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Introduction

Finite subgroups of SL 2 (C) are classically studied by Klein [START_REF] Klein | Lectures on the icosahedron and the solution of equations of the fifth degree[END_REF] and Du Val [START_REF] Du | Homographies, quaternions and rotations[END_REF]. A complete classification (up to conjugacy) is available : cyclic, binary dihedral, binary tetrahedral, binary octahedral and binary icosahedral. The last three types correspond to the groups of symmetries of Platonic solids 1 as the names indicate. Let G ⊂ SL 2 (C) be such a (non-trivial) finite subgroup acting naturally on the vector space V := C 2 . The quotient X := V/G has a unique rational double point 2 . Let f : Y → X be the minimal resolution of singularities:

V π Y f / / X
which is a crepant resolution, that is, K Y = f * K X . The exceptional divisor, denoted by E, consists of a bunch of (-2)-curves 3 .

The classical McKay correspondence ( [START_REF] Mckay | Graphs, singularities, and finite groups[END_REF], cf. also [START_REF] Reid | La correspondance de McKay[END_REF]) establishes an bijection between the set Irr (G) of non-trivial irreducible representations of G on the one hand and the set Irr(E) of irreducible components of E on the other hand :

Irr (G)
Irr(E) ρ → E ρ .

Thus E = ρ∈Irr (G) E ρ . Moreover, this bijection respects the 'incidence relations' : precisely, for any ρ 1 ρ 2 ∈ Irr (G), the intersection number (E ρ 1 • E ρ 2 ), which is 0 or 1, is equal to the multiplicity of ρ 2 in ρ 1 ⊗ V (hence is also equal to the multiplicity of ρ 1 in ρ 2 ⊗ V), where V is the 2-dimensional natural representation via G ⊂ SL(V). All these informations can be encoded into Dynkin diagrams of A-D-E type, which is on the one hand the dual graph of the exceptional divisor E and on the other hand the McKay graph of the non-trivial irreducible representations of G, with respect to the prefered representation V. Apart from the original observation of McKay, there are many approaches to construct this correspondence geometrically and to extend it to higher dimensions : K-theory of sheaves [START_REF] Gonzalez-Sprinberg | Construction géométrique de la correspondance de McKay[END_REF], G-Hilbert schemes [25], [START_REF] Ito | McKay correspondence and Hilbert schemes[END_REF], [START_REF] Ito | McKay correspondence and Hilbert schemes in dimension three[END_REF], [START_REF] Ito | Hilbert schemes and simple singularities[END_REF], motivic integration [START_REF] Victor | Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry[END_REF], [START_REF]Birational Calabi-Yau n-folds have equal Betti numbers[END_REF], [START_REF] Denef | Germs of arcs on singular algebraic varieties and motivic integration[END_REF], [START_REF]Motivic integration, quotient singularities and the McKay correspondence[END_REF], [START_REF] Yasuda | Twisted jets, motivic measures and orbifold cohomology[END_REF], [START_REF] Lupercio | The global McKay-Ruan correspondence via motivic integration[END_REF] and derived categories [START_REF] Bridgeland | The McKay correspondence as an equivalence of derived categories[END_REF] etc. We refer the reader to Reid's note of his Bourbaki talk [START_REF] Reid | La correspondance de McKay[END_REF] for more details and history.

Following Reid [25], one can recast the above McKay correspondence (the bijection) as follows: the isomorphism classes of irreducible representations index a basis of the homology of the resolution Y. This is of course equivalent to say that the conjugacy classes of G index a basis of the cohomology of Y. We remark that, which is the starting point of this paper, the quotient X = V/G has a natural orbifold structure, meaning that X underlies the smooth Deligne-Mumford stack X := [V/G], and the (co)homology of the coarse moduli space |IX| of its inertia stack IX has a basis indexed by the conjugacy classes of G. Thus Reid's McKay correspondence can be stated as an isomorphism of vector spaces:

H * (Y) H * (|IX|). Chen and Ruan defined in [START_REF] Chen | A new cohomology theory of orbifold[END_REF] the orbifold cohomology H * orb ([V/G]), whose underlying vector space is exactly the cohomology of |IX| ; the supplementary ingredient is that they can put a highly nontrivial (associative and commutative) ring structure, the so-called orbifold product, on this orbifold cohomology. See Definition 2.1 for a down-to-earth construction. Therefore it is natural to ask whether there is a multiplicative isomorphism (of algebras)

H * (Y) H * orb ([V/G]
). However none of aforementioned beautiful theories takes care of the multiplicative structures. Nevertheless, the existence of such an isomorphism of algebras is known. For example, it is a baby case of the result of Ginzburg-Kaledin [START_REF] Ginzburg | Poisson deformations of symplectic quotient singularities[END_REF] on symplectic resolutions of symplectic quotient singularities. An explicit formula is proposed by Bryan-Graber-Pandharipande in [START_REF] Bryan | The orbifold quantum cohomology of C 2 /Z 3 and Hurwitz-Hodge integrals[END_REF], which is used there to prove (a stronger version of) the C 2 /Z 3 case. We will also use this formula to construct our multiplicative isomorphism. This isomorphism fits perfectly into Ruan's following more general Cohomological Crepant Resolution Conjecture (CCRC) : Conjecture 1.1 (CCRC [START_REF] Ruan | The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds[END_REF]). Let M be a smooth projective variety endowed with a faithful action of a finite group G. Assume that the quotient X := M/G is Gorenstein then for any crepant resolution Y → X, there is an isomorphism of graded C-algebras:

(1) C) . More generally, given a smooth proper orbifold X with underlying singular variety X being Gorenstein, then for any crepant resolution Y → X, we have an isomorphism of graded C-algebras:

H * qc (Y, C) H * orb ([M/G],
H * qc (Y, C) H * orb (X, C) .
Here the left hand side is the quantum corrected cohomology algebra, whose underlying graded vector space is just H * (Y, C), endowed with the cup product with quantum corrections related to Gromov-Witten invariants with curve classes contracted by the crepant resolution, as defined in [START_REF] Ruan | The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds[END_REF]. Since we only consider in this paper the 2-dimensional situation, the Gromov-Witten invariants always vanish hence there are no quantum corrections involved. See Lemma 2.3 for this vanishing. Conjecture 1.1 suggests that one should consider the existence of such multiplicative McKay correspondence in the global situation (instead of a quotient of a vector space by a finite group), that is, a Gorenstein quotient of a surface by a finite group action, or even more generally a 2-dimensional proper Gorenstein orbifold. Our following main result confirms this, which also pushes the (surface) McKay correspondence to the motivic level: Theorem 1.2 (Motivic multiplicative global McKay correspondence). Let X be a smooth proper 2dimensional Deligne-Mumford stack with isolated stacky points. Assume that X has projective coarse moduli space X with Gorenstein singularities. Let Y → X be the minimal resolution. Then we have an isomorphism of algebra objects in the category CHM C of Chow motives with complex coefficients:

(2) h(Y) C h orb (X) C .
In particular, one has an isomorphism of C-algebras:

CH * (Y) C CH * orb (X) C ; H * (Y, C) H * orb (X, C) ; K(Y) C K orb (X) C ; K top (Y) C K top orb (X) C .
This result also confirms the 2-dimensional case of the so-called Motivic HyperKähler Resolution Conjecture studied in [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF] and [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF].

As the definitions of the orbifold theories are particularly explicit and elementary for the global quotient stacks (cf. §2.1), we deliberately treat the global quotient case ( §3) and the general case ( §4) separately.

Convention : All Chow rings are with rational coefficients unless otherwise stated. CHM is the category of Chow motives with rational coefficients. h : SmProj op → CHM is the (contravariant) functor that associates a smooth projective variety its Chow motive and a morphism its graph as correspondence. An orbifold means a separated Deligne-Mumford stack of finite type with trivial stabilizer at the generic point.

Acknowledgement :

The authors want to thank Cédric Bonnafé, Philippe Caldero, Jér ôme Germoni and Dmitry Kaledin for interesting discussions. The most part of the paper is prepared when L. Fu is staying with his family at the Hausdorff Institute of Mathematics for the trimester program on K-theory. He thanks Bonn University for providing the perfect working condition in HIM and the relaxing living style in such a beautiful city.

Crepant resolution conjecture

Let us briefly recall the construction of the orbifold Chow motive (as an algebra object) and the orbifold Chow ring. We will first give the down-to-earth definition for an orbifold which is a global Gorenstein quotient by a finite group ; then we invoke the techniques in [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] to give the construction in the general setting of Deligne-Mumford stacks. We refer to our previous work [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF] (joint with Charles Vial), [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF] as well as the original sources (for cohomology and Chow rings) [START_REF] Chen | A new cohomology theory of orbifold[END_REF], [START_REF] Fantechi | Orbifold cohomology for global quotients[END_REF], [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF], [START_REF] Jarvis | Stringy K-theory and the Chern character[END_REF] for the history and more details.

2.1. Orbifold theory : global quotient case. Let M be a smooth projective variety and G be a finite group acting faithfully on M. Assume that G preserves locally the canonical bundle : for any x ∈ M fixed by ∈ G, the differential D ∈ SL(T x M). This is equivalent to require that the quotient X := M/G has only Gorenstein singularities. Denote by M = x ∈ M | x = x the fixed locus of ∈ G, M ,h = M ∩ M h (with the reduced scheme structure) and X := [M/G] the quotient smooth Deligne-Mumford stack. Definition 2.1 (Orbifold theories). We define an auxiliary algebra object h(M, G) in CHM with G-action, and the orbifold motive h([M/G]) will be its subalgebra of invariants. The definitions for Chow rings and cohomology are similar.

(1 

( )| Z := r-1 j=0 j r rank(W j ),
where r is the order of , W j is the eigen-sub-bundle of the restricted tangent bundle TM| Z , for the natural automorphism induced by , with eigenvalue e 2πi r j . The age function is invariant under conjugacy.

(2 • ) We endow the direct sums

h(M, G) := ∈G h(M )(-age( )) CH * (M, G) := ∈G CH * -age( ) (M ) H * (M, G) := ∈G H * -2 age( ) (M ) K(M, G) := ∈G K(M )
with the natural G-action induced by the following action: for any , h ∈ G,

h : M -→ M h h -1
x → hx.

(3 • ) For any ∈ G, define V := r-1 j=0 j r [W j ] ∈ K 0 (M ) Q ,
whose virtual rank is age( ), where r and W j 's are as in (1 • ).

(

• ) For any 1 , 2 ∈ G, let 3 = -1 2 -1 4 
1 , we define the (virtual class of ) the obstruction bundle on the fixed locus M 1 , 2 by

(3) F 1 , 2 := V 1 M < 1 , 2 > + V 2 M < 1 , 2 > + V 3 M < 1 , 2 > + TM < 1 , 2 > -TM| M < 1 , 2 > ∈ K 0 M < 1 , 2 > Q .
(5 • ) The orbifold product orb is defined as follows: given , h ∈ G, let ι : M < ,h> → M be the natural inclusion.

• For cohomology:

orb : H i-2 age( ) (M ) × H j-2 age(h) (M h ) → H i+j-2 age( h) (M h ) (α, β) → ι * α| M < ,h> β| M < ,h> c top (F ,h )
• For Chow groups:

orb : CH i-age( ) (M ) × CH j-age(h) (M h ) → CH i+j-age( h) (M h ) (α, β) → ι * α| M < ,h> • β| M < ,h> • c top (F ,h )
• For K-theory:

orb : K(M ) × K(M h ) → K(M h ) (α, β) → ι ! α| M < ,h> • β| M < ,h> • λ -1 (F ∨ ,h ) • For motives: orb : h(M )(-age( )) ⊗ h(M h )(-age(h)) → h(M h )(-age( h)) is determined by the correspondence δ * (c top (F ,h )) ∈ CH dim M +dim M h +age( )+age(h)-age( h) (M × M h × M h ),
where δ : M < ,h> → M × M h × M h is the natural morphism sending x to (x, x, x). (6 • ) Finally, we take the subalgebra of invariants whose existence is guaranteed by the idempotent completeness of CHM :

h orb ([M/G]) := h (M, G) G ; CH * orb ([M/G]) := (CH * (M, G), orb ) G ; and similarly H * orb ([M/G]) := (H * (M, G), orb ) G ; K orb ([M/G]) := (K(M, G), orb ) G .
These are commutative Q-algebras and depend only on the stack [M/G] (not the presentation).

2.2. Orbifold theory : general case. Let X be a smooth proper orbifold with projective coarse moduli space X with Gorenstein singularities. Recall that under the Gorenstein assumption, the age function takes values in integers. Define the orbifold Chow motive and orbifold Chow group as follows:

h orb (X) := h(IX)(-age) := ⊕ i h(IX i )(-age i ), CH * orb (X) := CH * -age (IX) := ⊕ i CH * -age i (IX i ) ;
where the theory of Chow ring (with rational coefficients) as well as the intersection theory of a stack is the one developed by Vistoli in [START_REF] Vistoli | Intersection theory on algebraic stacks and on their moduli spaces[END_REF] ; the theory of Chow motives for smooth proper Deligne-Mumford stacks is the so-called DMC motives4 developed by Behrend-Manin in [START_REF] Behrend | Stacks of stable maps and Gromov-Witten invariants[END_REF] and reviewed in Toën [28, §2. First construction], which is proven in [START_REF] Toën | On motives for Deligne-Mumford stacks[END_REF]Theorem 2.1] to be equivalent to the usual category of Chow motives ; IX = i IX i is the decomposition into connected components while the age function age is the locally constant function whose value on IX i is age i which is Chen-Ruan's degree shifting number defined in [8, §3.2]. Let us also point out that Toën's second construction in [28, §3] of Chow motives of Delign-Mumford stacks is very close to the orbifold Chow motive defined above with the only difference being the age-shifting. Now the key point is to put a product structure on h orb (X) and CH * orb (X). Consider the moduli space K 0,3 (X, 0), constructed by Abramovich-Vistoli [START_REF] Abramovich | Compactifying the space of stable maps[END_REF], of 3-pointed twisted stable maps of genus zero with trivial curve class. It comes equipped with a virtual fundamental class [K 0,3 (X, 0)] vir ∈ CH dim X K 0,3 (X, 0) together with three (proper) evaluation maps: e i : K 0,3 (X, 0) → IX with target being the inertia stack ( [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF]). Note that in general, the evaluation morphism has target in a different stack, the rigidified cyclotomic inertial stack ([1, Section 3.4]). However, in the smooth orbifold case, one can prove that the evaluation morphisms of the degree 0 twisted stable maps land in the inertial stack [START_REF] Edidin | Logarithmic trace and orbifold products[END_REF]Section 1.3.1].

Pushing forward the virtual fundamental class gives the class

γ := (e 1 , e 2 , ě3 ) * [K 0,3 (X, 0)] vir ∈ CH dim X (IX 3 ),
where ě3 is the composition of the evaluation map e 3 and the involution IX → IX inverting the group element (cf. [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF]); and we are using again Visotli's Chow groups ( [START_REF] Vistoli | Intersection theory on algebraic stacks and on their moduli spaces[END_REF]). The orbifold product for the orbifold Chow ring is defined as the action of the correspondence γ:

CH * orb (X)× CH * orb (X) → CH * orb (X) CH * -age (IX)× CH * -age (IX) → CH * -age (IX) (α, β) → pr 3, * pr * 1 (α) • pr * 2 (β) • γ It can be checked (cf. [1, Theorem 7.4.1]
) that the age shifting makes the above orbifold product additive with respect to the degrees (otherwise, it is not!). Similarly, we can define the multiplicative structure on h orb (X) to be

γ ∈ CH dim X (IX 3 ) = Hom CHM h(IX)(-age) ⊗ h(IX)(-age), h(IX)(-age) = Hom CHM (h orb (X) ⊗ h orb (X), h orb (X)) .
Thanks to [1, Theorem 7.4.1], this product structure is associative. On the other hand, when X is a finite group global quotient stack, the main result of [21, §8] implies that the elementary construction in §2.1 actually recovers the above abstract construction.

Crepant resolution conjectures.

With orbifold theories being defined, we can speculate that a motivic or K-theoretic version of the Crepant Resolution Conjecture 1.1 should hold. But the problem is that in the definition of the quantum corrections, there is the subtle convergence property which is difficult to make sense in general for Chow groups / motives or for K-theory. Therefore, we will look at some cases that these quantum corrections actually vanish a priori : Case 1: Hyper-Kähler resolution. The first one is when the resolution Y is holomorphic symplectic, which implies that all (Chow-theoretic, K-theoretic or cohomological) Gromov-Witten invariants vanish (see the proof of [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF]Lemma 8.1]). In this case, we indeed have the following Motivic HyperKähler Resolution Conjecture (MHRC), proposed in [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF]: Conjecture 2.2 (MHRC [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF], [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF]). Let M be a smooth projective holomorphic symplectic variety endowed with a faithful symplectic action of a finite group G. If quotient X := M/G has a crepant resolution Y → X, then there is an isomorphism of algebra object in CHM C :

h(Y) h orb ([M/G]).
In particular, we have an isomorphism of graded C-algebras:

CH * (Y) C CH * orb ([M/G]) C .
Thanks to the orbifold Chern character isomorphism constructed by Jarvis-Kaufmann-Kimura in [START_REF] Jarvis | Stringy K-theory and the Chern character[END_REF], MHRC also implies the K-theoretic HyperKähler Resolution Conjecture of loc.cit. . Conjecture 2.2 is proven in our joint work with Charles Vial [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF] for Hilbert schemes of abelian varieties and generalized Kummer varieties and in [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF] for Hilbert schemes of K3 surfaces.

Case 2: Surface minimal resolution. The second one is the main purpose of the article, namely the surface case, i.e. dim(Y) = 2. In this case, the vanishing of quantum corrections is explained in the following lemma. Lemma 2.3. Let X be a surface with Du Val singularities and π : Y → X be the minimal resolution. Then the virtual fundamental class of M 0,3 Y, β is rationally equivalent to zero for any curve class β which is contracted by π.

Proof. Consider the forgetful-stabilization morphism

f : M 0,3 Y, β → M 0,0 Y, β .
By the general theory, the virtual fundamental class of M 0,3 Y, β is the pull-back of the virtual fundamental class of M 0,0 Y, β . However, the virtual dimension of M 0,0 Y, β is (β•K Y )+(dim Y-3) = -1 since π is crepant. Therefore, both moduli spaces have zero virtual fundamental class in Chow group, cohomology or K-theory.

Thanks to the vanishing of quantum corrections, the motivic version of the Crepant Resolution Conjecture 1.1 for surfaces is exactly the content of our main Theorem 1.2. See the precise statement in Introduction. We will first give the proof for stacks which are finite group quotients in §3, then the proof in the general case in §4.

Proof of Theorem 1.2 : global quotient case

In this section, we show Theorem 1.2 in the following setting: S is a smooth projective surface, G is a finite group acting faithfully on S such that the canonical bundle is locally preserved (Gorenstein condition), X := S/G is the quotient surface (with Du Val singularities) and Y → X is the minimal (crepant) resolution. We denote by L := 1(-1) the Lefschetz motive in CHM.

For any x ∈ S, let G x := { ∈ G | x = x} be the stabilizer. Let Irr(G x ) be the set of isomorphism classes of irreducible representations of G x and Irr (G x ) be that of non-trivial ones. We remark that by assumption, there are only finitely many points of S with non-trivial stabilizer.

Resolution side. We first compute the Chow motive algebra (or Chow ring) of the minimal resolution Y.

For any x ∈ S, we denote by x its image in S/G. The Chow motive of Y has the decomposition in CHM ( 4)

h (Y) h(S) G ⊕ x∈S/G ρ∈Irr (G x ) L x,ρ         h(S) ⊕ x∈S ρ∈Irr (G x ) Lx,ρ         G ,
where Lx,ρ is the Lefschetz motive corresponding to the irreducible component of the exceptional divisor over x, indexed by the non-trivial irreducible representation ρ of G x via the classical McKay correspondence. The product structure is determined as follows via the above decomposition, which is also part of the classical McKay correspondence. Let i x : {x} → S be the natural inclusion.

• h(S) ⊗ h(S)

δ S -→ h(S) is the usual product induced by the small diagonal of S 3 . • For any x with nontrivial stabilizer G x and any ρ ∈ Irr (G x ),

h(S) ⊗ Lx,ρ i * x -→ Lx,ρ
is determined by the class x ∈ CH 2 (S) = Hom(h(S) ⊗ L, L).

• For any ρ ∈ Irr (G x ) as above,

Lx,ρ ⊗ Lx,ρ -2i x, * ----→ h(S), is determined by -2x ∈ CH 2 (S). • For any ρ 1 ρ 2 ∈ Irr (G x ),
-If they are adjacent, that is, ρ 1 appears (with multiplicity 1) in the G x -module ρ 2 ⊗ T x S, then First of all, it is easy to see that age( ) = 1 for any element id of G, and age(id) = 0. By Definition 2.1,

Lx,ρ 1 ⊗ Lx,ρ 2 i x, * --→ h(S),
(6) h(S, G) = h(S) ⊕ ∈G id x∈S Lx, = h(S) ⊕ x∈S ∈G x id Lx, ,
where Lx, is the Lefschetz motive 1(-1) indexed by the fixed point x of .

Lemma 3.1 (Obstruction class).

For any , h ∈ G different from id, the obstruction class is

c ,h =      1 if = h -1 0 if h -1
Proof. For any id and any x ∈ S , the action of on T x S is diagonalizable with a pair of conjugate eigenvalues, therefore V in Definition 2.1 is a trivial vector bundle of rank one on S . Hence for any , h ∈ G different from id and x ∈ S fixed by and h, the dimension of the fiber of the obstruction bundle

F ,h at x is dim F ,h (x) = dim V (x) + dim V h (x) + dim V ( h) -1 (x) -dim T x S, which is 1 if h -1 and is 0 if = h -1 .
The computation of c ,h follows.

Once the obstruction classes are computed, we can write down explicitly the orbifold product from Definition 2.1, which is summarized in the following proposition.

Proposition 3.2. The orbifold product on h(S, G) is given as follows via the decomposition (6):

h(S) ⊗ h(S) δ S -→ h(S); h(S) ⊗ Lx, i * x -→ Lx, ∀ x = x; Lx, ⊗ L x, -1 i x, * --→ h(S).
where the first morphism is the usual product given by small diagonal; the second and the third morphisms are given by the class x ∈ CH 2 (S) and i x : {x} → S is the natural inclusion; all the other possible maps are zero.

The G-action on ( 6) is as follows by Definition 2.1:

• The G-action on h(S) is the original action.

• For any h ∈ G, it maps for any x ∈ S and id ∈ G x , the Lefschetz motive Lx, isomorphically to L hx,h h -1 .

The multiplicative correspondence.

With both sides of the correspondence computed, we can give the multiplicative McKay correspondence morphism, which is in the category CHM C of complex Chow motives. [START_REF] Bryan | The orbifold quantum cohomology of C 2 /Z 3 and Hurwitz-Hodge integrals[END_REF] Φ : h(S)

⊕ x∈S ρ∈Irr (G x ) Lx,ρ → h(S) ⊕ x∈S ∈G x id
Lx, , which is given by the following 'matrix by blocs':

• id : h(S) → h(S);

• For each x ∈ S (with nontrivial stabilizer G x ), the morphism

ρ∈Irr (G x ) Lx,ρ → ∈G x id
Lx, is the 'matrix' with coefficient 1

√ |G x | χ ρ 0 ( ) -2 • χ ρ ( ) at place (ρ, ) ∈ Irr (G x ) × (G x \{id})
, where χ denotes the character, ρ 0 is the natural 2-dimensional representation T x S of G x . Note that ρ 0 ( ) has determinant 1, hence its trace χ ρ 0 ( ) is a real number.

• The other morphisms are zero.

To conclude the main theorem, one has to show three things: (i) Φ is compatible with the G-action; (ii) Φ is multiplicative and (iii) Φ induces an isomorphism Φ G of complex Chow motives on G-invariants.

Lemma 3.3. Φ is G-equivariant.
Proof. The G-action on the first direct summand h(S) is by definition the same, hence is preserved by Φ| h(S) = id. For the other direct summands, since it is a matrix computation, we can treat the Lefschtez motives as 1-dimensional vector spaces: let E x,ρ be the 'generator' of Lx,ρ and e x, be the 'generator' of Lx, . Then the G-actions computed in the previous subsections say that for any x and any h ∈ G x , h.E x,ρ = E hx,hρ and h.e x, = e hx,h h -1

,
where hρ is defined in [START_REF] Behrend | Stacks of stable maps and Gromov-Witten invariants[END_REF].

Therefore

Φ(h.E x,ρ ) = Φ(E hx,hρ ) = 1 √ |G hx | ∈G hx χ ρ 0 ( ) -2 χ hρ ( ) e hx, = 1 √ |G x | ∈G x χ ρ 0 ( ) -2 χ hρ (h h -1 ) e hx,h h -1 = 1 √ |G x | ∈G x χ ρ 0 ( ) -2 χ ρ ( ) e hx,h h -1 = 1 √ |G x | ∈G x χ ρ 0 ( ) -2 χ ρ ( ) h.e x, = h.Φ(E x,ρ ),
where the third equality is a change of variable: replace by h h -1 , the fourth equality follows from the definition of hρ in (5) Proposition 3.4 (Multiplicativity). Φ preserves the multiplication, i.e. Φ is a morphism of algebra objects in CHM C .

Proof. The cases of multiplying h(S) with itself or with a Lefschetz motive Lx,ρ are all obviously preserved by Φ. We only need to show that for any x ∈ S with non-trivial stabilizer G x , the morphism

ρ∈Irr (G x ) Lx,ρ → ∈G x id Lx,
given by the matrix with coefficient 1

√ |G x | χ ρ 0 ( ) -2 • χ ρ ( ) at place (ρ,
) is multiplicative (note that the result of the multiplication could go outside of these direct sums to h(S)). Since this is just a matrix computation, let us treat Lefschetz motives as 1-dimensional vector spaces (or equivalently, we are looking at the corresponding multiplicativity of the realization of Φ for Chow rings): let E x,ρ be the 'generator' of Lx,ρ and e x, be the 'generator' of Lx, . Then the computations of the products in the previous two subsections say that:

E x,ρ 1 • E x,ρ 2 =            -2x if ρ 1 = ρ 2 ; x if ρ 1 , ρ 2 are adjacent; 0 if ρ 1 , ρ 2 are not adjacent; (8) e x, • e x,h =      x if = h -1 ; 0 if h -1 ; (9)
Therefore for any ρ 1 , ρ 2 ∈ Irr (G x ), we have

Φ(E x,ρ 1 ) • Φ(E x,ρ 2 ) = 1 |G x | ∈G x h∈G x χ ρ 0 ( ) -2 χ ρ 0 (h) -2 χ ρ 1 ( )χ ρ 2 (h) e x, • e x,h = 1 |G x | ∈G x χ ρ 0 ( ) -2 χ ρ 0 ( -1 ) -2 χ ρ 1 ( )χ ρ 2 ( -1 ) • x = 1 |G x | ∈G x (χ ρ 0 ( ) -2) χ ρ 1 ( )χ ρ 2 ( ) • x = 1 |G x |         ∈G x χ ρ 0 ⊗ρ 1 ( )χ ρ 2 ( ) -2 ∈G x χ ρ 1 ( )χ ρ 2 ( )         • x = ρ 0 ⊗ ρ 1 , ρ 2 -2 ρ 1 , ρ 2 • x = Φ E x,ρ 1 • E x,ρ 2
where the first equality is the definition of Φ (and we add the non-existent e x,1 with coefficient 0), the second equality uses (9) the orthogonality among e x, 's (i.e. Lx, 's), the third equality uses the fact that χ ρ 0 takes real value; the last equality uses all three cases of [START_REF] Chen | A new cohomology theory of orbifold[END_REF].

where ρ runs over the set Irr (G x ) of isomorphism classes of non-trivial irreducible representations and [ ] runs over the set of conjugacy classes of G x different from id.

As this is about a matrix, it is enough to look at the realization of [START_REF]Motivic integration, quotient singularities and the McKay correspondence[END_REF]:

ρ∈Irr (G x ) E x,ρ →               ∈G x id e x,               G x
, where both sides come equipped with non-degenerate quadratic forms given by intersection numbers and degrees of the orbifold product respectively. More precisely, by ( 8) and ( 9):

(E x,ρ 1 • E x,ρ 2 ) =            -2 if ρ 1 = ρ 2 ; 1 if ρ 1 , ρ 2 are adjacent; 0 if ρ 1 , ρ 2 are not adjacent; (e x, • e x,h ) =      1 if = h -1 ; 0 if h -1 ;
which are both clearly non-degenerate. Now Proposition 3.4 shows that our matrix [START_REF] Du | Homographies, quaternions and rotations[END_REF] respects the non-degenerate quadratic forms on both sides, therefore it is non-degenerate.

Let us note here also an elemetary proof which does not use the orbifold product. We first remark that for any id, ρ 0 ( ) ∈ SL 2 (C) which is of finite order and different from the identity, hence its trace χ 0 ( ) 2. Therefore the non-degeneratedness of the matrix ( 11) is equivalent to the non-degeneratedness of the matrix χ ρ ( )

(ρ,[ ])
, which is obtained from the character table of the finite group G x by removing the first row (corresponding to the trivial representation) and the first column (corresponding to id ∈ G x ). The non-degeneratedness of this matrix is a completely general fact, which holds for all finite groups. We will give a proof in Lemma 3.6 at the end of this section.

The combination of Lemma 3.3, Proposition 3.4 and Proposition 3.5 proves the isomorphism of algebra objects (2) in the main Theorem 1.2 in the global quotient case. For the isomorphisms for the Chow rings and cohomology rings, it is enough to apply realization functors. For the isomorphisms for the K-theory and topological K-theory, it suffices to invoke the construction of orbifold Chern characters in [START_REF] Jarvis | Stringy K-theory and the Chern character[END_REF] which induce isomorphisms of algebras from (orbifold) K-theory to (orbifold) Chow ring as well as from (orbifold) topological K-theory to (orbifold) cohomology ring. The proof of Theorem 1.2 in the global quotient case is now complete.

The following lemma is used in the second proof of Proposition 3.5. The elegant proof below is due to Cédric Bonnafé. We thank him for allowing us to use it. Recall that for a finite group G, its character table is a square matrix whose rows are indexed by isomorphism classes of irreducible complex representations of G and columns are indexed by conjugacy classes of G. Lemma 3.6. Let G be any finite group. Then the matrix obtained from the character table by removing the first row corresponding to the trivial representation and the first column corresponding to the identity element, is non-degenerate.

Proof. Denote by 1 the trivial representation and by ρ 1 , • • • , ρ n the set of isomorphism classes of non-trivial representations of G. Suppose we have a linear combination n i=1 c i χ ρ i , with c i ∈ C, which vanishes for all non-identity conjugacy class, hence for all non-identity elements of G:

(12) n i=1 c i χ ρ i ( ) = 0, ∀ id ∈ G. Set c 0 := - 1 |G| n i=1 c i dim(ρ i ),
and denote by χ re be the character of the regular representation, then [START_REF] Edidin | Logarithmic trace and orbifold products[END_REF] implies that the following linear combination vanishes for all ∈ G:

c 0 χ re + n i=1 c i χ ρ i = 0.
If c 0 0, it contradicts to the fact that the trivial representation should appear (with multiplicity 1) in the regular representation. Hence we have c 0 = 0. Then by the linear independency among the characters of irreducible representations, we must have

c 1 = • • • = c n = 0.
4. Proof of Theorem 1.2 : general orbifold case

In this section, we give the proof of Theorem 1.2 in the full generality. As the proof goes essentially in the same way as the global quotient case in §3, we will focus on the different aspects of the proof and refer to the arguments in §3 whenever possible.

Recall the setting: X is a two-dimensional Deligne-Mumford stack with only finitely many points with non-trivial stabilizers ; X is the underlying (projective) singular surface with only Du Val singularities and Y → X is the minimal resolution. For each x ∈ X, denote by G x its stabilizer, which is contained in SL 2 .

Throughout this section, Chow groups of stacks are as in [START_REF] Vistoli | Intersection theory on algebraic stacks and on their moduli spaces[END_REF] and Chow motives of stacks or singular Q-varieties are as in [28, §2] Lx,ρ and the multiplication is the following:

• h(X) ⊗ h(X) δ X --→ h(X)
is the usual intersection product.

• For any ρ ∈ Irr (G x ), h(X) ⊗ Lx,ρ i *

x -→ Lx,ρ is given by the class x ∈ CH 2 (X) = Hom(h(X) ⊗ L, L).

• For any ρ ∈ Irr (G x ), Lx,ρ ⊗ Lx,ρ -2i x, * ----→ h(X), is determined by -2x ∈ CH 2 (X). • For any ρ 1 ρ 2 ∈ Irr (G x ), -If they are adjacent, that is, ρ 1 appears (with multiplicity 1) in the G x -module ρ 2 ⊗ C 2 , where C 2 is such that C 2 /G x is the singularity type of x, then Lx,ρ 1 ⊗ Lx,ρ 2 i x, * --→ h(X), is determined by x ∈ CH 2 (X).

-If they are not adjacent, then Lx,ρ 1 ⊗ Lx,ρ 2 0 -→ h(X) is the zero map. • The other multiplication maps are zero. 4.2. Orbifold side. Similar to (6), we have [START_REF] Fu | Motivic Hype-Kähler Resolution Conjecture : II. Hilbert schemes of K3 surfaces[END_REF] h(X) = h(X)

⊕ x∈X               ∈G x id Lx,               G x
, where the action of G x is by conjugacy.

Note that degree 0 twisted stable maps with 3 marked points to X are either untwisted stable maps to X or a twisted map to one of the stacky points of X. In the latter case, the irreducible components of the moduli space around these twisted stable maps and the obstruction bundle are the same as those of the twisted stable maps to the orbifold [C 2 /G]. It is then clear that the orbifold product can be described as if X is a global quotient. Therefore the orbifold product on h(X) is given by the following, via (14):

• h(X) ⊗ h(X) δ S -→ h(X) is the usual intersection product.

• For all ∈ G x , h(X) ⊗ Lx, • For all ∈ G x , Lx, ⊗ L x, -1 i x, * --→ h(X) determined by the class of x ∈ X.

• The other multiplication maps are zero. 4.3. The multiplicative isomorphism. Similar to [START_REF] Bryan | The orbifold quantum cohomology of C 2 /Z 3 and Hurwitz-Hodge integrals[END_REF], we define [START_REF] Fu | Motivic Hyper-Kähler Resolution Conjecture : I. Generalized Kummer varieties[END_REF] φ : h(X)

⊕ x∈X ρ∈Irr (G x ) Lx,ρ → h(X) ⊕ x∈X ∈G x id
Lx, , which is given by the following 'matrix by blocs':

• id : h(X) → h(X);

• For each x ∈ X (with nontrivial stabilizer G x ), the morphism

ρ∈Irr (G x ) Lx,ρ → ∈G x id
Lx, is the 'matrix' with coefficient 1 √ |G x | χ ρ 0 ( ) -2 • χ ρ ( ) at place (ρ, ) ∈ Irr (G x ) × (G x \{id}), where χ denotes the character, ρ 0 is the natural 2-dimensional representation C 2 of G x such that C 2 /G x is the singularity type of x. Note that ρ 0 ( ) has determinant 1, hence its trace χ ρ 0 ( ) is a real number.

• The other morphisms are zero.

- 3 . 2 .

 32 is determined by x ∈ CH 2 (S). If they are not adjacent, then Lx,ρ 1 ⊗ Lx,ρ 2 0 -→ h(S) is the zero map. • The other multiplication maps are zero. The G-action on (4) is as follows: • The G-action of h(S) is induced by the original action on S. • For any h ∈ G, it maps for any x ∈ S and ρ ∈ Irr (G x ), the Lefschetz motive Lx,ρ isomorphically to L hx,hρ , where hρ ∈ Irr (G hx ) is the representation which makes the following diagram commutes: Orbifold side. Now we compute the orbifold Chow motive algebra (or Chow ring) of the quotient stack [S/G]. The compute is quite straight-forward. Here L := 1(-1) is the Lefschetz motive.

  .

4. 1 .

 1 Resolution side. Similar to (4), we have the following decomposition given by the classical McKay correspondence (see Introduction): (13) h(Y) h(X) ⊕ x∈X ρ∈Irr (G x )

  Lx, determined by the class of x ∈ X.

DMC stands for Deligne-Mumford Chow.
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