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Microswimmers, and among them aspirant microrobots, generally have to cope with flows where
viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the
possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong
drag limits the range of resulting velocities. Here, we propose a swimming mechanism which uses the
buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic
experimental model, we show that a net displacement is produced at all Re regimes. An optimal
displacement caused by nontrivial history effects is reached at intermediate Re. We show that, due to the
fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid
dynamics would also allow high-frequency excitation with standard traveling ultrasonic waves. Scale
considerations predict a swimming velocity of order 1 cm=s for a remote-controlled microrobot, a suitable
value for biological applications such as drug delivery.
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Besides their playful aspect, artificial microswimmers
present undeniable fundamental and practical interests,
mostly driven by a constant race toward increasing minia-
turization with potential applications such as targeted drug
delivery. Comprehensive studies aim to identify the efficient
strategies for small-scale displacement in liquids [1–7],
which can possibly be exploited for the conception of
synthetic microswimmers. Sticking to the strict definition
of swimming as performing a displacement induced by body
deformation, quite a few realizations of synthetic micro-
swimmers can be found in literature [8–12]. A growing
attention toward the simplicity of their fabrication [13–15]
opens possibilities for transfer in the industrial arena. The
two main external sources of power are magnetic [10,11,13]
and acoustic [12,14,15] fields, which are probably more
suitable for medical applications and less expensive. The
major conceptual difficulty lies in the low-Reynolds-number
flows usually associated with microscopic scales; the scallop
theorem [16] then imposes that a nonzero displacement may
only occur via a nonreciprocal succession of shapes. Except
in chiral systems [10,11], this necessary condition requires at
least 2 degrees of freedom, which commonly implies two
control parameters. Such heavy double steering could indeed
be bypassed if flow rates can be rendered high enough so that
inertia could no longer be neglected, or if any hysteresis in
the deformation “naturally” prevents reciprocity.
We suggest fulfilling these two conditions together with

simple spherical colloidal shells full of air, which are
microscopic objects quite easy to manufacture [17,18].
Deflation from a spherical geometry occurs via buckling,
which is a subcritical instability likely to provide both
swiftness and hysteresis during a deflation-reinflation cycle
driven by a single scalar control parameter: pressure. We
investigate the swimming that results from these

deformations thanks to macroscopic shells placed in a set
of fluids with varying viscosity so that relevant dimension-
less numbers could be kept unchanged from the micro-
scopic scale.
Design and actuation of the swimmer.—The swimmer

was a hollow sphere of thickness d and external radius
Rþ d=2 ¼ 25 mm, made in an elastomer of Young
modulus E ¼ 0.5 MPa. The pressure inside the shell

FIG. 1. Inset: Illustration of the deformation cycle. Main figure:
Displacement in the x direction after one deformation cycle for three
different d=R ratios, as a function of fluid viscosity. The indicated
Reynolds numbers correspond to d=R ¼ 0.22. Green (top) shaded
area highlights the high-elastic-energy regimewhile the low-elastic-
energy regime is indicated by the pink (bottom) shaded area.
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was controlled by a pressure controller while the shell was
attached to a frictionless rail. A weak spot for buckling
was oriented in the rail direction (x axis, inset of Fig. 1).
Deformation without displacement was also studied by
controlling the external pressure to be closer to the
anticipated microscopic situation (activation by pressure
waves). In that case, the shell was immersed in a pressur-
ized tank (see [19] for more details on the method).
After a pressure cycle of sufficient amplitude so that

buckling occurs, the shell and its support always move in
the same direction, regardless of the shell thickness and the
fluid viscosity (Fig. 1). Deeper insight into this swimming
motion requires us to first to focus on the deformation
dynamics.
Shell deformation cycle.—A stress-free elastic spherical

shell of radius R and thickness d submitted to an outside-
inside pressure differenceΔP first shrinks while keeping its
spherical symmetry, which corresponds to a quasilinear
relationship between ΔP and the volume variation [path
A-B in Fig. 2(a)] [20,21]. Then, over a threshold pressure
difference ΔPC ≃ Eðd=RÞ2 [20,22–24], an instability
occurs toward a highly deflated conformation with a
depression of extent ∼R [20,24]. In practice, the final state
depends on the possibility to compress the inner medium
[see, e.g., C1 and C2 in Fig. 2(a)]. The depression often
appears repeatedly on a weak spot, at a pressure difference
possibly lower than ΔPC [25,26]. If ΔP is then decreased
back to 0, another stable branch is followed, along which
the radius of the depression decreases progressively much

below R [D in Fig. 2(a)]. Then, a small amplitude
unbuckling instability brings the shell shape back to the
isotropic branch.
Shape hysteresis and shape dynamics.—The evolution

in the height H and width W of the shell during a pressure
cycle exhibits the hysteresis that is a necessary condition
for swimming at low Reynolds number [Fig. 2(a)].
After buckling, shape oscillations of frequency ω can be

observed in most liquids [Fig. 2(b)]. We define the buckling
velocity Vb as 2maxðjdH=dtjÞ, which should be close to
the maximum velocity of the buckling spot. Figure 2(c)
shows that this velocity is almost constant for fluid
viscosities up to ≃1 Pa s, after which the influence of
fluid damping on the shell dynamics cannot be neglected.
Displacements.—Displacements as a function of fluid

viscosity are shown in Fig. 3, for both phases of the cycle
(increase or decrease of ΔP), and three different relative
thicknesses d=R.
At low fluid Reynolds number [in Ucon oil of viscosity

37 Pa s, Re≡ ρfVbðRþ d=2Þ=η ¼ 0.7 for d=R ¼ 0.22],
displacements are important in both phases (deflation and
reinflation), but they almost compensate within one cycle,
with a final displacement of around 1% of the radius due
to shape hysteresis (Fig. 1). In this Stokes regime, the
displacement is quite similar for all shell thicknesses, as is
the sequence of shapes.
On the opposite end of the viscosity range (Re ¼ 6.104

in water), the inertial thrust should scale like ρfΔV × Vbω,
where ρΔV is the mass of the accelerated fluid in the

(b) (c)

FIG. 2. Buckling and deformation of a shell with d=R ¼ 0.22. (a) Path in a diagram of heightH and widthW along one pressure cycle
in glycerol. Pressure difference ΔP is tuned by acting either on the internal pressure (thick gray curve), or on the external pressure (thin
black curve). Pressure cycles of amplitude 0–600 mbar and period 15 s were applied. Pictures show the different shapes met by the shell
along the pressure cycle: A, initial spherical shape; B, deformed shape right before buckling; C1, buckled shape in the case of external
pressure control (encapsulated air prevents full collapse); C2, buckled shape in the case of internal pressure control; D, shape after
wrinkle unfolding right before unbuckling. (b) Time evolution of the heightH=ð2Rþ dÞ right after buckling [around configuration C2 in
panel (a)] in three different liquids: water (η ¼ 10−3 Pa s), glycerol (η ¼ 0.9 Pa s), Ucon© oil (η ¼ 37 Pa s). (c) Buckling velocity Vb as
a function of fluid viscosity η.
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vicinity of the (un)buckling area and Vbω its typical
acceleration.
In our macroscopic model, this thrust serves first to

accelerate the whole system (ballþ gliding support) of
mass M ≃ 1.5 kg. For the d=R ¼ 0.22 shell, where ΔV
is of order 20% of the total volume V0 [19], this results
in a typical swimming velocity Vs ¼ Vb × 0.2ρfV0=M≃
0.02 m=s, in very good agreement with the velocity
measured during buckling [Fig. 4(b)].
The accelerated volume ΔV is an increasing function of

d=R [19], which makes the inertial regime eventually more
efficient than the Stokes regimes for thick enough shells
(Fig. 1). Interestingly, this efficiency is also a consequence
of the shape hysteresis: the pre-unbuckling shape [D in

Fig. 2(a)], which is obtained after a slow decrease of the
depression, is much closer to the spherical shape than the
postbuckling shape [C in Fig. 2(a)]. This leads to a much
smaller amount of accelerated fluid at unbuckling and,
hence, a negligible contribution of the reinflation phase to
the motion (Fig. 3). For instance, for the d=R ¼ 0.22 shell,
the unbuckling volume change and velocity are smaller by
a factor of 8 and 2, respectively [19].
The displacement after one full cycle appears to be even

larger at an intermediate Reynolds number, for which the
displacement due to buckling is enhanced. This points to
the need for better knowledge of the surrounding fluid
hydrodynamics.
Flows.—Flows around a d=R ¼ 0.22 shell attached to a

fixed support were studied during buckling by time-
resolved particle imaging velocimetry. They are qualita-
tively different according to the liquid viscosity [Fig. 4(a)],
which echoes distinct evolutions of the displacement during
shape oscillations [Fig. 4(b)].
In water, the flow reverses during inward and outward

shell oscillations, in phase with the boundary conditions. The
buckling induces a displacement of the moving support that
oscillates transiently in a synchronous way with the shape.
In glycerol, the viscous effect that is not fully negligible

(Re ¼ 70) induces a qualitatively different scenario. The
collapse of the shell during phase (ii) (backward motion of
both back and front ends) creates a shear flow near the
translating flank. This tangential flow is still present during
the outward oscillation (iii). As a result, the outward motion
of the expelled fluid is not directed towards the x axis. This
fluid does not contribute to the inertial thrust, which lowers
the backward displacement [see phase (iii) in Fig. 4(b)].
Thus, displacements due to oscillations do not counter each
other as in water, but contribute, thanks to this delay effect,
to a displacement lasting more than 100 ms [Fig. 4(b)].
The delay effect is characterized by the Womersley

number Wo, defined as Wo2 ¼ R2ρfω=η, which compares

FIG. 3. Same as in Fig. 1, but decomposed into displacement
during deflation and displacement during reinflation.

(b)(a)

FIG. 4. Postbuckling deformations and displacements for a shell with d=R ¼ 0.22. (a) Stream lines and velocity field during the shape
oscillations, in water and in glycerol. Blue arrows indicate the main flow patterns. Arrows inside the ball indicate the main deformation
direction. Steps (i)–(iii) are indicated on the deformation curve of Fig. 2(b): (i) and (ii) correspond to the initial inwards collapse and (iii)
to the first outward oscillation. (b) Displacement as a function of time.
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the oscillation period with the viscous damping time. In the
classical Stokes problem of a plate oscillating with fre-
quency ω in a viscous liquid, shear waves propagate in the
normal z direction with a wave number k and a damping
e−kz, where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρfω=ð2ηÞ
p

[27]. At a given distance R,
the shear waves are damped at high Wo and they are in
phase with the plate at low Wo. For intermediate values of
Wo≃ 1, the waves are neither damped nor synchronized.
In our case, the phase shift gives rise to the complex pattern
observed in glycerol where Wo≃ 8, while in water
Wo≃ 300. Since Vb ≃ Rω, Re≃Wo2 in our configura-
tion; thus, the interplay between inertial, nonstationary
dynamics and viscous damping of shear waves will always
take place at an intermediate-Reynolds-number regime, and
will imply an enhancement of the thrust during deflation.
Discussion and miniaturization.—We discuss the impli-

cations of our results for the motion of a colloidal armored
bubble in a waterlike fluid, for which the control of the
pressure difference would be attained by an external
acoustic field.
Toy model.—To that purpose, we developed a simplified

model to describe the postbuckling dynamics of the shell
[28]. If we consider a viscoelastic Voigt material of loss and
storage modulus E00ðωÞ and E0ðωÞ, with E00ðωÞ < E0ðωÞ
(which, in practice, is almost always the case [30]), and if
the surrounding fluid does not influence the shell dynamics,
the postbuckling frequency obeys

ω≃ ζ
1

R
d
R

ffiffiffiffiffiffiffiffiffiffiffiffi

E0ðωÞ
ρ

s

; ð1Þ

with 0.3 < ζ < 0.4. Here, ρ holds for the shell material
volume mass. The buckling speed Vb obeys

Vb ≃ χ
d
R

ffiffiffiffiffiffiffiffiffiffiffiffi

E0ðωÞ
ρ

s

; ð2Þ

with 0.4 < χ < 0.9. Note that by dimensionality arguments
Vb necessarily scales like fðd=RÞ

ffiffiffiffiffiffiffiffiffiffi

E0=ρ
p

.
For our d=R ¼ 0.22 shell with ρ ¼ 1060 kg=m3, if we

assume that E0ðωÞ ¼ E0ð0Þ≡ E, we find ω≃ 64 Hz; this is
comparable the measured pulsation ω≃ 150 Hz and also
validates the above assumption since, for elastomeric materi-
als, the stiffnessE0ðωÞ is almost constant up to the kHz range
[30]. We find that the buckling speed Vb can be composed of
values between 1.9 and 4.4 m=s, which perfectly surrounds
the experimental value of Vb ≃ 2.4 m=s in water.
This validates Eqs. (1) and (2), which allows us to

estimate the buckling velocities and postbuckling fre-
quency from the sole knowledge of E0 without that of
E00. This opens discussion for possible scalings between
microscopic and macroscopic systems.
Flow regime.—From the preceding calculation, we expect

the Reynolds number to be Re≃ 0.4ðR=ηÞðρΔPCÞ1=2, with
a prefactor ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0ðωÞ=Ep

. Displacement enhancement is

controlled by the Womersley number; in this prob-
lem, Wo≃ Re1=2.
For a shell of radius 10 μm, and considering for ΔPc the

maximum value of 1 bar to avoid cavitation by the �1 bar
pressure wave, Re≃ 40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0ðωÞ=Ep

. Equation (1) shows
that, as ω scales as R−1, miniaturization down to 10 μm
propels ω to the MHz range. Usual values of compliance
for elastomers [30] indicate that Re may reach 400.
Microscopic shells could then swim in the 1–600 inter-
mediate Re regime, where inertial thrust is enhanced by the
coupling between flow and shape oscillations. This hap-
pens at frequencies compatible with sonographic devices
that are already known to induce repeated buckling on
armored bubbles [21].
Expected displacements.—Amicroscopic shell would be

controlled by variations of the external pressure, while our
macroscopic model was activated by varying the internal
pressure.
At low Reynolds number, the sequence of shapes is

quasisimilar for both ways of controlling the pressure
difference [Fig. 2(a)] so we anticipate our result of a
displacement per cycle of 1% of R (which is a slight
underestimation due to friction on the arm holding the
swimmer) to also hold for a microscopic shell.
At higher Reynolds number, the mass of accelerated fluid

is given by the loss of shell volume during buckling, which is
limited by the resistance of the inner gas to compression.
However, it can be shown that to the first two orders in d=R,
the lost volumes are identical whatever the way the pressure
is controlled [19]. The estimate done for the final displace-
ment in the intermediate Re (and Wo) regime 1 < Re < 600
is then valid, and is even a minor bound for a microswimmer
that would not be attached to a heavy support.
Finally, a microswimmer subjected to an ultrasonic wave

of amplitude ΔPC and driving frequency ωd will swim
under the condition that ωd < ω, where ω is the postbuck-
ling spontaneous frequency of the shape oscillations, so as
to allow time for the material to react to pressure variations.
While the displacement per cycle is rather low, the high
frequency that is allowed, thanks to the fast activation due
to the instability, may lead to high velocities. We find
that swimming velocity is at least equal to Us ¼ 0.01R ×
ω=ð2πÞ (the Stokes case). With ωd ≃ ω≃ 1 MHz, this
potentially leads to a net velocity ∼1500R per second,
which is 15 mm=s for a R ¼ 10 μm shell, much faster than
that of Janus particles (10 μm=s [31]), helicoidal micro-
robots (10 μm=s [10]), microrobots with acoustically
activated flagella (50 μm=s [12] to 1 mm=s but for much
larger swimmers [15]), and microrobots propelled by
metachronal waves (3 μm=s [32]).
A microscopic shell designed in such a way that the

buckling pressure is of the order 1 bar would be in the
intermediate regime and would even swim faster. In addition,
we anticipate that the swimming amplificationobserved in the
moderate-Womersley-number regime opens a path for active
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amplification by a fine-tuning of the pressure cycle period, so
as to make it comparable to the viscous decay time.
Finally, we extrapolate that multidirectional remote con-

trol in a compound of several spheres of different character-
istics, which may be built using smart self-assembly
properties of colloidal particles [33–35], can be reached
by playing on the wave amplitude (with strong nonlinear on-
off response depending on whether the buckling pressure has
been reached or not) and/or on the wave frequency.
Conclusion.—We have proposed and experimentally

tested a swimming mechanism active at all Re numbers,
which relies on the intrinsic property of shape deformation
hysteresis of a spherical shell upon a deflation or reinflation
cycle. Thanks to the fast deformations associated with
shape instabilities, an inertial regime is reachable even at
small scales. Hysteresis in the deformation velocity
sequence implies fast propulsion in this regime, which
can be amplified by the coupling between shape oscilla-
tions and flow patterns.
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