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From a sparse set of large-scale Linear Time Invariant (LTI) dynamical models, 
a methodology to generate a low-order parameter-dependent and uncertain 

model, with guaranteed bounds on the approximation error is firstly obtained using 
advanced approximation and interpolation techniques. Secondly, the stability of the 
aforementioned model, represented as a Linear Fractional Representation (LFR) and 
subject to actuator saturation and dynamical uncertainties, is addressed through the 
use of an irrational multiplier-based Integral Quadratic Constraint (IQC) approach. The 
effectiveness of the approach is assessed on a complex set of aeroservoelastic aircraft 
models used in an industrial framework for control design and validation purposes.

Introduction

Many techniques have been developed to model, control and assess 
the stability and performance of dynamical systems. When complex 
systems are considered, dedicated numerical software applications 
are usually used to accurately reproduce their dynamical behavior. 
The obtained models then result in large-scale ones equipped with 
a prohibitively high number of variables. Although complex models 
have a high degree of likeness with reality1, in practice, due to finite 
machine precision and computational burden, they are problematic to 
manipulate. This is the case in many engineering fields, such as aero-
space (e.g., aircraft [22], satellites, launchers, fluid flow mechanics), 
civilian structures, electronics (e.g., [11]), where control engineers 
have to cope with many practical problems, including lightly damped 
modes, nonlinear actuator(s), etc. Moreover, parametric uncertainties 
usually affect such models, accounting for variabilities and uncertain-
ties. In most cases, the parametric dependency is not a priori known 
and local linear models, representing the system at frozen configura-
tions, are often considered.

Let us consider a model ( )θG  of a physical dynamical system, which 
smoothly depends on a parameter pθ ∈ . This model is assumed to 
be only known through its linearized models Gi at some parametric 
points iθ  ( 1, , si n=  ). Let Gi be asymptotically stable large-scale 
Linear Time Invariant (LTI) dynamical models given by the state-space 
realizations:

 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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G G  (1)

1 Of course, given that every model can always be questioned or amended, the 
approach is valid only according to the considered dynamical models, and addi-
tional precautions should be considered when it is applied to the real system.

where ( ) in
ix t ∈ , ( ) wnw t ∈ , ( )u t ∈, ( ) znz t ∈  and ( ) yny t ∈  

are the states, exogenous input, single control input, performance 
output and measurement signals, respectively. Moreover, let be given 
a robust th

kn  order LTI controller = ( , , , )K K K KA B C DK  with transfer 
1( ) = ( )

kK n K K KK s C sI A B D−− + , looped between ( )y t  and ( )u t , 
that ensures some robustness and performance specification(s) for 
all of the sn  models. Such a controller could, for instance, be obtained 
with robust optimization tools, such as [3]. For an example of synthe-
sis, see [21] and the references therein.

The problem of assessing the stability of such a high-dimensional con-
trolled system over the continuum of parametric variations, when the 
single control input ( )u t  is subject to saturations, is addressed here. To 
this aim, as clarified in the rest of the paper and pursuant to Figure 1 and 

(i) Model approximation and mismatch error bound
High 
fidelity 
model

Set of large-scale 
LTI models (Gi) and 

LTI controller (K)

Stability proof of uncertain 
model ( )( ),u P s ∆  looped 
with K, subject to control 

input saturation

Set of reduced-scale 
LTI models and mismatch 

bound (W (s))

Reduced-scale LFR 
model ( )( ),u P s ∆

(ii) Models interpolation with bounded error 
and LFR construction

(iii) µ-analysis and control input saturated 
stability assessment (IQC)

Figure 1 – Global process of the proposed approach (Algorithm 1)
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Algorithm 1, a three-step methodology is proposed: (i) approximate the 
sn  dynamical models and bound the mismatch error, (ii) perform (inex-

act) interpolation of the reduced-order models with interpolation error 
bounds and, finally, (iii) assess the stability of the closed-loop model 
over both parametric variations and control input saturation limitations2.

2 Note that, in practice, people usually reduce and perform the analysis in a trial 
and error way, which is of course tedious and time-consuming.

In comparison to [22] and [26] contributions, the proposed approach 
is accompanied with both approximation (Step (i)) and interpolation 
(Step (ii)) errors. Hence, the µ (structured singular value) and Integral 
Quadratic Constraint (IQC) analysis (Step (iii)) respectively provide 
sufficient stability conditions for the entire set of closed-loop models, 
without and with saturation. This represents the main contribution of 
this paper. It is also worth mentioning that the irrational multiplier-
based approach developed in Step (iii) is an extension of [6]. It is 
shown that no solution is obtained by means of a rational multiplier 
and only a frequency domain approach can be used here to assess 
the closed-loop stability.

The paper is organized following the schematic view of Figure 1. First, 
the main result, i.e., the procedure to assess the stability of a set of 
large-scale models looped with a control law subject to saturations, 
is described. Then we illustrate the proposed procedure on a complex 
large-scale aeroservoelastic business jet aircraft model for various 
flight configurations, looped with an anti-vibration controller. To end, 
Conclusions are given.

Notations
Given three operators ( )P ⋅ , ( )M ⋅  and ( )∆ ⋅  of compatible dimen-
sions, the lower and upper Linear Fractional Transformations 
(LFTs) are respectively defined (for appropriate partitions of P 
and M ) by ( , ) =l P ∆ 1

11 12 22 21( )P P I P P−+ ∆ −  and ( , ) =u M ∆
1

22 21 11 12( )M M I M M−+ ∆ − . The star product  of P and M is 
defined by:
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1
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P M

M I P M P M P

−

−

 −
 =
 − 





 (8)

Given a matrix p mM C ×∈ , , ( , )j kM M j k=  (with 1 j p≤ ≤  and 
1 k m≤ ≤ ) denotes the scalar coefficient in the thj  row and thk  column 
of M, M * denotes the conjugate transpose of M and ( )Mσ , its largest 
singular value. The frequency-limited norm, denoted by H2-norm, is 
defined as the restriction of the H2-norm over the interval = [0, ]ωΩ  
with ω +∈ , where +  denotes the set of positive real numbers. 
Given an asymptotically stable LTI model realization H with transfer 
function ( )H s , 

1
2

2,

21:= ( ( ) )
F

H H j dπ ν ν
Ω Ω∫H  [19, 27].

Main result: Stability guarantee of a set of large-scale 
models subjec t to input saturations

With reference to Figure 1, the proposed contribution, in three steps, 
are summarized in Algorithm 1. More specifically, an optimal fre-
quency-limited approximation algorithm is first applied, followed by 
the creation of a frequency-dependent mismatch bound (Step (i), 
Section "Multi-LTI model approximation and error bound"), then the 
interpolation and transformation into a Linear Fractional Represen-
tation (LFR) structure is achieved (Step (ii), Section "Bounded-error 
reduced-order LFR model generation"), and finally, the stability of 
the overall uncertain, parameter-dependent model is firstly assessed 
thanks to a µ analysis, and then, when subject to control input satu-
ration, through a novel IQC technique (Step (iii), Section "Stability 
assessment").

Algorithm 1 – Global procedure

Data: ( 1, , )i si n= G  describing a system at various frozen param-
eter combination values p

iθ ∈  and a robust LTI controller K. 
Result: Stability assessment.
begin Step (i ) (Section " Multi-LTI model approximation and error bound")

• Compute ˆ ( ) ( 1, , )i sG s i n=   such that

 
( ) 2 ,,

ˆ : arg mini iH H r
G G H

∞
Ω∈ =

= −
rank HH

 (2)

• Determine a low-order weighting function ( )W s  s.t. 
= 1 si n∀  , 

iR ∞∃∆ ∈H , 1
iR ∞

∆ ≤ H  and:

 ( ) ( ) ( ) ( )ˆ
ii i RF s F s W s s= + ∆  (3)

with ( ) = ( ) ( )i iF s K s G s  and ˆˆ ( ) = ( ) ( )i iF s K s G s .

return A set of reduced-order approximations ˆ ( )iF s .
begin Step (ii ) (Section "Bounded-error reduced-order LFR model generation")

• Compute a parameter-dependent LFR approximation ˆ( )P s  as-
sociated with the normalized and lowest-size block-diagonal 
parametric structure ( )θΘ  such that, for each parametric 
configuration ( )i iθΘ = Θ  there exists a real-valued norm-
bounded structured uncertainty P∆  capturing the interpolation 
errors, such that:

 ( ) ( ) ( )( )ˆ ˆ , ,i u i PF s P s= Θ ∆ diag  (4)

• Combine (3) and (4), construct ( )P s  including all errors, 
where = ( , , ( ))i P R sΘ ∆ ∆diag∆ , such that,

 ( ) ( )( ),i uF s P s=  ∆  with 1
H∞

≤∆  (5)

return A low-order uncertain LFR model ( ( ), )u P s ∆  covering the 
initial set 1{ ( )}

si i nF s = .
begin Step (iii ) (Section "Stability assessment")

• Close the open-loop LFR model ( )P s  without input satura-
tion, build the standard form ( )M s − ∆  and check the robust 
stability by means of a µ test:

 ( )( )0, 1M jω µ ω∀ ≥ ≤∆  (6)

• Close the open-loop LFR model ( )P s  with input saturation to ob-
tain an augmented nonlinear standard form ( ) ( , )M s ϕ−diag ∆  
and check the robust stability by means of an IQC-based 
analysis test.

 ( ) ( ) ( )* * * 0M j I j M j Iω ω ω ω∀ ∈ ∏ <        (7)

return A stability proof of the input-saturated closed-loop large-scale 
models.
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Multi-LTI model approximation and error bound

Generally speaking, the main objective of the approximation step is to 
capture, with a stable low order model, the initial large-scale model 
most relevant dynamics. Various approaches exist for the approxima-
tion of large-scale LTI models (see [2] for a general overview of model 
reduction and refer to Box 1 for an overview of the tool used here to 
perform the model approximation step) and one of them consists in 
formalizing the model approximation problem as an optimization one. 
The problem then consists in finding a reduced-order model that mini-
mizes a given norm of the approximation error.

In the literature, the H2-norm has often been considered and several 
methods are now available to address the corresponding optimal H2 
model approximation problem (see e.g., [8, 10]). However, in many 

cases, considering a limited frequency interval only is more relevant 
since (i) the system dynamics might not be perfectly known over the 
whole frequency domain, meaning that the model is inaccurate in 
some frequency intervals. Discarding these areas enables the approxi-
mation accuracy to be increased, where the initial model is accurate. 
Besides (ii), controllers are usually designed to act over a limited fre-
quency interval (due to actuator bandwidth or to prevent them from 
disturbing non-modeled dynamics), which means that a precise knowl-
edge of the dynamics over the entire frequency domain is not neces-
sarily useful. From the authors’ point of view, the optimal approximation 
over a bounded frequency interval enables these practical consider-
ations to be translated elegantly and is therefore preferred here. It is 
addressed through the use of the frequency-limited H2 -norm in Section 
"Optimal frequency-limited H2  model approximation". However, it is 
worth noticing that the overall methodology summarized in Algorithm 1 

model reduction toolbox

Box 1 - The MORE toolbox

The more toolbox gathers a set of tools aimed at alleviating the numeri-
cal burden induced by the complexity of dynamical models (e.g. for 
simulation, control, optimization, etc.).

More specifically, it contains several model approximation techniques 
designed to cope with several large-scale problems as depicted below.

More formally, the problems that can be adressed are the following:
•	 Reduction from state-space: considering a LTI dynamical model H 

represented by a large-scale differential equation,

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

 = +
 = +



 (B1-1)

where ( )x t ∈, ( ) unu t ∈  and ( ) yny t ∈  are the state, command 
inputs and outputs of the model, respectively. The objective is to 
find a smaller model Ĥ  represented by

 
( ) ( ) ( )
( ) ( ) ( )

ˆ ˆˆ ˆ
ˆ ˆˆ ˆ

x t Ax t Bu t

y t Cx t Du t

 = +


= +



 (B1-2)

with ˆ ( ) ( )rx t r n∈   and ˆ ( ) yny t ∈  such that the input-output behaviors of H and Ĥ  are close.

In the toolbox, this closeness is generally considered through optimality considerations based on the H2-norm of the approximation 
error or its restriction to a bounded frequency interval (as used in this paper).

•	 Reduction from data: the initial model is only known through a set of frequency data ( ){ } 1, ,
,i i i n

s H s
= 

 with is ∈. The objective is 
then to find a low-complexity model such as Ĥ  in equation (B1-2) that matches the frequency data.

•	 Reduction	of	infinite	dimensional	models: the initial model is known through its irrational transfer function ( ) y un nH s ×∈  obtained 
for instance from a partial differential equation (PDE), from a delayed differential equation, etc. Again, the objective is to build a low-
complexity model Ĥ  as in (B1-2) such that the input-output behavior of H is well reproduced (for instance in the H2 sense).

For further information, interested readers should refer to the site of the toolbox : www.onera.fr/more.

Data DAE/ODE

State ( ) nx t ∈ , n large 
or infinite

Reduced state ( )ˆ rx t ∈  
with r n

(+) Simulation
(+) Analysis
(+) Control
(+) Optimization

Infinite order equations 
(require meshing)

Reduced 
DAE/ODE

PDE

( ) ( ) ( )
( ) ( ) ( )

1

1

i

i

u f u f u f
y f y f y f

=   
=   





( ) ( ) ( )
( ) ( ) ( )

Ex t Ax t Bu t
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( ) sH s e τ−=

( ),u x t
t
∂

=
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Figure B1-1 – Overview of the MORE toolbox
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does not depend on the approximation strategy, since the approxima-
tion error is bounded in Section "Bound on the approximation error".

Optimal frequency-limited model approximation

Using the 2,ΩH  -norm, one can formulate the approximation over a 
bounded frequency interval as an optimization problem. More spe-
cifically, given an asymptotically stable nth order large-scale model 
G and a frequency interval Ω, the optimal 2,ΩH  model approximation 
problem consists in finding a reduced-order model Ĝ of order r n  
that minimizes the 2,ΩH -norm of the approximation error ˆ−G G, i.e., 

 
2,

, ( )=

ˆ = arg min
H H H r

G G H
Ω

∞∈
−

rank
H  (9)

Here, Problem (9) is addressed using the method called Descent 
Algorithm for Residue and Pole Optimization (DARPO), proposed in 
[27]. It relies on the pole-residue formulation of the 2,ΩH  -norm [28] 
and finds the poles and associated residues of the reduced-order 
model that satisfy the first-order optimality conditions associated with 
Problem (9). Note that, since this problem is not convex, the reduced-
order model obtained this way is only a local minimum.

With reference to Algorithm 1 (Step (i)), the approximation algorithm 
is applied to each large-scale model iG , = 1, , si n  resulting in ns 
small-scale models ˆ

iG  minimizing the 2,ΩH -norm of the approxima-
tion error with iG , as stated in (2).

Note that both the approximation order r and the frequency-interval 
Ω are tuning parameters that depend on the considered application. 
However, as mentioned before, the frequency interval Ω can be cho-
sen as the interval that contains the most relevant dynamics of the 
physical systems. Observing the decay of the eigenvalues of the prod-
uct of the frequency-limited gramians Ω Ω   (see e.g., [9, Chap. 4]), 
which can be viewed as the Hankel singular values in the frequency-
limited case, can give an idea of the adequate approximation order r.

The stability analysis must take into account the error induced by the 
approximation step. For that purpose, a low-complexity model upper 
bounding the worst approximation error is built in the next section.

Bound on the approximation error

Let us denote by ( ) = ( ) ( )i iF s K s G s  and ˆˆ ( ) = ( ) ( )i iF s K s G s  the 
open-loops from the inputs of the large and small scale models to 
the output of the controller3 K. Let us denote the order of ˆ ( )iF s  as 

= Kn r n+ . The objective of this section is to model the approximation 
error ˆ( ) = ( ) ( )i i is F s F sΣ −  ( 1, , si n=  ) as a low-order additive out-
put uncertainty. More specifically, a low-order filter ( )W s  is sought, 
such that = 1, , si n∀  , 

iR ∞∃∆ ∈H  with 1
iR ∞

∆ ≤ H  and ( ) =iF s
ˆ ( ) ( ) ( )

ii RF s W s s+ ∆ .

Then, the stability of the set of uncertain models ˆ{ ( ) ( ) ( ),i RF s W s s+ ∆  
1}R ∞

∆ ≤H   implies the stability of the finite set of models 
=1, ,{ ( )}

si i nF s


. Note that any invertible filter ( )W s , such that, 

 1

=1, ,
1max

s
i

i n
W

∞

− Σ ≤


 H  (10)

can be used, since one can always exhibit 1( ) = ( ) ( )
iR is W s s−∆ Σ  

such that ˆ( ) = ( ) ( ) ( )
ii i RF s F s W s s+ ∆ .

3 The controller is included here to be consistent with the interpolation step of Section 
"Bounded-error reduced-order LFR model generation".

The design of ( )W s  then consists in a trade-off between complex-
ity and conservatism. Indeed, one must find a ( )W s  that is both an 
accurate modeling of the worst approximation error and whose com-
plexity (order) is reasonable. For instance, =1, ,= max si n i HW

∞
Σ



   
obviously satisfies (3). However, it does not offer an accurate model 
of the approximation error and might, therefore, be too conservative 
for stability analysis. A direct approach to design ( )W s  satisfying (10) 
would consist in using non-smooth H∞ optimization tools [3] to solve 
the following problem

 1

min

. . 1, ,i s

W

s t W i n
∞

∞

− Σ ≤ = 

H

H

 (11)

However, depending on the application, the errors iΣ  might be too 
large for such an approach to be tractable. In those cases, a heuristic 
approach may then be preferable.

Bounded-error reduced-order LFR model generation

Consider the parametrically-dependent set =1
ˆ{ ( )}

si i nF s


 of reduced-
order models obtained above; the objective is now to derive a lim-
ited-size LFR, such that µ and IQC-based analysis tools can then be 
applied. In the general case, involving several parameters ( pθ ∈ ), 
the ns equations (4) must be solved for a parametric structure, e.g., 

11= ( , , )
i i pi n p ndiag I I

θ θ
θ θΘ  , whose size 

=1
=

k

p

k
n nθΘ ∑  should be 

kept as small as possible. Efficient solutions, based on multivariate 
sparse polynomial or rational interpolation techniques, are detailed in 
[14, 5, 22].

In the case of a scalar parameter (θ ∈), a specific technique can be 
developed to compute low-order LFR models whose ∆-block will both 
include the parametric variations (Θ) and a normalized real-valued 
uncertain operator (∆P). The latter is introduced to "cover" the interpo-
lation errors, as illustrated by Equation (4). The proposed technique, 
based on a polynomial state-space data interpolation approach, can 
be broken down into three steps, which are briefly presented next.

Step 1: model rewriting in a rescaled companion form

Reduced-size LFR models are easier to obtain when all varying data 
appear in a limited number of rows (or columns) of each state-space 
representation. A companion form is thus a good choice, but unfortu-
nately leads to ill-conditioned matrices as the system order increases. 
As is also proposed in [7], a rescaled companion form will then be 
used. Using the notation 1ˆ ( ) = ( )i i n i i iF s C sI A B D−− +  the system is 
rewritten as: 

 

1

1
( ) ( ) ( ) ( )

1 2
( ) ( ) ( ) ( )

1 2

0 0 0

0 0 0=i i
n

i i i i i i
n

i i i i
n

A B
C D

a a a b
c c c d

λ

λ −

 
 
           
 
 

   







 (5)

where the scaling variables 1 1{ }k k nλ = −

, with the help of standard 
numerical balancing techniques, are tuned to optimize the average 
condition number of each matrix iA . Note that the standard compan-
ion form is recovered for = 1kλ .
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Remark 1
In the context of LFR modeling, the above description is of high inter-
est since the varying state-space data all appear in the last two rows. 
Assuming that every coefficient is approximated by a pth order poly-
nomial, the size of = nI

θ
θΘ  will then be limited to = 2n pΘ .

Polynomial interpolation with guaranteed error bounds

Let us denote by iY  the last two lines in Equation (12):

 
( ) ( ) ( ) ( )

2 ( 1)1 2
( ) ( ) ( ) ( )

1 2

=
i i i i

nn
i i i i i

n

a a a b
Y

c c c d
× + 

∈ 
 







 (13)

and focus on the polynomial approximation of the finite set =1{ }
si i nY



 
with guaranteed and minimized error bounds. Given p, the order of 
the polynomial, the problem is reduced to the determination of an 
error matrix 2 ( 1)nE × +

+∈  and a set of matrices =0{ }q q pX


, such that 
the non-negative entries of E are minimized under the following linear 
constraints (with j = 1,2 and = 1 1k n + ):

 0 ,
=1 ,

, = 1
p

q
i q i j k s

q j k

X X Y E i nθ
 

+ − ≤ 
 

∑   (14)

The above optimization problem is easily solved by any standard 
linear programming solver. However, the order p of the polynomial 
should be carefully chosen. Low orders will indeed result in rough 
approximations yielding conservative models with large entries in E. 
Conversely, high order polynomials will improve the accuracy at the 
interpolation points. Moreover, critical oscillations are likely to appear 
between the interpolation points when the difference sn p−  gets too 
small. This issue and possible remedies are further discussed in the 
applicative part.

LFR modeling

Proposition 1
From Inequalities (14), E-dependent "shaping" matrices U (E ) and 
V (E ) of appropriate dimensions and a bounded, real-valued, block-
diagonal uncertain operator P∆ :

 ( )1 1
, ,

P r PrP p n p nI Iδ δδ δ∆ = diag  (15)

can be easily defined, such that the function: 

 0
=1

( , ) = ( ). . ( )
p

q
P q P

q
X X U E V Eθ θ∆ + + ∆∑Y  (16)

satisfies the following statement:

 1, , , / 1
ks P pi n δ∀ = ∃∆ ≤  and ( ),i P iYθ ∆ =Y  (17)

Proof
The above proposition is trivially satisfied with the following (non-
minimal) choice: 

 ( )1 2 2

(2 2) (2 2)= , ,
n

n n
P p pδ δ

+

+ × +∆ ∈ diag  

 
2 (2 2)1 1 0 0

=
0 0 1 1

nU × + 
∈ 

 

 



   

 and ( ) ( )1,1 1, 1 2,1 2, 1= , , , , ,n nV E E E E E+ + diag  

Remarking that ( , )Pθ ∆Y  polynomially depends on θ and affinely 
depends on P∆ , standard algorithms (see [15] for further details) can 
be applied to compute the interconnection matrix  , such that: 

 ( ) ( ) ( )( )2, = , , = , ,P u P u p PIθ θ∆ Θ ∆ ∆Y     diag  (18)

Next, standard LFR object manipulations implemented in the LFR tool-
box [15] yield the required open-loop LFR models depicted in (4) 
and (5). Once again, standard manipulations are used to "construct" 
the closed-loop ( )M s − ∆  standard forms that will include or not the 
saturation-type nonlinearity and will be used to check the stability.

Stability assessment

At this point, a low-order uncertain LFR model ( ( ), )u P s ∆  cover-
ing the initial set =1{ ( )}

si i nF s


 is available. The objective of this sec-
tion is to prove the stability of the closed-loop LFR model ( )P s , both 
with and without input saturation. As summarized in Algorithm 1, the 
proposed analysis method consists of two steps. No saturation is 
considered in the first, which can be viewed as a LFR model valida-
tion test. In a second step, an input saturation is introduced and the 
IQC-based analysis is considered.

Stability analysis without saturation using µ tools

Without saturation, the uncertain closed-loop model under con-
sideration assumes an LTI standard form ( )M s − ∆ , where 

( , , ( ))P R s= Θ ∆ ∆diag∆  is a normalized LTI structured uncertainty 
block. As a result, the stability of the continuum (covering the initial 
set of full-order plants) of closed-loop models obtained for any 
admissible uncertainty inside the unit ball is guaranteed if and only if: 

 ( )( )0, 1M jω µ ω∀ ≥ ≤∆  (19)

where ( )Mµ∆ , for any complex-valued matrix M, denotes the struc-
tured singular value with respect to ∆ and provides the inverse of 
the size of the critical uncertainty beyond which stability is no longer 
guaranteed (see [17] for further details). Testing (19) raises two dif-
ficulties. The computation of µ is an NP-hard optimization problem, 
which, in addition, must be solved for an infinite set of frequencies. 
However, as is emphasized in [23], recent implementations (used in 
this paper) of this µ test in [4, 24] provide quite efficient tools even 
for high-order plants with numerous and repeated uncertainties (see 
also [13]).

Remark 2
The proposed µ test is clearly a necessary stability condition. If there 
exists 0ω ≥  such that ( ( )) > 1M jµ ω∆

 , then the accuracy of the 
model should be improved in order to minimize the effects of P∆  and 

( )R s∆ .

Stability analysis with saturation using IQC

IQC-based analysis techniques enable a wide range of problems to 
be studied, namely the robust stability and performance properties of 
the interconnection ( )M s − ∆  of an LTI operator ( )M s  with a struc-
tured model uncertainty ∆ containing nonlinearities, LTI and/or linear 
time-varying (LTV) parameters, neglected dynamics, delays, specific 
nonlinearities such as friction, hysteresis, etc. (see, e.g., [20]).
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Here, standard IQC descriptions are used for both LTI uncertainties, 
∆ and sector nonlinearities, denoted by ϕ. The originality of our 
approach resides in the specific algorithm that has been developed 
to reduce the computational burden. Indeed, standard IQC-oriented 
analysis methods consist in solving KYP (Kalman-Yakubovitch-
Popov)-based LMI conditions [16]. Theses standard approaches are 
however intractable for high-order models, since the number of sca-
lar optimization variables quadratically increases with the closed-loop 
order [6]. Moreover, this approach is not compatible with the use of 
irrational multipliers4.

IQC generalities
An IQC describes a relation between the input and output signals of 
an operator. Since these two formulations are completely equivalent, 
these constraints can be defined either in the time or the frequency 
domain. Nevertheless, frequency domain constraints are often pre-
ferred, since they lead to simpler stability conditions. The definition of 
an IQC is given in the frequency domain:

Definition 1
Two signals, respectively of dimension m and p, square integrable 
on [0, )∞ , i.e. : 2 [0, )mv L∈ ∞ , 2 [0, )pw L∈ ∞ , satisfy the IQC defined by 

( ) ( ): m p m pj C + × +Π → , and Hermitian-valued function, iff: 

 
( )
( ) ( ) ( )

( )

*

0
v j v j

j d
w j w j

ω ω
ω ω

ω ω
∞

−∞

   
Π ≥   

   
∫

 

 

 (20)

where ( )v jω  and ( )w jω  respectively correspond to Fourier trans-
forms of v and w, such as =w v∆ .

The problem consists in analyzing the closed-loop that corresponds 
to the interconnection by a positive feedback of ( )M s  with ∆, where 
∆ can be nonlinear and non-stationary. Let us suppose that input and 
output signals of ∆ satisfy the IQC defined by Π. The following result 
gives the stability criterion [16].

Theorem 1
Let us suppose that ( )M s  is stable and that ∆ is a causal and 
bounded operator, if

• interconnection M τ− ∆  is well posed for any [0,1]τ ∈ ,
• τ ∆  satisfies the IQCs defined by Π , [0,1]τ∀ ∈ , 
• there exists > 0ε  such as: 

 
( ) ( ) ( )

( )

*

Z j

M j M j
j I

I I
ω

ω ω
ω ω ε

   
∀ ∈ Π ≤ −   

   


  (21)

then, the closed-loop system is stable.

Let us consider a stable ( )M s , forming the constant block of the LFR 
and an augmented block ( ),ϕ← diag∆ ∆ 5, where ϕ  represents one 
sector slope-restricted nonlinearity (0,1). The global multiplier Π cor-
responding to ∆ is built as follows (see [12, 16, 18] for additional 
details):

4 This constraint renders it necessary to fix the poles of the multipliers a priori 
(via a time-consuming trial-and-error process), without any guarantee on the 
optimality of the selected poles.

5 Note that ∆ is the same uncertain block as in Section "Bounded-error reduced-
order LFR model generation" (containing the neglected model reduction dynamics 

( )R s s∆ , parametric variations Θ and interpolation errors ∆P ), augmented with 
ϕ, the saturation nonlinearity.

( ) ( )

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

2

2 2

*

0 0 0
0 ( ) 0

0 2 2 0
0 0

, ,

, ,0
RP

P

x j
X j Y jj x j x

Y Xj j

X X X xj j j

Y Y Yj j j

ωλ ω γ
ω ωω ωλ ω γ ω γ
ω ω

ω ω ω

ω ω ω

Θ ∆

Θ

 + +
 

Π =  − + − − − 
=

=

diag

diag

 
(22)

where *( ) = ( ) 0 n nX j X j Cω ω Θ Θ×
Θ Θ ≥ ∈ , *( ) = ( ) 0P PX j X jω ω ≥ ∈

(2 2) (2 2)n nC + × + , *( ) = ( ) n nY j Y j Cω ω ×Θ Θ
Θ Θ− ∈ , *( ) = ( )P PY j Y jω ω− ∈

(2 2) (2 2)n nC + × + , 0x ≥ , 0
R

x∆ ≥ , 0γ ≥  and λ∈ . Closed-loop stability 
is ensured if a solution of the following LMI can be found, ω +∀ ∈ :

 
( ) ( ) ( )( ) ( )*

, , , , 0
M Mj j

x X Yj j
I I
ω ω

λ γ ω ω
   

Π <   
   

 (23)

Proposed innovative method
In this paper, the optimization problem is solved directly from fre-
quency domain inequalities through a grid-based approach. A similar 
approach is used in [1], but without guarantee of the solution validity 
over the entire frequency domain. Here, in order to guarantee that the 
solution is valid over the entire frequency domain, a specific tech-
nique based on [25, 4] is adapted to our problem [6]. In addition, 
another advantage is to limit the number of LMI constraints, since 
only active constraints are added in the LMI optimization problem. 
Here, the main result is presented.

Let = ( , , , )A B C DΞ Ξ Ξ ΞΞ  be the realization of ( )sΞ  (of order m), with 
1( ) = ( ( )) ( ( ))j I Z j I Z jω ω ω −Ξ − +  (( )I Z+  is invertible) where 

*( ) = ( )Z j Z jω ω  is the stability criterion (21), and 0( ( )) =j ω δωΞ +
0( ( ), )l mS Iω δω , with 0 δω ω∀ ≥ − , i.e., 0( )S ω  is interconnected 

to δω as a lower LFT, where δω is a real parameter. 0( )S ω  is writ-
ten as

 ( )0
0

1=

CD
j I I

S
B I IjA

j

ω
ω

Ξ
Ξ

Ξ
Ξ

 
          − −  −  
 

  (24)

Proposition 2
If 0( ( )) < 1σ ωΞ  then 0( ( ( ), )) < 1l mS Iσ ω δω  holds true for 

0 [ , ]ω δω ω ω+ ∈ , where ω  and ω  are computed as 1
0=

nη
ω ω +  and 

1
0=

pη
ω ω + , where nη  and pη  are the maximal magnitude real nega-
tive and positive eigenvalues of T, respectively, defined as 

 22 21 121
* * *
22 12 21

0 0 0
=

0 0 0
S S S

T X
S S S

−     
−     

     
 (25)

where,

 11 12 11
0 *

21 22 11

( ) = =
S S I S

S X
S S S I

ω
   
   
   

and  (26)

Remark 3
When ( ( )) = 1σ Ξ +∞ , = = 0pω η+∞⇔ , a null eigenvalue is 
obtained, which means that ( ( ))σ ωΞ  crosses the 0 dB axis for 

=ω +∞ . However, the intersection of the stability criterion with the 
0 dB axis has no physical meaning.
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Remark 4
The bilinear transformation 1( ) = ( ( ))( ( ))j I Z j I Z jω ω ω −Ξ − +  with 
( )I Z+  invertible allows a positivity condition to be transformed into 
a weak gain condition:

 *( ) 1 0Z Zσ Ξ ≤ ⇔ + ≥  (27)

In the iterative approach, proposed in Algorithm 2, the validation 
step is performed a priori and during the LMI optimization problem 
resolution. The choice of the initial grid has no influence on the 
feasibility problem. It is possible to choose a singleton at the first 
iteration. However, in order to limit the number of iterations, and 
consequently the calculation time, without any a priori knowledge, it 
is recommended to take some frequencies roughly spread through-
out the frequency domain. It is possible, when first solutions are 
obtained, to tune this initial frequency grid to decrease the number 
of iterations.

This approach allows the frequency domain irrational multipliers 
( )X jω  to be piecewise continuous. More specifically, between each 
iΩ , these multipliers are discontinuous, consequently no state-space 

representation for these multipliers can exist. Involving a state-space 
representation in order to parameterize multipliers would necessarily 
lead to constraining the solution and increasing the conservatism. Of 
course, it is also possible to use rational multipliers with a frequency 
domain resolution, by using the factorized form of ( )X s  presented 
previously [6]. The auxiliary matrix P is still avoided, but without the 
advantage of using irrational multipliers.

Application to an aeroelastic aircraft system

The methodology described in Section "Main result: Stability guaran-
tee of a set of large-scale models subject to input saturations" and 
summarized in Algorithm 2 is now applied to check the stability of a 
set of ns = 3 large-scale models ( in ≈ 600) representing the local 
behavior of an industrial aircraft for different Mach numbers, looped 
with K, an anti-vibration controller (nK = 6) [22].

Step 1: LTI approximation and error bound (II-B)

Approximation
The ns = 3 large-scale models Gi of order in ≈ 600, are approxi-
mated by ˆ

iG  of order r = 16 over [0, ]rωΩ = . The frequency interval 
Ω is chosen to keep the low frequency behavior of the large-scale 
models, since it is known to be accurate, whereas the dynamics 
above rω  are less accurately known and are therefore discarded. 
The approximation order r is then chosen experimentally to achieve 
a low approximation error over Ω. The relative approximation errors, 
i.e., 

2, 2,

ˆ=|| || / || ||i i i ie G G G
Ω Ω

− H H , i = 1, 2, 3, are respectively equal 
to 2.86 %, 2.39 % and 2.49 %. Figure 2 illustrates these low errors 
through the largest singular value of G1 and of 1Ĝ .

Figure 2 illustrates that the dynamics occurring at higher frequencies 
than rω  (gray zone) are indeed discarded during the approximation 
step. By doing so, one can obtain very accurate reduced-order mod-
els over [0, ]rωΩ = , as shown by the relative errors, which are all 
below 3 %.

The high-frequency dynamics require a complex model to be accu-
rately captured, while the low-frequency ones, which contain the 
rigid behavior and the first flexible modes of the aircraft, can be cap-
tured more easily. This point is particularly obvious when compar-
ing the relative errors obtained here to that obtained by optimal H2 
approximation of the same aircraft model in [22]. In the latter case, 
with an approximation order r = 16, the H2 approximation error is 
above 30 %.

Frequency (rad/s)
10 –2 10 –1 10 210 1 10 410 0 10 3
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–20
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–40

–50
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–70

m
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σ
 (d
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Large scale model 1G
Reduced-order model 1Ĝ

Figure 2 – The largest singular value of G1 and of the 16th order reduced-
order model 1Ĝ  obtained with DARPO, with = [0, ]rωΩ . The gray area 
represents the discarded frequencies (i.e., above rω )

Algorithm 2 – Iterative IQC resolution

Data: ( )M jω  the stable fixed block of the LFR, multiplier ( )iωΠ  and 
iω +∈ , = 1, fi n .

Result: A stability proof of the LFR model, including nonlinear sector 
saturations.
while stability not checked do

For = 1, fi n , check the stability criterion

 
( ) ( ) ( )*

0i i
i

M j M j
I I
ω ω

ω
   

Π <   
   

 (28)

if (28) has solutions then
• Set ( )i iωΠ ←Π  be the solution obtained at iω .
• Set 0 iwω ←  and apply Proposition 2. 
• For each solution iΠ , a frequency-domain = [ , ]ii iω ωΩ  is 

obtained. =1,...,=
fvalid ii nΩ Ω



.
if = [0 )validΩ +∞  then

The solution composed by the set of iΠ  is validated on the 
whole frequency domain.
Stability is proved, stop.

else
• Determine the complementary set [0, )=novalid valid+∞Ω ΩC .
•  Select one or several frequencies in novalidΩ  and update 

the grid.
else

Stability cannot be proved, stop.
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An alternative illustration of the relevance of the frequency-limited 
approach in comparison to the standard H2 approach is presented in 
Figure 4. The time responses of the approximation errors between the 
first input-output transfers of H1 and 1Ĝ  and an optimal H2 reduced-
order model of order 16 for a sinusoidal input of frequency below and 
above rω  are shown. One can see that the frequency-limited approach 
leads to a significantly lower error when the input signal acts below rω  
(left plot in Figure 4), while the H2 approach is more efficient outside 
of the frequency interval (right plot).

Approximation error modeling
The order of the approximation errors ˆ( ) = ( ) ( ) =i i is F s F sΣ −

ˆ( ( ) ( ))i iK G s G s−  prevents optimization tools from being used to 
design the filter ( )W s  efficiently. That is why it is built here in a heuristic 
manner. More specifically, ( )W s  is designed as a product of simple first-
order filters =1( ) = iW

i

s zn
i s pW s k −

−Π , where the poles pi , zeros zi and gain k 
are adjusted for ( )W s  to be as close as possible to the approxima-
tion errors, while still ensuring that 1

=1, ,max 1
si n iW

∞

− Σ ≤


 H . The filter 
( )W s  obtained here has an order nw = 25 and is plotted in Figure 3. One 

can observe that its singular value upper bounds the worst approxima-
tion error. In particular, with this filter, 1

=1, ,max = 0.99 < 1
si n iW

∞

− Σ


 H  
is obtained. 

Step 2: Interpolation and LFR modeling (II-C)

At this stage, a Mach-dependent family =1 3
ˆ{ ( )}i iF s



 of 22nd order LTI 
models is available, together with a common weighting function ( )W s  
shaping the worst-case approximation errors induced by the reduc-
tion process.

Polynomial approximation with guaranteed bounds
The interpolation technique summarized by the linear constraints (14) is 
initially applied with p = 2 and ns = 3. The scalar parameter θ is nor-
malized in such a way that θ = –1 corresponds to the lowest Mach 
number of interest, while θ = 1 corresponds to the highest value. Since 
ns – p = 1, this first trial yields an exact approximation at each of the 
three interpolation points, but a poor behavior is observed elsewhere. 
Reducing the order p to 1 would yield a rough and unacceptable 
approximation. The only remaining option then consists in adding ficti-
tious models for intermediate Mach numbers. This is achieved here by 
generating additional coefficients in (12), with a standard linear interpo-
lation technique. Two models are then generated for Mach 0.825 and 
0.875, and a new interpolation is thus realized with ns = 5 for each of 
the 46 coefficients contained in the matrices iY  of (6). A result of this 
interpolation is plotted in Figure 5 for one of the most varying coeffi-
cient, namely 2,19 ( )θY . The solid blue line corresponds to the nominal 
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Figure 4 – Time responses of the approximation errors between the large-scale model G1 and the frequency-limited reduced-order model 1Ĝ  (solid red) and an 
H2 optimal reduced-order model of order 16 (dashed blue) for a sinusoidal input of frequency below rω  (left) and above rω  (right)
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plot, while the dashed red lines represent lower and upper bounds, 
including the five interpolation points. Note that the three coefficients 
from the initial set of models are all located on the same bound (the 
upper-bound for this coefficient). Quite interestingly, this property holds 
true for the 46 ( 2 ( 1) 2 ( 1)Kr n n= × + + = × + ) coefficients, which per-
mits the size of P∆  to be reduced drastically in (15). Here, one obtains 

2=P P Iδ∆  and (16) boils down to:

 2
0 1 2( , ) = ( , ). ( )P P PX X X diag V Eθ θ θ δ δ∆ + + +Y  (29)

LFR modeling
As has already been clarified in Section "Main result: Stability guar-
antee of a set of large-scale models subject to input saturations", 

( , )Pθ ∆Y  is readily rewritten in a LFR format with the help of exist-
ing software [15]. Next, exposed in Equation (2), a global 47th-order 
(= W Kr n n+ + ) dynamic LFR model encompassing the whole initial 
set of full-order open-loop plants is obtained. The structure of its 7 x 7 
∆-block is written as:

 ( )( )4 2, ,P RI I sθ δ= ∆diag∆  (30)

and has a minimal size that remains largely compatible with the spe-
cific µ  and IQC based analysis tools to be applied next.

Step 3: Stability analysis (II-D)

Preliminary tests via µ analysis
As mentioned in Subsection "Stability assessment", the validity of the 
global LFR model is preliminarily checked without saturation. An uncer-
tain LTI closed-loop model is then built and the µ analysis test (19) is 
performed. Since the complexity of our algorithm is not directly affected 
by the number of states, but mainly depends on the size and structure of 
∆, the results are obtained in a few seconds on any standard computer. 
A guaranteed upper-bound of µ as a function of frequency is displayed 
in Figure 6. The yellow stars corresponding to lower-bounds reveal a 
rather low conservatism of our test, which can be summarized by: 

 ( )( )
0

= 0.43 1sup M j
ω

µ ω
≥

∆  (31)

The continuum of closed-loop models, for any admissible uncer-
tainty, then clearly remains stable, which concludes the preliminary 
validation phase.

Stability assessment via IQC-based analysis
An input saturation – converted to a deadzone operator ϕ, is 
now inserted in the uncertain closed-loop whose ∆-block is 
then augmented: ( ),ϕ←∆ ∆diag . The initial frequency grid is 

= {1,5,10,20,100}iω  rad/s with = 1,...,5i . To limit the number 
of decision variables and then the computation time, ( )X jωΘ  and 

( )Y jωΘ  are chosen to be diagonal, which leads to 17 scalar deci-
sion variables for each frequency, even though it is possible to use 
the general form if no solution was obtained. In addition, 3 deci-
sion variables , ,x λ γ  come from the multiplier, which corresponds 
to the static nonlinearity ϕ. A solution has been obtained in 8 itera-
tions and 104 frequencies. The total number of decision variables is 
17 × 104 + 3 = 1771. The following remarks can be made:

• The solution ( )X jω  is a positive, complex, constant and piece-
wise continuous 6 × 6 matrix. For example, at iteration 8, for 

3ω  = 10 rad/s, the solution 3 ( )jωΠ  is valid over the frequen-
cy domain 3 = [9.72,32.82]Ω  rad/s. Finally, after 8 iterations 

=1,...,104= = [0 )valid iiΩ Ω +∞


, consequently the solution is 
validated on the whole frequency domain.

• An a priori trial and error approach to determine the parameter-
ization for multipliers is not required here. Furthermore, with 
rational multipliers, if no solution is obtained with a specific pa-
rameterization, it is still impossible to conclude on the feasibility 
problem, since a different or more complex parameterization 
may have enabled a solution to be found. Both points highlight 
the methodological superiority of irrational multipliers, which 
can only be considered from a frequency domain point of view. 

• Finally, the stability of the uncertain and nonlinear closed-loop 
is proved on the large-scale dynamical model.
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Figure 6 – Visualization of µ upper and lower bounds for the evaluation of robust stability margins: stability proved for 10.43 = 2.32−
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Conclusion and perspectives

In this paper, a methodology enabling the stability of a set of con-
trolled SIMO large-scale LTI dynamical models subject to input satu-
ration to be assessed has been presented. Firstly, the large-scale 
models are reduced, interpolated and the associated errors are 
bounded. This leads to a small-scale LFR, which represents both 
the parametric variation of the initial set of models and the errors 
induced during the reduction and interpolation steps. The stability 
analysis is then achieved with an innovative algorithmic approach 
based on IQC techniques. Unlike standard methods that require a 
possibly conservative parameterization of the multiplier, here, no 

parameterization is required. This decrease in the conservatism 
enables the approach to be drastically improved. The methodology 
is successfully validated on an industrial set of controlled large-
scale aircraft models subject to saturation limitations. The extension 
of the methodology to MIMO models is conditioned by the use of 
an interpolation technique with guaranteed error bounds. The devel-
opment of such a technique is still under investigation. Similarly, 
determining whether the methodology can easily be extended to a 
broader class of models (e.g., descriptor models) requires further 
studies 
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