained polycrystals exhibit different distributions concerning
the size of the grains. The 4 microstructures are shown on Figure 18. Histogram of the
equivalent radius of grain (reqi ) defined in equation 26) are plotted on Figure 19 for these
4 microstructures, showing that the Voronoi case corresponds to a narrower distribution
for the size of the grains than the other cases. Then, intergranular bubbles are inserted
on the grain boundaries with the following characteristics: re/rg = 1.63µm, rs/re = 1.5,
fe = 2.97%, θ = 45◦. The 4 resulting microstructures with intergranular voids are shown
on Figure 20.

reqi =

(
3

4πVi

)1/3

(26)

where Vi denotes the number of voxels in the grain i.
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tmax = 0 tmax = 0.1
Microstructure 1 Microstructure 2

tmax = 0.25 tmax = 0.7
Microstructure 3 Microstructure 4

Figure 18: 4 microstructures generated from a Johnson-Mehl-Avrami-Kolmogorov tesselation. For each
microstructure, the upper bound for the time interval for the nucleation of the grains is specified.

The 4 microstructures shown on Figure 20 are subjected to a purely hydrostatic, then
a purely deviatoric loading. The overall yield stresses are reported on the Table 4 and
compared to the analytical model. An excellent agreement between FFT and model is
observed for the deviatoric loading an a good agreement is observed for the purely hydro-
static loading. For theses loadings, the microstructures with broader distribution of grain
size appears to have a slightly lower effective yield stress. Nevertheless, this effect is of
second order compared to the relative size of the voids compared to the grain size and
compared to a random distribution of the voids (line ”model with fe” on the Table 4).
This preliminary study indicates that the model is still valid for some other topologies for
the grains.

Some other interesting points are also exhibited : as in the case of a purely hydrostatic
loading, the plasticity is located only around the voids and therefore along the grain bound-
aries, a larger grain leads to a larger plasticity free zone and thus to a higher plasticity
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Figure 19: Histograms for the 4 microstructures generated from a Johnson-Mehl-Avrami-Kolmogorov
tesselation.

along grain boundaries. Therefore, it is probable that the mean grain size as defined in
the section 3 is not well adapted for broad distributions of grain sizes. An other definition
which do not take into account the smallest grains would probably be better. However,
to further validate the model and find a better definition of the mean grain size, the ap-
plication of the present method should be investigated for a greater amount of different
tesselations, together with other parameters for the voids (such as the porosity, the relative
size, the location, and the internal pressure), in future work.
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tmax = 0 tmax = 0.1
Microstructure 1 Microstructure 2

tmax = 0.25 tmax = 0.7
Microstructure 3 Microstructure 4

Figure 20: Intergranular voids are put inside the 4 microstructures generated from a Johnson-Mehl-
Avrami-Kolmogorov tesselation.

Microstructure 1 2 3 4

Σm/σ0 FFT 1.60 1.58 1.54 1.54
Σm/σ0 model with f∗ 1.55
Σm/σ0 model with fe 1.87

Σeq/σ0 FFT 0.924 0.924 0.924 0.924
Σm/σ0 model with f∗ 0.921
Σm/σ0 model with fe 0.951

Table 4: Overall yield stresses obtained for a purely hydrostatic, and a purely deviatoric loading, on the 4
microstructures generated from a Johnson-Mehl-Avrami-Kolmogorov tesselation.

7. Conclusion

The effect on the effective plastic flow surface of the relative size of intergranular lentic-
ular cavities on the grain boundaries (relative size with respect to the mean grain size)
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in a biporous material with spherical intragranular cavities has been investigated through
full-field numerical simulations with a FFT method. A GTN model was used to simulate
the effect of the intragranular bubbles. The results have been compared to the analytical
model of Vincent et al. (2014a). The main results are summarized below:

• The effect of the relative size of the intergranular bubbles on the effective plastic flow
surface depends on the loading direction. It is larger for a purely hydrostatic overall
stress direction than for a purely deviatoric axisymmetric overall stress direction.
For a given volume fraction of the intergranular bubbles, the effective yield stress
reduces when decreasing the relative size of the bubbles.

• The analytical model can be used with a correction of the intergranular bubble volume
fraction to take into account the distribution of the intergranular bubbles along the
grain boundaries. The model is predictive for a broad range of intergranular bubble
relative sizes and volume fractions, and with pressurized intra- and/or inter-granular
bubbles.

• This correction is split into two terms, which correspond to two distinct effects:

– an effect of volume fraction of intergranular bubbles independent of their relative
size, which is predominant for a low volume fraction of intergranular bubbles,

– an effect of relative size and volume fraction of intergranular bubbles, which is
predominant for a high volume fraction of intergranular bubbles.
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Ponte Castañeda, P., 1991. The effective mechanical properties of nonlinear isotropic com-
posites. J. Mech. and Phys. Solids 39, 45–71.
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Reynolds, G., Beeré, W., Sawbridge, P., 1971. The effect of fission products on the ratio of
grain-boundary energy to surface energy in irradiated uranium dioxide. J. Nucl. Mater.
41 (1), 112 – 114.
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Appendix A. Ellipsoidal and lenticular bubbles

Figure A.21 shows a lenticular bubble and an ellipsoidal bubble. The revolution axis
is the minor axis of the ellipse (or of the lens). These two bubbles are considered as
equivalent if they have the same volume and the same surface on the grain boundary, i.e.
if the semi-major-axis of the ellipse b is equal to re. This implies that:
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Figure A.21: Notations for a lenticular bubble and for an ellipsoidal bubble.

2π

3
h2e(3r − he) =

4

3
πb2a. (A.1)

In that case, the aspect ratio of the ellipsoidal bubble (defined as we = a/b) reads as:

we =
1− 3

2 cos(θ) + 1
2 cos3(θ)

sin3(θ)
. (A.2)

On the other hand, the aspect ratio of the lenticular bubble (defined as wl = he/re) reads
as:

wl =
1− cos(θ)

sin(θ)
. (A.3)

The specific value of the contact angle θ = 45◦ corresponds to we = 0.32 and wl = 0.41.

Appendix B. Deviation from isotropy
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grains re/rg fe rs/re Σm/Σeq= 4 Σm/Σeq= 0 Σm/Σeq= ∞
1.75 9.76 0.75 15.08

21 0.1 sat 1.5 11.58 2.34 25.75
1.25 8.37 4.3 17.99

mean 21 0.1 sat 1.25 4.57 2.91 8.61

1.75 12.18 1.25 19.62
21 0.16 sat 1.5 15.32 2.08 21.9

1.25 6.89 4.34 17.55

1.75 7.98 0.92 15.31
21 0.2 sat 1.5 3.28 1.25 21.13

1.25 11.53 2.92 15.77

1.75 2.23 0.48 10.27
80 0.16 sat 1.5 5.46 0.72 9.72

1.25 8.83 2.02 11.21

1.75 5.14 0.38 11.56
80 0.32 sat 1.5 6.51 0.49 13.0

1.25 2.86 0.83 11.56

80 0.32 1 % 5.26 0.31 29.47
80 0.16 1 % 3.27 0.1 9.37
21 0.2 1 % 1.75 10.66 0.68 31
21 0.16 1 % 12.18 1.25 19.62
21 0.1 1 % 9.33 0.43 22.65

80 0.16 0.1 % 2.07 0.03 31.24
80 0.32 0.1 % 2.84 0.04 1.15
21 0.2 0.1 % 1.75 3.06 0.08 15.31
21 0.16 0.1 % 3.95 0.03 23.4
21 0.1 0.1 % 5.39 0.02 23.42

Table B.5: Deviation from isotropy in % measured for different configurations. ”sat” indicates the case of
saturated grains boundaries.
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|Σm|
Σeq

Σ =

 S 0 0
0 S 0
0 0 T

 |S| ≤ |T | Σ =

 S 0 0
0 S 0
0 0 T

 |S| ≥ |T |
load direction deviation load direction deviation

from isotropy (%) from isotropy (%)

∞ T = S 21.13 T = S 21.13
10 T=1.1 S 7.34 T=0.91 S 8.62
4 T=1.27 S 18.68 T=0.77 S 3.28

3.33 T=4/3 S 2.69 T=0.727 S 14.82
2 T= 1.6 S 2.85 T= 0.571 S 1.68

1.17 T=2.2 S 1.91 T=1/3 S 0.82
1.0 T= 2.5 S 0.73 T=0.25 S 1.05
0.33 S=0, T=1 0.68 T=-0.5 S 1.07

0 T= -2 S 1.25

Table B.6: Deviation from isotropy in % measured for the microstructure (21 grains, saturated grain
boundaries, re/rg = 0.2, rs/re = 1.5) for different loading directions.
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