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Abstract

In this paper, we present DPN-SOG, a software tool written in C++ for fault diag-
nosis of discrete event systems modeled by bounded labeled Petri nets. DPN-SOG (for
Diagnosability analysis of Petri Nets using Symbolic Observation Graphs) implements
the semi-symbolic diagnoser approach developed in [1, 2] for fault diagnosis of bounded
labeled Petri nets. The implemented approach aims to cope with some limitations of the
classic diagnoser-based approaches, namely the state-space explosion problem, the inter-
mediate models and the double-checking procedure for diagnosability analysis. The key
features of DPN-SOG are: (i) the on-the-fly building of the diagnoser and analysis of di-
agnosability, (ii) the generation of only the necessary part of the diagnoser to perform the
diagnosability analysis and online diagnosis, and (iii) the evaluation of the time/memory
consumption for the construction of the diagnoser and the analysis of diagnosability.
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1 Introduction

Fault detection and diagnosis (FDD) is a crucial and challenging task, essentially in guaran-
teeing the reliable, safe and correct operation of complex engineered systems. To fulfill such
requirements, developing effective monitoring techniques becomes essential starting from the
design phase of the system. In particular, having efficient tools for monitoring and diagno-
sis is of great interest since this prevents or at least minimizes the failure-related down-times,
especially in safety-critical systems.

From the theoretical point of view and at a high level of abstraction, discrete event systems
(DES) [3], are quite suitable for fault diagnosis for a wide range of applications because of the
formal basis offered by the state/transition models and their associated algorithms [4].

The early works that addressed fault diagnosis issues mostly considered finite-state automata
(FSA) (the reader can refer to the recent survey [5]). Afterwards, fault diagnosis issues have
also been dealt with the Petri nets (PNs) framework (an overview on PNs fault diagnosis is
given in [6]).

Several software tools have been developed by the DES research community for the fault
diagnosis purposes. In the context of FSA, one may consider Desuma [7] as the reference tool
for dealing with FSA fault diagnosis. In fact, Desuma is a software developed at Michigan
University. It integrates the Umdes (with a GUI for visualization) library, which is is a library
of C routines for studying FSA. Desuma allows the user to perform a variety of manipulations
on FSA, such as model editing, diagnosability analysis for permanent and intermittent faults,
control under full and partial observation, and decentralized control.

The Libfaudes library [8] is a C++ implementation designed for the analysis and synthesis
of DES. Recently, it was endowed with new modules for fault diagnosis of FSA. Then, it allows
analyzing event and language-diagnosis, decentralized and modular diagnosis. Some application
examples are also given for the purpose of illustration.

Deslab [9] is a scientific computing program written in Python, for the development of
algorithms for analysis and synthesis of FSA. It allows for the analysis of diagnosability using the
verifier approach [10]. Some further tools that deal with fault diagnosis of FSA are: DiaDes,
Dito, Medito1 and Decada2.

Unlike fault diagnosis of FSA, fault diagnosis of Petri net models (PNs) unfortunately lacks
of tools that put the developed theory to practice. Only few tools are developed in the field.

Pn Diag/Pn Diag Unb/Pn Diag Disc [11, 12] are Matlab toolboxes, developed at the
University of Cagliari, for the analysis of bounded/unbounded and decentralized labeled Petri
nets (LPNs), respectively. Pn Diag/Pn Diag Disc are now integrated in the DISC software
platform3 [13].

Of-Penda [14] is a software tool for LPN fault diagnosis4. It allows for checking diagnos-
ability and K/Kmin−diagnosability using an on-the-fly and incremental approach.

We introduce here DPN-SOG5, a software tool written in C++ for fault diagnosis of bounded
LPNs. It consists in a re-implementation of ObsGraph tool [15], which is used for the verifica-
tion of PNs using an on-the-fly model-checker based on the symbolic observation graphs. DPN-
SOG implements the semi-symbolic diagnoser based approach developed in [1, 2] and allows
for (i) analyzing on-the-fly diagnosability, (ii) generating a sufficient part of a semi-symbolic

1http://homepages.laas.fr/ypencole/softwares.html
2http://www.eng.iastate.edu/rkumar
3The software platform is being developed within the FP7 European project DISC ‘Distributed supervisory

control of complex plants’ (See: http://www.disc-project.eu/).
4Of-Penda is developed at Ecole Centrale de Lille and IFSTTAR
5DPN-SOG is available from the authors upon request
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diagnoser that can be used for online diagnosis and (iii) evaluating the required time/memory
for the simultaneous generation of the diagnoser and the analysis of diagnosability.

The reminder of this paper is organized as follows. Section 2 briefly introduces some LPN
notations and diagnosability analysis. Section 3 discusses the semi-symbolic diagnoser approach
implemented in the tool. In Section 4, we present the features of DPN-SOG. Then, some
experiments are performed on the basis of a Petri net benchmark to show the efficiency of
DPN-SOG in Section 5. Finally, some concluding remarks are given in Section 6.

2 Preliminaries

2.1 Labeled Petri Net Modeling

Before going any further, we assume that the reader is familiar with Petri nets theory [16] and
fault diagnosis of DES [17].

A Petri net is a structure N = (P, T, Pre, Post), where P is a finite set of places; T is a
finite set of transitions; Pre and Post are the pre- and post-incidence mappings, respectively.
C = Post − Pre is the incidence matrix. A marking is a vector m ∈ N|P | that assigns a
non-negative integer to each place. We denote by m(p) the marking of a place p. A marked
PN (N,m0) is a PN N with a given initial marking m0 (it will be called PN in the sequel).

A transition ti is enabled at marking m, denoted by m[ ti >, if m(p) ≥ Pre(p, ti),∀p ∈ P . A
transition ti enabled at m can fire, yielding to a marking m′ = m+C ·(·, ti), where ~ti ∈ {0, 1}|T |
is a vector in which only the entry associated with transition ti is equal to 1. Then, m′ is said
to be reachable from m by firing ti, denoted by m [ ti > m′. Moreover, a sequence of transitions
s = t1t2 . . . tk brings m to marking m′′, denoted by m [ s > m′′, if (∃m1,m2, · · · ,mk−1)(m [ t1 >
m1 [ t2 > · · · mk−1 [ tk > m′′). m′′ can be computed by m′′ = m + C · π(s) and denoted by

m [ s > m′′, where π(s) =
∑k
i=1

~ti is called the firing vector relative to s. A marking m is
reachable in (N,m0) if and only if there exists a firing sequence s such that m0 [s > m. The
set of all markings reachable from m0 defines the reachability set of (N,m0) and is denoted by
R(N,m0).

A PN (N,m0) is bounded if the number of tokens in each place does not exceed a finite
number b ∈ N for any marking reachable from m0. Formally, ∃ b ∈ N s.t. ∀m ∈ R(N,m0),∀p ∈
P : m(p) ≤ b. A PN is live if, no matter what marking has been reached fromm0, it is possible to
fire any transition of the net by progressing through some further firing sequence [16]. Formally,
∀m ∈ R(N,m0),∀t ∈ T, ∃s ∈ T ∗ : m [ s.t >.

A labeled Petri net (LPN) is a tuple NL = (N,m0,Σ, ϕ), where (N,m0) is a marked PN,
Σ is a finite set of events (i.e., labels) and ϕ : T → Σ is the transition labeling function. ϕ
is also extended to sequences of transitions, ϕ : T ∗ → Σ∗. The language generated by NL is
L(NL) = {ϕ(s) ∈ Σ∗ | s ∈ T ∗, m0 [ s >}. For short, we write L instead of L(NL). Also, one
should notice that various transitions can share the same event label, i.e., ϕ is not bijective.
We denote by Tσ the set of transitions sharing the same event σ, i.e., Tσ = {t ∈ T : ϕ(t) = σ}.

2.2 Diagnosability of LPNs

Due to the partial observability, the set of transitions is partitioned as T = To ] Tu, where To
is the set of observable transitions, and Tu is the set of unobservable transitions. The set of
unobservable transitions is also partitioned into two subsets Tu = Tf ] Treg where Tf is the set
of fault transitions while Treg includes the regular (i.e., non-faulty) unobservable transitions.
As we deal with labeled Petri nets, the event set Σ can also be partitioned into two disjoint sets,
Σ = Σo ]Σu, where Σo is a finite set of observable events and Σu is a finite set of unobservable
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events. Fault events denoted by set Σf are unobservable, thus Σf ⊆ Σu. Moreover, the
set of unobservable events can be partitioned into two disjoint sets, Σu = Σf ] Σreg, where
Σreg = Σu\Σf is the set of regular unobservable events, i.e., non-faulty unobservable events.
In addition, the set of fault events Σf can be further partitioned into various fault classes, i.e.,
Σf =

⊎m
i=1 Σfi , where Σfi(i = 1, 2, . . . ,m) denotes the ith class of faults.

Let Po : Σ∗ → Σ∗o be the projection mapping which erases the unobservable events in any
given sequence u ∈ Σ∗. The inverse projection operator P−1oL is defined as P−1oL (v) = {u ∈
L | Po(u) = v} for v ∈ Σ∗o. Given a live and prefix-closed language L ⊆ Σ∗ and an event-
sequence u ∈ L, the post-language of L upon u denoted by L/u is L/u = {v ∈ Σ∗| uv ∈ L}.
We denote by |u| the length of event sequence u, and the ith event of u by ui. Also, for a ∈ Σ
and u ∈ Σ∗, we write a ∈ u if ∃ i s.t. ui = a. By abuse of notation, we note Σfi ∈ u to indicate
that ∃fi ∈ Σfi s.t. fi ∈ u. Without loss of generality, in the sequel we will consider one single
fault class Σf .

Definition 1. (Diagnosability of LPNs)
A given LPN NL is diagnosable w.r.t. fault class Σf and projection Po if:
(∃ n ∈ N) (∀u ∈ L, u|u| ∈ Σf ) (∀v ∈ L/u):

|Po(v)| ≥ n⇒ [∀ω ∈ P−1oL (Po(uv)) : Σf ∈ ω] �

The above definition means that an LPN is diagnosable if for every trace u ending with a
fault event (which corresponds to a fault transition) of type Σf , and for any sufficiently long
continuation v of u, all traces ω having the same observable projection of uv contain at least
one fault event. In other words, diagnosability of an LPN implies that each occurrence of a
fault can be detected after a finite number of transition firings.

In what follows, we make the following assumptions:

• The LPN is deadlock-free and bounded;

• The LPN has no executable cycle of unobservable transitions and fault are assumed to be
permanent.

3 The implemented approach in DPN-SOG

On the basis of the behavioral representation of PNs, diagnoser-based approaches are considered
as the principal techniques which deal with both diagnosability analysis and online diagnosis.
Nevertheless, these approaches mainly suffer from the following issues: (i) the state-space ex-
plosion problem that arises when constructing the diagnoser (i.e., exponential complexity) (ii)
the use of intermediate models for constructing the diagnosers, which increases the time/mem-
ory consumption (e.g. the generator in [17], MBRG in [18] and FM-graph in [19], etc.) and (iii)
the double-checking procedure that consists in one verification step upon the diagnoser (i.e.,
the existence of F -uncertain cycles) and the other step is performed upon the the generator or
the system model (i.e., checking whether the F -uncertain cycle is an F -indeterminate one or
not). Such a procedure highly increases the verification time.

The implemented approach in DPN-SOG aims to cope with the above-mentioned limitations
of the diagnoser-based approaches. In fact, the approach allows for analyzing diagnosability of
bounded LPNs and performing online diagnosis on the basis of a deterministic graph called SSD,
for ‘Semi-Symbolic Diagnoser ’, derived directly from the PN model. The SSD has a particular
structure, which consists in separating normal markings from faulty ones in each diagnoser
node and encoding the two obtained subsets as BDDs (Binary Decision Diagrams). This aims,
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in one hand, at reducing the memory requirements for saving the diagnoser and, on the other
hand, at speeding up the verification process. On the basis of this structure, the approach
uses a systematic procedure to check the necessary and sufficient condition for diagnosability
using only the SSD with no need for any intermediate model, as it is the case of most existing
diagnoser-based approaches, e.g., [17, 18, 19]. Moreover, the approach is based on an on-the-
fly algorithm for simultaneously constructing the SSD and analyzing diagnosability. Thus, for
non-diagnosable models, the verification process is interrupted as soon as the necessary and
sufficient condition for diagnosability is violated, without building and analyzing the whole
state-space of the SSD. In addition, in the case of diagnosable models, the approach generates
only a part of diagnoser, which is sufficient for performing online diagnosis.

The implemented approach is inspired from the so-called symbolic observation graph, shortly
SOG [20, 15]. The SOG was introduced as an abstraction of the reachability graph of concurrent
systems and it was proved that the verification of an event-based formula of LTL/X on the SOG
is equivalent to its verification on the reachability graph [15]. The main idea is to combine on-
the-fly the construction and the compact representation (using BDD techniques) of the graph,
in order to check LTL/X properties over finite systems. In what follows, we briefly present the
SSD approach implemented in DPN-SOG.

3.1 The Semi-Symbolic Diagnoser

We introduce the following notations to define the SSD:

• Given a subset of transitions T ′ ⊆ T , we define EnableT ′(m) = {t ∈ T ′ | m [ t >}, as
the set of transitions in T ′ that are enabled at marking m. The extension to a subset of
markings M ′ ⊆ R(N,m0), is EnableT ′(M

′) =
⋃
m∈M ′EnableT ′(m).

• Given a subset of markings M ⊆ R(N,m0) and a transition t ∈ T , we define Img(M, t) =
{m′ ∈ R(N,m0) | ∃m ∈ M : m [ t > m′} as the set of markings reachable from the
markings in M by firing transition t. The generalization to a subset of transitions T ′ ⊆ T
is Img(M ′, T ′) =

⋃
t∈T ′ Img(M ′, t).

• Given a marking m ∈ R(N,m0) and a subset of transition T ′ ⊆ T , we define
ReachT ′(m) = {m} ∪ {m′ ∈ R(N,m0)|(∃s ∈ T ′∗) : m [ s > m′} as the set of markings
reached by firing a sequence of transitions in T ′ from marking m (will be used particu-
larly for the unobservable reachability). The generalization of this notion to a subset of
markings M ⊆ R(N,m0) is ReachT ′(M) =

⋃
m∈M ReachT ′(m).

3.1.1 The Structure of the diagnoser node

In order to capture the main feature for analyzing diagnosability, which is to keep tracking
the ambiguous behavior of the system, i.e., normal and faulty executions that share the same
observable event sequence, each node in the SSD is partitioned into two subsets of markings,
each of them is encoded using a BDD.

1. the set of normal markings (denoted by MN ), which is the subset of markings in the
node that are reachable by firing fault-free sequences.

2. the set of faulty markings (denoted byMF ), which is the subset of markings in the node
that are reachable by firing faulty sequences.
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Figure 1: The general structure of the SSD node

Moreover, there may exist some faulty transitions that link some markings in MN to some
others in MF within the same node. The existence of such transitions is also encoded within
each node using a Boolean variable. The general structure of the diagnoser node is depicted
in Figure 1. Actually, such a node structure can be advantageously explored for rendering
diagnosability analysis more efficient than using the classical structure of diagnosers [17, 21].

One can differentiate between three types of nodes:

• N-certain diagnoser node: is a diagnoser node with an empty set of faulty markings
(MF = ∅);

• F-certain diagnoser node: is a diagnoser node with an empty set of normal markings is
empty (MN = ∅);

• F-uncertain diagnoser node: is a diagnoser node for which neither the normal set, nor the
faulty set of markings, is empty, i.e., MN 6= ∅ and MF 6= ∅.

To simplify the notation, we use a.MN (resp. a.MF ) to indicate the set of normal markings
MN (resp. set of faulty markings MF ) of a given diagnoser node a.

The SSD can be defined as a directed deterministic graph, where each node is composed of
two BDDs encoding respectively, its subset of normal and faulty markings, while the arcs are
labeled by observable events only.

Definition 2. (Semi-Symbolic Diagnoser)
The SSD associated with an LPN NL is a directed deterministic graph D = 〈Γ,Σo, δD,Γ0〉,

where:

1. Γ is a finite set of diagnoser nodes;

2. Σo is a finite set of events associated with LPN NL;

3. Γ0 is the initial diagnoser node with:

a) Γ0.MN = ReachTreg (m0);

b) Γ0.MF = ReachTu(Img(Γ0.MN , Tf )).

4. δD : Γ× Σo → Γ is the transition relation, defined as follows:

∀a, a′ ∈ Γ, σ ∈ Σo: a
′ = δD(a, σ)⇔

a′.MN = ReachTreg
(Img(a.MN , Tσ)) ∧

a′.MF = ReachTu
(Img(a′.MN , Tf ) ∪ Img(a.MF , Tσ)). �
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3.2 Diagnosability Analysis

The authors in [17] have established a necessary and sufficient condition for diagnosability on
the basis of the generator/diagnoser models. The same condition has been reformulated in [18]
for analyzing diagnosability of bounded LPNs.

In the SSD approach, a necessary and sufficient condition for diagnosability is formulated on
the basis of the SSD structure and a systematic procedure for checking such a condition on the
fly and directly upon the diagnoser is developed. These main features rely on some theoretical
results that are briefly recalled in what follows. It should be noticed that for the sake of space,
all proofs of propositions and theorems introduced in this section are omitted and can be found
in [2].

Proposition 1. Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =
a(i+1)modn for 1 ≤ i ≤ n. Then, there exists at least one fault-free cycle in LPN NL that
shares the same observation (σ1, σ2, . . . , σn)∗. �

This result is interesting for checking F -indeterminate cycles, using any diagnoser-based
approach. It is, in fact, sufficient to check that an F -uncertain cycle in the diagnoser corresponds
to a faulty cycle in the original model (or the intermediate model), without needing to check
the existence of a faulty-free cycle.

3.2.1 Necessary and Sufficient Condition

In the SSD approach, the necessary and sufficient condition for diagnosability is established on
the basis of the notion of ‘indicating sequence’, which is associated with the F -uncertain cycles.

Definition 3. (c`-indicating sequence)
Let c` = a1, a2, . . . , an be an F -uncertain cycle in D (the starting node a1 can be arbitrarily

chosen in the cycle), with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n. c`-indicating sequence

ρc` = S1,S2, . . . , is an infinite sequence of sets of markings, such that:
− S1 = a1.MF ;
− ∀ i > 1 : Si = ReachTu

(Img(Si−1, Tσ(i−1)modn
)). �

In fact, the c`-indicating sequence tracks the subsets of faulty markings in each node of
c` without considering the faulty markings generated through the occurrence of some faulty
transitions outgoing from the normal set of markings in the traversed nodes (except for S1
which holds all the faulty markings of a1.MF , i.e., S1 = a1.MF ).

Theorem 1. For an F -uncertain cycle c` = a1, a2, . . . , an in D, and ρc` = S1,S2, . . . its
corresponding c`-indicating sequence. Then, c` is an F -indeterminate cycle if and only if ∀i ∈
N∗ : Si 6= ∅. �

Actually, Theorem 1 states that an F -uncertain cycle is an F -indeterminate one if the
c`-indicating sequence does not reach an empty fixed-point (see [2]).

3.2.2 A Procedure for Checking Diagnosability

For the actual verification of diagnosability, a systematic procedure is derived directly from
Theorem 1 and can be performed as follows:

When an F -uncertain cycle c` is found in SSD D, then:

1. generate the successive elements of c`-indicating sequence ρc` (starting from S1), and for
each element Si check the following conditions:
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(a) if Si = ∅, then cycle c` is not an F -indeterminate cycle and therefore the procedure
is stopped;

(b) else, if Si 6= ∅ and ∃k ∈ N : i = 1 + kn (with n = |c`|), then:

i. if Si = S(i−n), then cycle c` is an F -indeterminate cycle and stop the procedure;

ii. else continue.

This procedure is repeated on each F -uncertain cycle generated on the fly in D.

4 Features of DPN-SOG tool

DPN-SOG consists in a modified and re-implemented version of ObsGraph tool [15], which
is a BDD-based tool implementing various verification approaches for workflows/PNs using
symbolic observation graph through an on-the-fly model-checker.

DPN-SOG is a command-line software tool developed in C++ programming language (avail-
able for Linux). It integrates the BDD package Buddy [22] which is used for symbolic manip-
ulation of automata and other computation models. Actually, DPN-SOG takes as inputs: (i)
the LPN models in prod format [23], (ii) the bound k of the net as an integer and (iii) a text
file which specifies the sets of observable, non-observable and faulty transitions. Using these in-
gredients, DPN-SOG builds on the fly the SSD and simultaneously analyzes the diagnosability.
When the LPN model is non-diagnosable, DPN-SOG outputs the generated part of the diag-
noser as well as a witness diagnoser event-trace that violates the diagnosability property (the
first encountered event-trace). When the LPN model is stated to be diagnosable, DPN-SOG
generates the part of the diagnoser that is sufficient to perform the online diagnosis. Further
complementary information that help the evaluation of the approach can be output, namely,
the required CPU time, the size of the diagnoser, the number of used BDD nodes and memory
size of the diagnoser (in kilobytes).

5 Experimental Evaluation of DPN-SOG

In order to evaluate DPN-SOG tool (and thus the implemented approach), some experimenta-
tions have been performed using a parametric PN benchmark, which illustrate the concept of
permanent fault and fulfills the assumptions considered by the approach.

The PN benchmark, depicted in Figure 2, describes a manufacturing plant characterized by
three parameters: m, k and b, where:

• k is the number of production lines;

• m is the number of units of the final product that can be simultaneously produced, while
each unit is composed of k parts;

• b is the number of operations that each part must undergo in each line.

The faulty transitions are indicated by red boxes, while the other transitions (observable or
unobservable depending on the experiments we will carry out) are in gray.

The obtained results are discussed with respect to a reference approach for fault diagnosis of
LPNs, called MBRG/BRD technique [21]. In fact, the MBRG/BRD technique is implemented
as a Matlab Toolbox called PN DIAG tool [11]. It allows generating two models, namely the
MBRG and the BRD graphs, which are respectively more or less equivalent to the generator
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Figure 2: The PN benchamrk

and the diagnoser in [17], but for PNs. The diagnosability analysis is then performed based on
these models.

In this work, two series of tests are considered:

Series (1): we evaluate the efficiency of our approach while varying the number of observ-
able and unobservable transitions in the model. Thus, we consider the following parameters:
m = 1, b = 10, and k = 4. Transitions t0 and t1 are observable while transitions fi ∈ Tf
are faulty (for 1 ≤ i ≤ 4). Regarding transitions ti,10 (i.e., transitions in parallel with faulty
transitions), two cases are considered:

Test 1 : transitions ti,10 are non-observable (for 1 ≤ i ≤ 4), in this case the model is
non-diagnosable;

Test 2 : transitions ti,10 are observable (for 1 ≤ i ≤ 4), in this case the model is diagnosable.

Concerning the reset of transitions, we first consider them unobservable and then after each
simulation, we increase the number of observable transitions in the model, i.e., we increment
the number of observable transitions after each simulation, from 2, 6,. . . , until 38 observable
transitions, for Test 1 and from 6, 10,. . . , until 42 observable transitions for Test 2. Finally, it
should be noticed that for the sake of clarity the transition labels and names are the same (i.e.,
ϕ(t0) = t0).

Series (2): we evaluate the memory efficiency of our approach regarding the ratio of
observable and unobservable transitions in the PN models. In this series, we consider that
parameters m = 2, k = 4, and b = 2 . . . , 10. Transitions t0 and t1 are observable. Transitions
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fi and ti,b for 1 ≤ i ≤ 4 are unobservable. Regarding the rest of transitions two cases are
considered:

a) all the other transitions are unobservable;

b) all the other transitions are observable.

In this last series, we are only interested in the construction of the diagnoser, without the
verification of diagnosability.

5.1 Experimental Results

The experiments have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz, RAM: 6GB).
We fix 4 hours as a maximum analysis duration above which we consider that the tool failed to
return a result. The experimental results are summarized in Table 1 for Series (1) and Table 2
for Series (2), where:

— Obs is the number of observable transitions in the considered model;

— |MS | and |MT |, are the number of states and transitions of the reachability graph respec-
tively;

— |DS | and |DT | are, respectively, the numbers of nodes and arcs in the SSD;

— De and Dm are, respectively, the elapsed time (in seconds) for generating the SSD and
analyzing diagnosability on the fly, and the memory required for building the SSD (in
kilobytes);

— |G1S |, |G1T | and G1e are, respectively, the numbers of states and transitions in the
MBRG and the elapsed time for constructing the MBRG;

— |G2S |, |G2T | and G2e are, respectively, the numbers of states and transitions in the BRD
and the elapsed time for constructing the BRD;

— ‘Te’ is the time required for giving diagnosability verdict using MBRG/BRD approach.

5.2 Discussion

In this section, we highlight the main observations that can be derived from the obtained
results. Firstly, by considering m = 1, k = 4 and b = 10, the LPN benchmark has 45 places, 46
transitions, while its reachability graph contains 14642 markings and 58566 transitions.

5.2.1 Time Efficiency of the SSD Approach from Series (1)

• In the case of non-diagnosable models (i.e., Test 1), one can observe that our tool efficiently
analyzes the diagnosability by only constructing the relevant part of the diagnoser. Actu-
ally, as soon as an F -indeterminate cycle is found, the construction/verification process is
stopped and the model is stated to be non-diagnosable. Consequently, the diagnosability
verdicts are given in less than one second even for large values of Obs.

• In the case of diagnosable models (i.e., Test 2), the SSD approach potentially needs to
generate a larger part of the diagnoser state-space. Consequently, the verification process
checks all the F -uncertain cycles that exist in the diagnoser. Thanks to the systematic
procedure for checking diagnosability, the verification time is not too much affected.
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Table 1: Experimental Comparative Results for Series (1)

SSD MBRG BRD
Obs |DS | |DT | De(s) |G1S | |G1T | G1e(s) |G2S | |G2T | G2e(s) Te
10 20 19 ≤ 0.1 257 785 2 164 436 1 a.q.

N
o
n

-d
ia

g
n

o
sa

b
le

14 28 27 ≤ 0.1 626 2017 6 514 1540 10 a.q.
18 36 35 ≤ 0.1 1297 4337 17 1252 4004 68 a.q.
22 44 43 ≤ 0.1 2402 8249 47 2594 8644 419 a.q.
26 52 51 ≤ 0.1 4097 14353 120 4804 16468 1493 -
30 60 59 ≤ 0.1 6562 23345 289 8194 28676 4543 -
34 68 67 ≤ 0.1 10001 36017 685 * * o.t. -

14 257 770 0.6 257 1026 2.28 515 1571 8 a.q.

D
ia

g
n

o
sa

b
le18 626 2002 0.8 626 2502 7.15 1253 4035 53.6 a.q.

22 1297 4322 1 1297 9606 20.29 2595 8675 261.1 a.q.
26 2402 8234 1.1 2402 9606 55.18 4805 16499 1084.5 a.q.
30 4097 14338 1.6 4097 16386 155 8194 28707 3489 -
34 6562 23330 1.8 6562 26246 371 13125 46691 9991 -
38 10001 36002 2.5 10001 40002 721 * * o.t. -

*: No result obtained o.t.: Out of time (≥ 4 hours). a.q.: ‘accident quit ’

Table 2: Experimental results for series (2)
b |MS | |MT | |DS | |DT | De(s) Dm(kb)

2 1378 8264 6 8 ≤ 0.1 27
3 10257 65538 6 8 ≤ 0.1 50
4 51251 341252 6 8 0.1 85
5 195778 1341362 6 8 ≤ 0.2 128
6 617058 4317000 6 8 0.2 152
7 1683713 11658514 6 8 ≤ 0.3 174

2 1378 8264 196 564 0.16 696
3 10257 65538 2756 11128 1.2 11916
4 51251 341252 20514 98564 18.9 112823
5 195778 1341362 102502 546504 330 674500
6 617058 4317000 391556 2236470 4051 2857630
7 1683713 11658514 * * o.t. *

5.2.2 A Comparative Analysis with the MBRG/BRD Approach

• In the case of non-diagnosable models (i.e., Test 1), our approach is largely more efficient
compared to the MBRG/BRD approach. This is basically due to the fact that our ap-
proach is based on an on-the-fly procedure for generating the diagnoser and analyzing
diagnosability.

• Our approach remains more efficient when there is a large number of unobservable transi-
tions compared to the MBRG/BRD approach in the case of diagnosable models (Test 2).
This may be explained through three points:

1. Our approach only constructs one graph since diagnosability analysis is performed
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directly on the diagnoser;

2. The systematic procedure for checking the F -indeterminate cycles allows reducing
the verification time compared to the MBRG/BRD;

3. Our approach generates only the necessary part of the SSD for analyzing diagnos-
ability contrarily to the MBRG/BRD approach, where the whole state-spaces of the
MBRG/BRD are generated.

• As shown in Table 1, when the model contains more than 30 observable transitions,
PN Diag tool spends more than 4 hours without generating the BRD and thus without
deciding the diagnosability. However, our tool achieves the task in few seconds.

• Regarding the diagnosability analysis using PN DIAG tool, some accident quits occur dur-
ing its running (i.e., an exit without any output results). This may be caused by eventual
bugs in the tool. Thus, we do not compare the elapsed time for checking diagnosability.

5.2.3 Memory Efficiency of the SSD Approach from Series (2)

• The needed memory for representing the SSD is measured by considering the memory
needed for representing one BDD node, which is fixed by the used BuDDy library in
ObsGraphTool to 20kbytes, multiplied by the total number of nodes in all the bdds that
represent the diagnoser.

• the number of nodes/transitions of the SSD is not affected by increasing the number of
the unobservable transitions. However, it is very sensitive to the number of observable
transitions.

• the SSD spends more computing time to construct the diagnoser when the number of
observable transition increase than when the number of unobservable transitions increases.
This is a consistent consequence for the increasing of the state-space size in this case.

• the symbolic representation leads to an important memory saving when the model contains
a large number of unobservable transitions. That is, when the SSD nodes contain a large
number of markings (which corresponds to the case of a large number of unobservable
transitions in the model), then the corresponding BDDs will be efficiently compacted.
This is due to the fact that BDDs are particularly convenient to represent large sets of
markings. However, when the SSD nodes contain a few number of markings, it is more
difficult to compact them using BDDs. Thus, this explains the considerable memory
consumption when the model contains a large number of observable transitions. In fact,
when the number of observable transitions increases in the model, the SSD converges to
the classic diagnosers [17, 18] in terms of memory required for the diagnoser construction,
which decreases the efficiency of the symbolic representation.

6 Conclusion

DPN-SOG is a software tool for fault diagnosis of bounded labeled Petri nets, on the basis
of the semi-symbolic diagnoser approach developed in [1, 2]. DPN-SOG serves to analyze
diagnosability on the fly of LPNs, generating only the necessary part of the diagnoser for
performing the diagnosability analysis and online diagnosis and evaluating the memory/time
consumption. As future works, we intend to endow DPN-SOG with a graphic interface in order
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to facilitate the use of the tool. Moreover, we wish to extend the tool in order to deal also with
quantitative properties of diagnosability (K/Kmin-diagnosability). Finally, we are working on
a modular version of the semi-symbolic diagnoser approach, that will be integrated in the tool.
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