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Abstract

Embedded devices of the Internet of Things form the so-called low-power and lossy networks.
In these networks, nodes are constrained in terms of energy, memory and processing. Links are
lossy and exhibit a transient behavior. From the point of view of energy expenditure, governing
control overhead emission is crucial and is the role of the Trickle algorithm. We address Trickle’s
fairness problem to evenly distribute the transmission load across the network, while keeping the
total message count low. First, we analytically analyze two underlying causes of unfairness in Trickle
networks: desynchronization among nodes and non-uniform topologies. Based on our analysis, we
propose a first algorithm whose performance and parameters we study in an emulated environment.
From this feedback, we design a second algorithm Trickle-D that adapts the redundancy parameter
to achieve high fairness while keeping the transmission load low. We validate Trickle-D in real-life
conditions using a large scale experimental testbed. Trickle-D requires minimal changes to Trickle,
zero user input, emits 17.7% less messages than state-of-the-art and 37.2% less messages than state-
of-practice, while guaranteeing high fairness across the network.

1 Introduction
The “Internet of Things” is becoming reality and for a multi-year lifetime its constrained devices must
run on a very stringent energy budget. In this context, reducing energy consumption in all manners is a
primary concern. As the consumption of the radio dominates over other on-board components, this goal
translates into the reduction of radio operations, and on a higher level reduction of control overhead.

We address this and a related problem: fairness among nodes. That is, we want to ensure that each
node in a multihop network consumes a similar amount of energy due to control overhead. Hence, no
node will drain its battery significantly faster than others. Improving fairness allows to extend the whole
network lifetime: see for instance the sink placement case in [22], avoiding situations, where some nodes
fail sooner than others because of early battery depletion.

We focus our efforts on the Trickle [14] algorithm, which is used for data dissemination in constrained-
node networks. Trickle has been standardized by the IETF [15], and is most notably used by the
IETF Routing Protocol for Low-Power and Lossy Networks (RPL), see [25] and [24]. Other than RPL,
Multicast Protocol for Low-Power and Lossy Networks [9] and other protocols like in [26, 7, 8, 23] and
[20] build upon it, leveraging Trickle’s benefits [4]. This makes the understanding of its behavior crucial
for performance optimization of control overhead.

Our contribution is a twofold. First, we address the unfairness of Trickle and isolate two contributors:
desynchronization and non-uniform topology. Second, we present a simple, yet effective algorithm to
dynamically adapt one of Trickle’s key parameters, while keeping the original Trickle unchanged. We
then evaluate the algorithm in a realistic, emulated environment drawing conclusions about the effect
of the parameters. The study allowed us to further simplify the algorithm and derive Trickle-D, a
simplified version of the algorithm that dynamically adapts the redundancy notion of Trickle to achieve
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high fairness and low transmission load. Finally, we validate Trickle-D in real-life conditions using large
scale experimental testbed, showing performance improvements over both state-of-the-art and state-of-
practice.

The remaining of the paper is organized as follows. Section 2 explains the Trickle algorithm and its
usage within RPL. Section 3 presents the related works. Section 4 points out two causes of unfairness
in Trickle and discusses their consequences under certain hypotheses. Section 5 then presents Trickle
improved algorithms, and Section 6 gives simulation and experimental contexts that lead to validation and
performance evaluation of our proposition on three network topologies of up-to-date hardware platforms.

2 Trickle
Trickle’s original goal [14] was to quickly disseminate code updates throughout a network, while keeping
the amount of communication at a minimum when every node has the newest version of the code. It
turned out to be a simple yet effective way of distributing any kind of information. This makes its
interest for IoT protocols such as RPL.

2.1 Trickle algorithm description
The main idea of Trickle revolves around the application-specific notion of consistency. On one hand,
Trickle resolves any inconsistency by broadcasting the newest information as quickly as possible. On the
other hand, when no new information is available, the number of messages should be kept at minimum
which is achieved with a broadcast suppression mechanism. This saves energy in low-power networks by
eliminating redundant communications.

Trickle organises time into intervals of variable size I. The first half of an interval is a listen-only
period, in which a node listens but never transmits. A node picks a transmission time uniformly at
random in the second half of the interval. When this selected transmission time is reached, the node
decides whether to transmit or not based on the number of consistent messages received during the
current interval.

To this end, a threshold redundancy constant k is introduced, describing how many consistent mes-
sages are necessary to be received in order to avoid the broadcast. Each node maintains a consistent
messages counter c, updated according to the following rules:

1. increment c for each consistent message received

2. at the interval start, reset c to zero.

When the transmission time is reached, the node transmits if c < k. That is, if less than k consistent
messages have been received in the current interval, then the current message is not considered redun-
dant and it should be broadcasted. Otherwise, the message broadcast is considered redundant and is
suppressed.

The size I of the Trickle interval is governed by the following rules:

1. at the end of an interval, I doubles, up to Imax

2. when a newer inconsistent message is received, I resets to Imin.

Figure 1 exemplifies the Trickle algorithm run in a trivial case which shows broadcast propagation
and broadcast suppression mechanisms on a time interval.

2.2 Trickle in RPL
The Routing Protocol for Low-Power and Lossy Networks, specified in RFC 6550 [25], defines routing for
constrained-node networks. A device in such network typically only knows how to reach the gateway of
the network called the “sink”. In order to participate in a RPL network, each node broadcasts control
messages using the Trickle algorithm. The default redundancy constant specified by the RPL protocol
is relatively high, k = 10. Although it is supposed to be configurable by the operator, deployments
typically rely on this default value.
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Figure 1: The Trickle algorithm time lines in I = Imax permanent regime steady-state, with a full-mesh
of 3 nodes, k = 2, and assuming all sent messages are consistent.

3 Related work
Several efforts have been made to model the behavior of Trickle, in particular to predict the total
number of transmissions. In [13], authors derive the total message count of a steady-state, static and
synchronized Trickle network, assuming a uniform spatial distribution of nodes. In [3] and [4], authors
build an analytical model for a more general case: arbitrary network topology, and the nodes are not
assumed to be synchronized. Additionally, the model predicts the probability of transmission of each
individual node in the network, and not just the total transmission count for the network. While this
gives a first measure of unfairness among nodes, the model only takes into account unfairness caused by
the topology, and not unfairness caused by desynchronization.

The unfairness of Trickle has been mentioned in some works, in particular [15] and [19]. The effect
of desynchronization on fairness has been analyzed in [18], in a more general case. The authors extend
Trickle by introducing a new parameter η ∈ [0, 1] controlling the length of the listen-only period. In the
original Trickle algorithm, η = 0.5. This parameter impacts Trickle’s fairness, in particular, high values
of η decrease both fairness and message count, so that choosing a value for η involves a tradeoff. The
authors also present a model to predict the nodes transmission probability in a single-cell network.

Trickle-F [23] is a modification of the Trickle algorithm designed to improve fairness. However,
the authors’ primary concern is to avoid communication starvation of nodes1, while we are primarily
interested in energy consumption. The idea of Trickle-F is to “prioritize each node strictly depending on
the number of consecutive suppressions: the longer the time spent by a node without transmitting, the
higher its transmission priority in the next round” [23]. To this end, each node keeps a counter s of
the number of times its transmission has been suppressed, initialized at s = 0. Then, the node selects
its transmission time t in [ I

2s+1 ,
I
2s ] instead of [ I2 , I]. Thus, the longer a node has been suppressed, the

earlier it will try to transmit in the following interval. With a synchronized network, all nodes with a
1A node starves if it cannot transmit during a very long time compared to its normal timescale of operation.

3



higher priority s will necessarily transmit before the nodes with a lower priority.
In order to dynamically balance Trickle’s communications, [4] proposes to adapt k as a function of the

node’s degree using k = α ∗ d, where d is the node degree. This assumes d is known which is usually the
case in the MAC layers of wireless networks. In [20], the authors use a similar approach with k = α ∗ c,
where c can be seen as an approximation of the node degree. The value c is dynamically computed from
scratch for each interval and adjusted within the interval. While the number of neighbors is not needed
for c computation, the experiment results show that k is roughly proportional to the node degree.

Fairness is an important issue also in the MAC layer. For instance, in [16] authors address this issue
using a hybrid mechanism for hybrid M2M networks. The solution uses priorities and both contention
and transmission periods to achieve better performance in heterogeneous networks.

4 Trickle’s unfairness
The following analysis demonstrates why the transmission load in a Trickle network is unequally spread
between nodes, i.e., some nodes (re)transmit more than others on average. We identify two main causes:
desynchronization between nodes and non-uniform topologies.

We consider a static network of nodes, where nodes are able to talk to each other in an arbitrary
topology, depending on their communication range. Each node runs Trickle to reach a consistent state
with its neighbors with the same parameters Imin and Imax. As in [3, 4] and [20], we assume that
the redundancy constant k is not necessarily the same on all nodes. The network is assumed to be in
steady-state, i.e., I = Imax, all nodes are consistent, and no node triggers a Trickle reset because of
external events.

4.1 Desynchronization unfairness
Trickle does not assume that nodes are synchronized. Furthermore, desynchronization is the reason for
the introduction of the listen-only period, fixing the short-listen problem [14]. This listen-only period
reduces the number of transmitted messages, as described in Section 2. However, the listen-only period
also introduces a bias in the transmission load, by hindering the ability of some nodes to transmit. This
is referred to as the capturing problem in [18].

To understand this effect, we fully analyze the simple case of two unsynchronized Trickle nodes, with
k = 12. We derive the analytical probability of transmission for each node, as a function of the phase ϕ
between the nodes as illustrated in Figure 2.

For the sake of simplicity, we assume that the Trickle interval is of unit length and that 0 ≤ ϕ ≤ 0.5
because the situation of the two nodes is symmetric. ϕ = 0 means that the two nodes are synchronized,
and ϕ = 0.5 means that the nodes are dephased by exactly half a Trickle interval.

Figure 2: Definition of the phase ϕ between the two nodes.
2Notice that in Trickle’s behavior, k = 1 corresponds to the minimum broadcast propagation case. Thus this is the

best case to show unfairness. On the opposite, if k is very large, all the nodes always propagate broadcasts and there is no
fairness issue nor any communication efficiency.
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We model the behavior of each node as a discrete-time Markov chain with two states. For each Trickle
interval n, where n is modeled as the discrete time of the Markov chain, the node either transmits (state
T ) or suppresses its transmission (state T ). We denote by Tn the event <The node transmits during
interval n> and Tn its opposite. The transitions of this Markov chain are the probabilities P(Tn|Tn−1),
P(Tn|Tn−1), P(Tn|Tn−1) and P(Tn|Tn−1) for each node (see Figure 3).

P(Tn|Tn−1)

P(Tn|Tn−1)

TT
P(Tn|Tn−1)

P(Tn|Tn−1)

Figure 3: Two-nodes Markov chain model with k = 1.

Computation of these probabilities is detailed in Section 4.2 and [12]. Figure 4 summarizes the results
with a node transmission probability plotted as a function of the phase ϕ. Notice that this transmission
probability function is periodic, since both ϕ = 0 and ϕ = 1 actually describe the same situation: the
two nodes have synchronized intervals.

Figure 4: Node 1 transmission probability in the two-nodes Markov model with k = 1 as a function of
the desynchronisation phase ϕ.

A truly noteworthy feature is the non-continuity of this function at ϕ = 0.5. Indeed, the case ϕ = 0.5
is special. The Markov chain becomes reducible, i.e., each state (T or T ) only has one transition, leading
to itself. Practically, the first node to transmit will always suppress the other node’s transmission, and
will keep on transmitting forever. This is because the listen-only period of each node exactly matches
the transmission period of the other node. This effect is analyzed in more depth in [18].

The case ϕ = 0 is straightforward. The nodes are synchronized, and the two nodes are perfectly
fair to each other. This is because the listen-only period and transmission period do not overlap. For
all other values of ϕ, one node has a clear advantage. The fundamental reason lies in the choice of the
transmission time. The node starting its interval sooner (for instance, "node 1" in Figure 2) will have a
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much higher probability of selecting an earlier time of transmission. The dependency of this probability
with ϕ is quadratic, as computed in the Section 4.2. On the other hand, the node starting its interval
sooner may suppress its transmission because of a transmission from the previous interval. However, the
probability of this event is affine in ϕ, and is outweighed by the other quadratic factor (see Section 4.2).

4.2 Markov chain probabilities’ computation
This section details the analytical model of the two-nodes network, with k = 1. Each node is modelled
as a discrete-time Markov chain, for which the probabilities of transition are derived as a function of the
phase ϕ (see Section 4.1).

4.2.1 Notations

We assume that the Trickle interval is of unit length. We further assume 0 ≤ ϕ ≤ 0.5, because the
situation of the two nodes is symmetric. ϕ = 0 means that the two nodes are synchronised, and ϕ = 0.5
means that the nodes are dephased by exactly half a Trickle interval.

For a node i ∈ {1, 2} and an interval n, we denote by tni the time of transmission chosen by node i
for the nth interval. Note that tni is relative to the start of interval of node i. We denote by tni,abs the
absolute time of transmission, where the time reference is taken as the start of node 1’s interval. Thus,
we have the simple relations tn1,abs = tn1 and tn2,abs = tn2 + ϕ. Similarly, we denote by T

(i)
n the event

<Node i transmits during interval n>, for i ∈ {1, 2}.

4.2.2 Events

We consider the following sets of complementary events, as illustrated in Figure 5:

1. tn2,abs < tn1,abs and tn2,abs ≥ tn1,abs, or equivalently tn1 − tn2 > ϕ and tn1 − tn2 ≤ ϕ. These events
describe whether it is "node 1" or "node 2" that has chosen the earliest transmission time for a
given interval. For instance, in Figure 5, "node 1" has chosen an earlier transmission time, meaning
that the event tn1 − tn2 ≤ ϕ has occurred.

2. tn−12 < 1 − ϕ and tn−12 ≥ 1 − ϕ. The latter case is illustrated as the red event in Figure 5. That
is, "node 2" transmits at interval n − 1, but the message is received during the nth interval of
"node 1". Since ϕ < 0.5, "node 1" is still in its listen-only period, and cannot transmit before
"node 2".

Figure 5: Principle and notations for the two-nodes modelisation with k = 1.
Since ti is chosen uniformly between 0.5 and 1, it is easy to see that

P(t2 > 1− ϕ) = 2ϕ (1)

The first set of events is more complex. Since both tn1 and tn2 follow a uniform U([0.5, 1]) distribution,
their difference X = tn1 − tn2 obeys the following probability density function:
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fX(x) =


0 if x ≤ −0.5
4(x+ 0.5) if − 0.5 ≤ x ≤ 0

4(−x+ 0.5) if 0 ≤ x ≤ 0.5

0 if x ≥ 0.5

Thus, for 0 ≤ ϕ ≤ 0.5, we can compute

P(tn1 − tn2 ≤ ϕ) = 0.5 + 2ϕ(1− ϕ) (2)

4.2.3 Properties and theorems

Lemma During a given interval, exactly one of the two nodes transmits
Note that this property is not true in general. In this specific case (two nodes with k = 1), this

property allows to simplify the analysis.

Proof. The crucial point is the following. Because 0 ≤ ϕ ≤ 0.5 (see Figure 5), "node 2" can only hear
at most one transmission from "node 1" during an interval. Indeed, during one interval of "node 2",
"node 1" goes through the following sequence: a listen-only period (of length 1−ϕ), then a transmission
period (of length 0.5), then another listen-only period (of length ϕ).

With this fact in mind, consider that "node 1" transmits in interval n, at time tn1 (see Figure 5).
Then, necessarily, tn1,abs < tn2,abs. "node 2" thus hears a transmission in interval n, and suppresses its
transmission.

Now assume that "node 1" suppresses its transmission in interval n (possibly, but not necessarily,
because "node 2" transmitted in interval n − 1). Then, because of the above property, "node 2" does
not hear any transmission in interval n and thus transmits.

Corollary ∀n, T (1)
n = T

(2)

n

That is, "node 1" transmits in an interval if and only if "node 2" does not transmit in the same
interval.

Theorem of conditional total probability To compute the probabilities of transition of the Markov
chain, we use this formula: ∀A,B events, ∀C1, . . . Cn a partition of the probability space, we have
P(A|B) =

∑
i P(A|Ci ∧B) · P(Ci|B).

This is simply the total probability theorem, restricted to a probability subspace by conditioning on
a given event B.

4.2.4 Transition probabilities for node 1

We can now decompose P(T (1)
n |T (1)

n−1), using the above complementary events and the theorem of con-

ditional total probability. First, this quantity is equal to P(T (1)
n |T

(2)

n−1), thanks to the lemma. Since
we assume that "node 2" did not transmit during interval n − 1, the only relevant event is the relative
position of tn1 and tn2 . Node 1 transmits if it has selected an earlier transmission time than node 2 (i.e.,
tn1 − tn2 ≤ ϕ).

This gives the simple expression:

P(T (1)
n |T

(1)
n−1) = P(tn1 − tn2 ≤ ϕ) (3)

= 0.5 + 2ϕ(1− ϕ) (4)

We now compute the other interesting quantity, P(T (1)
n |T

(1)

n−1), i.e., the probability that "node 1"
transmits when it has not transmitted during the previous interval. Thanks to the lemma, this is again
equal to P(T (1)

n |T (2)
n−1).

In this case, "node 1" transmits during interval n if both of these independent events occur:

1. "node 1" has selected an earlier transmission time than node 2 (i.e., tn1 − tn2 ≤ ϕ), exactly as above
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2. and during the previous interval n − 1, "node 2" selected a transmission time before the start of
node 1’s nth interval (i.e., tn−12 ≤ 1− ϕ). This is the blue event in Figure 5.

This gives:

P(T (1)
n |T

(1)

n−1) = P(tn1 − tn2 ≤ ϕ) · P(tn−12 < 1− ϕ) (5)
= 0.5 + ϕ− 6ϕ2 + 4ϕ3 (6)

4.2.5 Markov chain

The transition matrix of the resulting Markov chain for node 1, P (1) is:[
0.5− ϕ+ 6ϕ2 − 4ϕ3 0.5 + ϕ− 6ϕ2 + 4ϕ3

0.5− 2ϕ+ 2ϕ2 0.5 + 2ϕ− 2ϕ2

]
Except for ϕ = 0.5, this Markov chain is irreducible, and thus admits a stationary distribution π1

satisfying π1 = π1P (1). Intuitively, it describes the time spent in each state, and thus gives access to
the transmission probability of node 1 as its second component, which we denote P (1)

tr . An eigenvector
computation using Maxima [17] gives the solution:

P
(1)
tr =

4ϕ2 − 4ϕ− 1

4ϕ2 − 2ϕ− 2
for 0 ≤ ϕ < 0.5 (7)

4.2.6 Symmetry

So far, we have only considered the case of node 1, with 0 ≤ ϕ < 0.5. Let use denote:

f(ϕ) =
4ϕ2 − 4ϕ− 1

4ϕ2 − 2ϕ− 2

Now, consider the case where 0.5 < ϕ ≤ 1. We just have to exchange the roles of "node 1" and
node 2, and consider the phase of node 1 with respect to node 2, ϕ′ = 1 − ϕ. Since the situation of
node 2 is exactly the same as the situation of "node 1" in the previous section, with 0 ≤ ϕ′ < 0.5, we
have:

P
(2)
tr = f(ϕ′) for 0 ≤ ϕ′ < 0.5

But since P (1)
tr = 1− P (2)

tr thanks to the lemma, this gives:

P
(1)
tr = 1− f(ϕ′) for 0 ≤ ϕ′ < 0.5

This gives the final result:

P
(1)
tr = 1− f(1− ϕ) for 0.5 < ϕ ≤ 1 (8)

=
1− 2ϕ

4ϕ2 − 6ϕ
for 0.5 < ϕ ≤ 1 (9)

4.3 Topology unfairness
Given our hypotheses, it has been shown in [3] and [4] that the transmission probability of nodes is
not uniform across the network. This behaviour is also mentioned as a possible issue in [15]: “Trickle
suppression typically leads sparser nodes to transmit more than denser ones”. That is, even when the
redundancy constant k has the same value on all nodes, some nodes may transmit more than others.
This is due to the arbitrary network topology density: a node with few neighbours tends to transmit
more often than a node with many neighbours. In a dense network area, most nodes suppress their
transmission. On the opposite, an isolated node systematically transmits.

However, note that the transmission probability of a node is not only dependent on the number of
its neighbours, but also on their own transmission probability, as shown in [4].
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4.4 Consequences on energy consumption
While section 4.1 models a very specific topology, it can help to extrapolate general trends. First of all,
desynchronization between nodes leads to unfairness, partly because of the listen-only period, but mostly
because of Trickle’s usage of intervals. If the phase between nodes is uniformly distributed (which is a
reasonable assumption for real networks), then, on average over the possible phases, each node will have
a fair transmission rate. However, the phase is determined by the initial startup time of each device,
thus, under a steady-state assumption, it does not change afterwards3. Thus, a network can potentially
stay in an unfair state for a large amount of time. In more complex topologies and for other values of k,
desynchronization will still cause unfairness, although unfairness is expected to greatly decrease for high
values of k at the cost of high transmission load. In both unfairness cases described in Sections 4.1 and
4.3, the result is similar: the transmission load is distributed unevenly among nodes.

As a consequence some nodes transmit more often and thus consumes more energy. This is an issue
for battery-powered networks, see for instance in [5] and [22], since “talkative” nodes will deplete their
battery faster and die. The network will then suffer partial breakdown, leading to instabilities, repeated
energy-consuming reconfiguration phases, and eventually network partitioning.

Desynchronization ϕ depends on clock drift and initial nodes startup, so its control would require
running synchronization protocol among nodes for Trickle’s purposes, which would defeat the original
design with listen-only period. Thus we propose to adjust the k parameter in order to provide steady-
state fairness with as low as possible broadcast propagations.

5 Trickle’s fairness improvement
We aim at improving Trickle’s fairness while keeping its general structure and preserving its properties:
broadcast suppression and low overhead. In practice, improving fairness means that all battery-powered
nodes will deplete their battery at roughly the same rate and that the lifetime of the whole network will
be extended. Considering the usage of Trickle with RPL, the application goal is to establish network
routes. Our analysis only takes into account control messages sent and received using Trickle. This is
obviously an approximation because application messages also require energy to be transmitted. However,
application-generated packets will be transmitted anyway. Moreover, they are typically transmitted using
unicast, while Trickle messages are using broadcast transmission, which is much more energy-consuming
on typical MAC stacks. For instance, using ContikiMAC, a broadcast transmission consumes fifteen
times more energy than a synchronized unicast transmission [5].

Our proposal in the following is to adapt k in order to improve global fairness. Whenever a node
transmits, k is incremented or decremented as a function of the received messages count since the last
transmission.

5.1 Fairness measure
Since the goal is to improve the fairness of Trickle, we need a proper measure to evaluate fairness. For
this purpose, we use the well-known Jain’s fairness index introduced in [11]. Given a sequence of N real
numbers S = (x1, . . . xN ), its Jain index is defined as:

J(S) =
(
∑N

i=1
xi)

2

N
∑N

i=1
x2i

(10)

The xi typically represent how a shared resource is distributed among users: each user i receives
a share xi. If all xi are equal, then J = 1: this is a perfectly fair sharing of the resource. If k users
equitably share the resource, and n−k users receive nothing, then J = k

N . The Jain index has a number
of desirable properties: it is normalized between 0 and 1, dimensionless, independent of the population
size, and continuous with respect to the xi.

For our networking purpose, xi is node i transmissions number. Informally, the “resource” we consider
is the communication channel4. If all nodes have the same number of transmissions, then J will be 1,

3The phase might change over time because of clock drift, but this is often negligible (a cycle every half year with +/-
30 ppm), especially because Imax is in the order of minutes.

4Although we indirectly focus on energy consumption balance.
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indicating a perfectly fair network. The communication overhead is defined as the message count, that
is, the total number of messages sent by a node. Thus, to save energy, the goal is to maintain a fair
network, while keeping the overhead as low as possible5. To this end, we adopt a control approach.

5.2 Redundancy parameter control algorithm
An interesting metric for this problem is the number of received messages between two transmissions.
This metric has been used to evaluate the fairness of the Distributed Coordination Function (DCF) of
IEEE802.11 networks [2]. The main idea is the following: if a node transmits at the same rate as its n
neighbours, then it should (on average) receive n messages between two of its transmissions.

Following this idea, in Figure 1, our Trickle-d algorithm adjusts the Trickle redundancy parameter6
k based on the number of received messages between two transmissions of a node. This implements a
control loop on the transmission rate, because if a node transmits more, its neighbors will suppress their
broadcast more often and thus transmit less. In order to maximize J , the objective of the control loop
is to receive exactly n messages between two transmissions, although the randomized nature of Trickle
makes it hard to be exactly in this situation.

In order to implement this control improvement, the Trickle algorithm stays unchanged, except that
the redundancy parameter k is modified over time. Note that k is only modified when a node transmits
a message. When a broadcast is suppressed k remains unchanged. Additionally, we bound k using
two parameters kmin and kmax. An operator can use these parameters to constrain the algorithm. For
instance, to guarantee a certain level of redundancy, one may wish to set kmin > 1 and to ensure that
energy consumption stays low, one may wish to set a relatively small value7 for kmax, for instance
kmax = 8. We also scale k proportionally to the “error” i.e., the difference between the number of
received messages since the last transmission and the number of neighbors (which may vary according
to the network environment).

Data: kinit: initial redundancy parameter
Data: kmin: minimum redundancy parameter
Data: kmax: maximum redundancy parameter
Data: scaling: scaling constant when changing k
nRX = 0 //received messages counter//;
k = kinit;
when receiving a packet

nRX++;
end
when sending a packet according to Trickle

k = k + (nRX - neighbors#());
k = min(k, kmax);
k = max(k, kmin);
nRX = 0;

end
Algorithm 1: Algorithm Trickle-d on each node which dynamically adjusts the value of k.

5.3 Implementation notes
The Trickle-d algorithm is intentionally simple since it must be implemented on devices with very limited
capabilities. Compared to the original Trickle algorithm, our modification requires a node to know its
degree, i.e., the number of its neighbors. This can be implemented on top of an IPv6 stack, using the
built-in Neighbor Discovery mechanism. RPL, for instance, already uses Neighbor Discovery to populate
a neighbor table. Thus, knowing the number of neighbors is mostly free in real life networking stacks.

5Notice that there are other possible goals. One might want to optimise coverage, for instance by satisfying constraints
such as “Each node receives at least one message every t time units”. This could be combined with the above goals, but we
leave that for future work.

6Notice that we now refer to a redundancy parameter because this quantity is no longer constant.
7Notice that the k default value in RPL is ten.
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6 Validation and Evaluation
In the following, we present tools used to evaluate our proposal and the main results of our findings.

Contiki [6] is a very lightweight operating system designed to run on constrained nodes, such as
sensors and actuators. It features a highly optimized networking stack, including standard protocols
such as IPv6, TCP, UDP, RPL and CoAP available under a Free Software license. We use Contiki for
the evaluation, because it comes with an implementation of Trickle timers.

Cooja [21] is a simulator for the Contiki operating system with an easy to use GUI. It is designed
to directly emulate binary code for several motes hardwares and to simulate several wireless networking
propagation models. Thus, the same exact binary code, produced by the Contiki toolchain, can be used
in the simulator and eventually implanted in a real device.

The FIT IoT-LAB testbed [1] is a scientific instrument for IoT research. It offers several large-
scale experimental platforms populated with numerous up-to-date IoT devices that can be configured
with existing IoT operating systems including Contiki. IoTlab proposes a remote access and configuration
interface and experiments run remotely through a batch system.

The algorithm presented in Section 5 has been implemented in Contiki. The experimental evaluation
was conducted using Cooja with a binary compiled for actual motes. Following these results we simplify
the algorithm to derive Trickle-D and run real experiments on the IoT-LAB testbed.

6.1 Experiment goals
We measure the overhead of our approach because, for instance, systematically transmitting at each
interval would achieve optimal fairness (J = 1), in a trivial way. However, this induces a very high
message count, and thus a high energy consumption. Therefore, we define the transmission load as the
sum of the total number of messages sent in the network, normalized by the number of Trickle intervals
of the simulation times the number of nodes.

We use two different topologies to see the two factors identified in Section 4. The first topology
is a complete graph, so that the only relevant cause of unfairness is desynchronization. The second
topology is a random network of fifteen synchronized nodes, to expose the topology related cause of
unfairness. Note that a real network would exhibit unfairness because of the two factors simultaneously.
However, we assess the impact of each of the factors separately to gain a better understanding of their
own contributions.

6.2 Complete graph with unsynchronized nodes
These experiments were conducted using a complete graph of five nodes, with each individual experiment
using a random phase between nodes (unsynchronized case). We compare the original Trickle algorithm
with our Trickle-d version. The results are presented in Figure 6, where we plot the transmission load
against the Jain index for each set of parameters. Each ellipse is the result of twenty experiments with
the exact same parameters, but a different random seed. The ellipse is centered on the average value
(transmission load; Jain index), and the size of ellipse expresses the standard deviation across the twenty
experiments. Our goal is to achieve a high fairness while keeping a low message count, so the better
result is in the lower-right corner of the graph. The Trickle-d algorithm achieves a high fairness (J ≈ 1)
for all parameters, while keeping the transmission load to a low value (0.55 < load < 0.8) similar to the
k = 3 constant case.

With the original Trickle algorithm, whenever k increases, both fairness and transmission load in-
crease. This is expected, since for large k, nodes will always transmit. Also note that the variation
in fairness is quite large for small k. This is the effect described in Section 4.1: when the nodes end
up roughly synchronized, fairness is good, but whenever they are too desynchronized, some nodes will
transmit much more than others. Since we take a random phase for twenty experiments, this introduces
a large variation.

The two oblong vertical ellipses on the right correspond to our Trickle-d algorithm. We notice that
the Jain index is very close to one, which indicates a perfectly fair network. The transmission load,
on the other hand, does not increase too much. Roughly, transmission load stays as in the static case
k = 3, but with a much higher fairness, which indicates that the algorithm improves the global control
behavior.
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6.3 Random topology with synchronized nodes
The topology was obtained by randomly placing fifteen nodes in a square, where each node has a fixed
radius of transmission. The resulting communication graph is shown in Figure 7. It features a cluster
with high density, a second smaller clique, and some nodes with very low degree.
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3

7

Figure 7: The random topology used for experiments.

On this topology, the same experiments described in Section 6.2 were run again in the constant case
k = 3 which was the best performing. Figure 8 visually assesses the properties of the Trickle-d algorithm.
The column height gives the overall transmission load (i.e., the number of messages sent by each node
during a single simulation) while colored rectangle surfaces depict each node transmission load. In the
Trickle-d dynamic case on the right, the transmission load is visually more equally distributed among
nodes, although the total number of messages is a little higher. However, from a lifetime point of view, the
improved algorithm load balance leads to an important gain by avoiding early breakdowns, for instance
in the constant case, using a bottom-up numbering, on nodes 1, 3, 4, 5, 7, 9, 10 and 11.

Similarly to Section 6.2, Figure 9 plots ellipse representation of the transmission loads against the
Jain index for this topology. The conclusions are the same, the Trickle-d algorithm achieves a high
fairness, while its message count stays in between the constant cases k = 2 and k = 4.

6.4 Impact of the kinit, kmin, kmax parameters
The goal here is to provide guidelines on how to choose the parameters for a given application, depending
on the desired redundancy and energy consumption. For this purpose, we study the transmission load for
different sets of parameters, either in the five-nodes complete network (Figure 10) and in the fifteen-nodes
random network (Figure 11).

kinit does not seem to influence at all (except a non-significative variation in the large kmax case of
the complete graph where the confidence interval is also the largest). This is interesting because it means
that our algorithm converges to the same results, whatever the initial conditions. This is also good news
in practice, because one can imagine choosing kinit at random on each node.
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k = 3 k dynamic in [2..16]

Figure 8: Typical message count per nodes repartition for k = 3 and k dynamically adjusted. Each node
is represented by a color and the rectangle surface is proportional to its transmission load.
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Figure 9: Trickle and Trickle-d algorithms comparison in a synchronized random network of fifteen nodes.
Each axis represents a performance metric: Jain fairness against transmission load.

For both topologies, if kmax is large enough, decreasing kmin decreases the message count. This is
an interesting information that tells kmin should be small to allow a lot of communications suppression
during the execution. In practice one can imagine setting kmin = 1.

For both topologies, the message count increases with increasing kmax from 6 to 16. This is an
expected behavior since a high value of k causes nodes to transmit more often. However, when decreasing
kmin, increasing kmax seems not to be significant.

6.5 Trickle-D: Algorithm modification following the results
We introduce our result trends from Section 6.4 in the Trickle-D algorithm described in Algorithm 2.
There is no longer application nor topology dependent parameters. The control loop is also applied when
Trickle suppresses a transmission, assuring much smoother modification of the k value.

6.6 Markov model of the Trickle-D algorithm
In this section, we provide a discrete-time Markov chain model of Algorithm 2. Let the state of

the chain S = {1, 2, . . . , 16} denote the current value of k. Let y denote the number of neighbors of
node i. In order to find the transition probabilities of the chain, we compute the k increment that is
equal to the difference between the number of received packets and the constant number of neighbors
of a node. The probability to stay in the current state is equal to the probability that this difference is
zero i.e., that node i received y packets during the interval. Hence, the chain will increment/decrement
its next interval state value following computed difference. Therefore, we are interested in finding the
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nRX = 0 //received messages counter//;
k = random()%16 //any value within results range//;
when receiving a packet

nRX++;
end
when sending a packet according to Trickle

nRX = 0;
kbase = k;

end
when sending a packet or suppressing a transmission according to Trickle

k = kbase + (nRX - neighbors#()) ;
k = min(k, 16) //large enough value// ;
k = max(k, 1) //smallest value// ;

end
Algorithm 2: Algorithm Trickle-D without any parameters. The k fixed range is determined from
section 6.4 results.

probability that exactly j transmissions occur before the timer of node i expires, when the decision to
transmit or suppress a transmission takes place. Let NT be a random variable that denotes the number
of transmissions that occurred. To find the probability P (NT = j), we resort to the model of Coladon et
al. [4] that calculates the average probability of transmission for a given node in an arbitrary topology
by setting up a system of N equations with N unknowns that can be numerically resolved, where N is
the total number of nodes in a network.

However, the model of Coladon et al. [4] assumes that during a node’s interval, each neighbor selects
exactly one transmission time, which is only true in synchronized networks. We therefore extend the
derivation in [4] in order to account for the fact that more than y packets can be received by a node with
y neighbors. Consider a node with a single neighbor – depending on the phase ϕ, 0, 1 or 2 transmission
times may occur during its interval. Assuming ϕ follows a uniform distribution in [0, 1], we can compute
the average probabilities P̂0, P̂1, P̂2 that 0, 1, or 2 transmission times occur during the node’s interval:

P̂0 = P̂2 =

∫ 1

0

ϕ(1− ϕ)dϕ =
1

6
, (11)

and

P̂1 =

∫ 1

0

ϕ2 + (1− ϕ)2 dϕ =
2

3
. (12)

Consequently, if a node has y neighbors, the probability P , that l transmission times occur during its
interval, can be computed. Let YN be a random variable that denotes the number of transmission times
that occur during a node’s interval and T be the set of different possibilities:

T = {(x1, ..., xy)|xi ∈ {0, 1, 2},∀1 ≤ i ≤ y,
y∑

i=1

xi = l}

Probability P (YN = l) is then:

P (YN = l) =
∑
B∈T

y∏
i=1

P̂Bi , l ∈ [0, 2y], Bi ∈ {0, 1, 2}. (13)

In order to derive the average probability of transmission of node i, Ptx[i], taking into account that
number of transmission times can be in [0, 2y], we define the conditional probability Ptx[i|YN = l]. This
probability can be calculated by replacing yi with l in the derivation of Ptx[i] in [4]. Then, Ptx[i] can be
found by conditioning on YN :

Ptx[i] =

2y∑
l=0

Ptx[i|YN = l]P (YN = l) (14)
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Similarly to [4], let T be the selected transmission time of node i, T ∈ [ 12I, I]. Then, let YT denote
the number of selected transmission times before T . YT can be shown, as in [4], to follow a binomial

distribution with parameters y and
T

I
. The probability that exactly m transmissions occur before the

timer of node i expires can then be found to be:

P (NT = m) =

2y∑
l=m

P (YN = l)

l∑
n=m

P (YT = n)×

1(
y

n

) ∑
B∈<

γ(m,n,B), (15)

where γ(m,n,B) is the probability that m nodes of the set B = {1, . . . , n} transmit before node i.
From [4], it is calculated as:

γ(m,n,B) =
∑

v=(i1,...,im)∈A

[

m∏
q=1

Ptx[v[q]]×

n∏
l=1,

l 6=i1,...,im

(1− Ptx[l])].

For details on the calculation of γ(m,n,B) and Ptx[i], the reader is referred to [4]. Taking into account
that the number of potentially received packets by a node is in [0, 2y], the transition probabilities pij of
the Markov chain are then:

pij =


∑y

l=i−1 P (NT = y − l), (i− 1) ≤ y, j = 1

P (NT = y − (i− j)), |i− j| ≤ y, j 6= 1, j 6= 16

1−
∑15

j=1 pij , ∀i, j = 16

0, elsewhere,

where i ∈ [1, 16] and j ∈ [1, 16].

6.7 Evaluation on a testbed
In order to evaluate the performance of our Trickle-D algorithm in realistic conditions, we used

several IoT-lab real platforms. We created three topologies using 15, 30 and 50 nodes8. For each node
we modified the wireless network power range to get different numbers of neighbors. The topologies were
created to have dense and sparse parts. Node degrees range from 1 to 22.

We compared our proposal against the “classic” version of the Trickle algorithm using several values
of the k parameter, as well as against the broadcast suppression solution proposed by Meyfroyt et al.
[20], in which case we vary the corresponding c parameter (see [20]). Each presented result is an average
of five runs. We compare these results with our protocols: Trickle-d with several parameter sets and
Trickle-D.

We present the fairness and transmission load results in Fig. 12. Both versions of our proposed
algorithm, with and without parameters, achieve Jain fairness indexes above 0.99, while keeping the
transmission load as low as the best of comparable other solutions. These experiments in real conditions
show that the Trickle-D algorithm is agnostic of the evaluated topology with always very good fairness
and low load, which is not the case with any of the other solutions. Compared to the state-of-the-art
algorithm of Meyfroyt et al. [20] (case α = 0.5), our solution emits 17.7% less messages while offering
fairness index above 0.99. Moreover, compared to the constant k classical Trickle (case k = 12), our
solution emits 37.2% less messages.

In order to analyse the behavior of the proposed solution with respect to node degrees, Fig. 13
shows average k value variations of five runs, as a function of the node degree, in experiments with a

8"M3 Open Nodes"[10], based on an ARM Cortex M3 micro-controller and an ATMEL radio.
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network of thirty nodes. "Classic" Trickle keeps the same value, fixed here with k = 4, for every node
regardless of its degree. Both solutions proposed in [20] and our Trickle-D in Section 6.5 increase k as
the node degree increases. The Trickle-D progression is similar to [20] with α = 1. With α = 0.5, [20]
progresses very slowly. However, our Trickle-D solution that intrinsically takes into account both the
number of received messages and the number of neighbors, adjusts the k value more smoothly. Moreover
the regular k progression obtained with Trickle-D as well as its very good load balance does not need
external knowledge nor any manual parameter adaptation. Note that all the experiments performed on
the testbed account for unsynchronized nodes, as we do not control interval synchronization.

7 Conclusion
We analyzed the issue of unfairness in the Trickle algorithm, both analytically and experimentally.
We introduced a control algorithm to improve fairness, that is based on received messages count and
dynamically adapts the redundancy parameter k.

The algorithm has been implemented in Contiki, and evaluated on different experimental conditions
in the Cooja emulator. Based on the feedback from the emulator, we derived a simplified version of
the algorithm called Trickle-D that we evaluated in realistic conditions using a large scale experimental
testbed.

The results show that Trickle-D achieves high fairness while keeping a low overhead compared with
the original Trickle algorithm and state-of-the-art related work. Thus, the energy consumption can be
balanced and the network lifetime maximized.

Our proposed algorithm acts on the redundancy parameter k but there are other parameters in Trickle
that could be used to change its behavior. Further work will aim at the function of deciding whether
to transmit or not. It is based on the number c of received messages acting as a threshold: transmit
when c < k, do not transmit when c ≥ k. We will investigate node transmission with a given probability
dependent on c and k. For instance, this probability could be linear with respect to (k − c) and could
also take into account different node priorities. Thus, even in a dense network, each node would still
have transmitting possibilities.
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Last, our results indicate long-term tendencies, but say nothing about the control impact on k
convergence speed, cyclic behavior or potential instabilities. In particular, most wireless networks are
dynamic, either because the nodes themselves move, or because the radio propagation conditions change
over time. In this case, convergence speed and dynamic matters and our dynamic approach may lead to
even much better improvements against the static ones.
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