Abderraouf Boussif
email: abderraouf.boussif@ifsttar.fr

Mohamed Ghazel
email: mohamed.ghazel@ifsttar.fr

Kais Klai
email: kais.klai@lipn.univ-paris13.fr

DPN-SOG: A Software Tool for Fault Diagnosis of Labeled Petri Nets Using the Semi-Symbolic Diagnoser

In this paper, we present DPN-SOG, a software tool written in C++ for fault diagnosis of discrete event systems modeled by bounded labeled Petri nets. DPN-SOG (for Diagnosability analysis of Petri Nets using Symbolic Observation Graphs) implements the semi-symbolic diagnoser approach developed in [1, 2] for fault diagnosis of bounded labeled Petri nets. The implemented approach aims to cope with some limitations of the classic diagnoser-based approaches, namely the state-space explosion problem, the intermediate models and the double-checking procedure for diagnosability analysis. The key features of DPN-SOG are: (i) the on-the-fly building of the diagnoser and analysis of diagnosability, (ii) the generation of only the necessary part of the diagnoser to perform the diagnosability analysis and online diagnosis, and (iii) the evaluation of the time/memory consumption for the construction of the diagnoser and the analysis of diagnosability.

Introduction

Fault detection and diagnosis (FDD) is a crucial and challenging task, essentially in guaranteeing the reliable, safe and correct operation of complex engineered systems. To fulfill such requirements, developing effective monitoring techniques becomes essential starting from the design phase of the system. In particular, having efficient tools for monitoring and diagnosis is of great interest since this prevents or at least minimizes the failure-related down-times, especially in safety-critical systems.

From the theoretical point of view and at a high level of abstraction, discrete event systems (DES) [START_REF] Cassandras | Introduction to discrete event systems[END_REF], are quite suitable for fault diagnosis for a wide range of applications because of the formal basis offered by the state/transition models and their associated algorithms [START_REF] Lin | Diagnosability of discrete event systems and its applications[END_REF].

The early works that addressed fault diagnosis issues mostly considered finite-state automata (FSA) (the reader can refer to the recent survey [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF]). Afterwards, fault diagnosis issues have also been dealt with the Petri nets (PNs) framework (an overview on PNs fault diagnosis is given in [START_REF] Basile | Overview of fault diagnosis methods based on petri net models[END_REF]).

Several software tools have been developed by the DES research community for the fault diagnosis purposes. In the context of FSA, one may consider Desuma [START_REF] Ricker | DESUMA-a tool integrating giddes and UMDES[END_REF] as the reference tool for dealing with FSA fault diagnosis. In fact, Desuma is a software developed at Michigan University. It integrates the Umdes (with a GUI for visualization) library, which is is a library of C routines for studying FSA. Desuma allows the user to perform a variety of manipulations on FSA, such as model editing, diagnosability analysis for permanent and intermittent faults, control under full and partial observation, and decentralized control.

The Libfaudes library [START_REF] Moor | libfaudes -an open source C++ library for discrete event systems[END_REF] is a C++ implementation designed for the analysis and synthesis of DES. Recently, it was endowed with new modules for fault diagnosis of FSA. Then, it allows analyzing event and language-diagnosis, decentralized and modular diagnosis. Some application examples are also given for the purpose of illustration.

Deslab [START_REF] Leonardo B Clavijo | Deslab: A scientific computing program for analysis and synthesis of discrete-event systems[END_REF] is a scientific computing program written in Python, for the development of algorithms for analysis and synthesis of FSA. It allows for the analysis of diagnosability using the verifier approach [START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF]. Some further tools that deal with fault diagnosis of FSA are: DiaDes, Dito, Medito 1 and Decada 2 .

Unlike fault diagnosis of FSA, fault diagnosis of Petri net models (PNs) unfortunately lacks of tools that put the developed theory to practice. Only few tools are developed in the field.

Pn Diag/Pn Diag Unb/Pn Diag Disc [START_REF] Pocci | A toolbox for diagnosability of petri nets[END_REF][START_REF] Paola Cabasino | A comparison among tools for the diagnosability of discrete event systems[END_REF] are Matlab toolboxes, developed at the University of Cagliari, for the analysis of bounded/unbounded and decentralized labeled Petri nets (LPNs), respectively. Pn Diag/Pn Diag Disc are now integrated in the DISC software platform 3 [START_REF] Paola Cabasino | A software platform for the integration of discrete event systems tools[END_REF].

Of-Penda [START_REF] Liu | OF-PENDA: A software tool for fault diagnosis of discrete event systems modeled by labeled petri nets[END_REF] is a software tool for LPN fault diagnosis 4 . It allows for checking diagnosability and K/K min -diagnosability using an on-the-fly and incremental approach.

We introduce here DPN-SOG 5 , a software tool written in C++ for fault diagnosis of bounded LPNs. It consists in a re-implementation of ObsGraph tool [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF], which is used for the verification of PNs using an on-the-fly model-checker based on the symbolic observation graphs. DPN-SOG implements the semi-symbolic diagnoser based approach developed in [START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF][START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF] and allows for (i) analyzing on-the-fly diagnosability, (ii) generating a sufficient part of a semi-symbolic diagnoser that can be used for online diagnosis and (iii) evaluating the required time/memory for the simultaneous generation of the diagnoser and the analysis of diagnosability.

The reminder of this paper is organized as follows. Section 2 briefly introduces some LPN notations and diagnosability analysis. Section 3 discusses the semi-symbolic diagnoser approach implemented in the tool. In Section 4, we present the features of DPN-SOG. Then, some experiments are performed on the basis of a Petri net benchmark to show the efficiency of DPN-SOG in Section 5. Finally, some concluding remarks are given in Section 6.

Preliminaries

Labeled Petri Net Modeling

Before going any further, we assume that the reader is familiar with Petri nets theory [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] and fault diagnosis of DES [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

A Petri net is a structure N = (P, T, P re, P ost), where P is a finite set of places; T is a finite set of transitions; P re and P ost are the pre-and post-incidence mappings, respectively. C = P ost -P re is the incidence matrix. A marking is a vector m ∈ N |P | that assigns a non-negative integer to each place. We denote by m(p) the marking of a place p. A marked PN (N, m 0) is a PN N with a given initial marking m 0 (it will be called PN in the sequel).

A transition t i is enabled at marking m, denoted by m[t i >, if m(p) ≥ P re(p, t i), ∀p ∈ P . A transition t i enabled at m can fire, yielding to a marking m = m+C •(•, t i), where t i ∈ {0, 1} |T | is a vector in which only the entry associated with transition t i is equal to 1. Then, m is said to be reachable from m by firing t i , denoted by m [t i > m . Moreover, a sequence of transitions

s = t 1 t 2 . . . t k brings m to marking m , denoted by m [s > m , if (∃m 1 , m 2 , • • • , m k-1)(m [t 1 > m 1 [t 2 > • • • m k-1 [t k > m). m can be computed by m = m + C • π(s)
and denoted by m [s > m , where π(s) = k i=1 t i is called the firing vector relative to s. A marking m is reachable in (N, m 0) if and only if there exists a firing sequence s such that m 0 [s > m. The set of all markings reachable from m 0 defines the reachability set of (N, m 0) and is denoted by R(N, m 0).

A PN (N, m 0) is bounded if the number of tokens in each place does not exceed a finite number b ∈ N for any marking reachable from m 0 . Formally, ∃ b ∈ N s.t. ∀m ∈ R(N, m 0), ∀p ∈ P : m(p) ≤ b. A PN is live if, no matter what marking has been reached from m 0 , it is possible to fire any transition of the net by progressing through some further firing sequence [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. Formally, ∀m ∈ R(N, m 0), ∀t ∈ T, ∃s ∈ T * : m [s.t >.

A labeled Petri net (LPN) is a tuple N L = (N, m 0 , Σ, ϕ), where (N, m 0) is a marked PN, Σ is a finite set of events (i.e., labels) and ϕ : T → Σ is the transition labeling function. ϕ is also extended to sequences of transitions, ϕ :

T * → Σ * . The language generated by N L is L(N L) = {ϕ(s) ∈ Σ * | s ∈ T * , m 0 [s >}.
For short, we write L instead of L(N L). Also, one should notice that various transitions can share the same event label, i.e., ϕ is not bijective. We denote by T σ the set of transitions sharing the same event σ, i.e., T σ = {t ∈ T : ϕ(t) = σ}.

Diagnosability of LPNs

Due to the partial observability, the set of transitions is partitioned as T = T o T u , where T o is the set of observable transitions, and T u is the set of unobservable transitions. The set of unobservable transitions is also partitioned into two subsets T u = T f T reg where T f is the set of fault transitions while T reg includes the regular (i.e., non-faulty) unobservable transitions. As we deal with labeled Petri nets, the event set Σ can also be partitioned into two disjoint sets, Σ = Σ o Σ u , where Σ o is a finite set of observable events and Σ u is a finite set of unobservable events. Fault events denoted by set Σ f are unobservable, thus Σ f ⊆ Σ u . Moreover, the set of unobservable events can be partitioned into two disjoint sets, Σ u = Σ f Σ reg , where Σ reg = Σ u \Σ f is the set of regular unobservable events, i.e., non-faulty unobservable events. In addition, the set of fault events Σ f can be further partitioned into various fault classes, i.e., Σ f = m i=1 Σ fi , where Σ fi (i = 1, 2, . . . , m) denotes the i th class of faults. Let P o : Σ * → Σ * o be the projection mapping which erases the unobservable events in any given sequence u ∈ Σ * . The inverse projection operator P -1 oL is defined as

P -1 oL (v) = {u ∈ L | P o (u) = v} for v ∈ Σ * o .
Given a live and prefix-closed language L ⊆ Σ * and an eventsequence u ∈ L, the post-language of L upon u denoted by

L/u is L/u = {v ∈ Σ * | uv ∈ L}.
We denote by |u| the length of event sequence u, and the i th event of u by u i . Also, for a ∈ Σ and u ∈ Σ * , we write a ∈ u if ∃ i s.t. u i = a. By abuse of notation, we note Σ fi ∈ u to indicate that ∃f i ∈ Σ fi s.t. f i ∈ u. Without loss of generality, in the sequel we will consider one single fault class Σ f .

Definition 1. (Diagnosability of LPNs)

A given LPN N L is diagnosable w.r.t. fault class Σ f and projection P o if:

(∃ n ∈ N) (∀u ∈ L, u |u| ∈ Σ f) (∀v ∈ L/u): |P o (v)| ≥ n ⇒ [∀ω ∈ P -1 oL (P o (uv)) : Σ f ∈ ω]
The above definition means that an LPN is diagnosable if for every trace u ending with a fault event (which corresponds to a fault transition) of type Σ f , and for any sufficiently long continuation v of u, all traces ω having the same observable projection of uv contain at least one fault event. In other words, diagnosability of an LPN implies that each occurrence of a fault can be detected after a finite number of transition firings.

In what follows, we make the following assumptions:

• The LPN is deadlock-free and bounded;

• The LPN has no executable cycle of unobservable transitions and fault are assumed to be permanent.

3 The implemented approach in DPN-SOG

On the basis of the behavioral representation of PNs, diagnoser-based approaches are considered as the principal techniques which deal with both diagnosability analysis and online diagnosis. Nevertheless, these approaches mainly suffer from the following issues: (i) the state-space explosion problem that arises when constructing the diagnoser (i.e., exponential complexity) (ii) the use of intermediate models for constructing the diagnosers, which increases the time/memory consumption (e.g. the generator in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], MBRG in [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] and FM-graph in [START_REF] Liu | An efficient approach for diagnosability and diagnosis of DES based on LPN[END_REF], etc.) and (iii) the double-checking procedure that consists in one verification step upon the diagnoser (i.e., the existence of F -uncertain cycles) and the other step is performed upon the the generator or the system model (i.e., checking whether the F -uncertain cycle is an F -indeterminate one or not). Such a procedure highly increases the verification time.

The implemented approach in DPN-SOG aims to cope with the above-mentioned limitations of the diagnoser-based approaches. In fact, the approach allows for analyzing diagnosability of bounded LPNs and performing online diagnosis on the basis of a deterministic graph called SSD, for 'Semi-Symbolic Diagnoser ', derived directly from the PN model. The SSD has a particular structure, which consists in separating normal markings from faulty ones in each diagnoser node and encoding the two obtained subsets as BDDs (Binary Decision Diagrams). This aims, in one hand, at reducing the memory requirements for saving the diagnoser and, on the other hand, at speeding up the verification process. On the basis of this structure, the approach uses a systematic procedure to check the necessary and sufficient condition for diagnosability using only the SSD with no need for any intermediate model, as it is the case of most existing diagnoser-based approaches, e.g., [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF][START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Liu | An efficient approach for diagnosability and diagnosis of DES based on LPN[END_REF]. Moreover, the approach is based on an on-thefly algorithm for simultaneously constructing the SSD and analyzing diagnosability. Thus, for non-diagnosable models, the verification process is interrupted as soon as the necessary and sufficient condition for diagnosability is violated, without building and analyzing the whole state-space of the SSD. In addition, in the case of diagnosable models, the approach generates only a part of diagnoser, which is sufficient for performing online diagnosis.

The implemented approach is inspired from the so-called symbolic observation graph, shortly SOG [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased Model Checker[END_REF][START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF]. The SOG was introduced as an abstraction of the reachability graph of concurrent systems and it was proved that the verification of an event-based formula of LTL/X on the SOG is equivalent to its verification on the reachability graph [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF]. The main idea is to combine onthe-fly the construction and the compact representation (using BDD techniques) of the graph, in order to check LTL/X properties over finite systems. In what follows, we briefly present the SSD approach implemented in DPN-SOG.

The Semi-Symbolic Diagnoser

We introduce the following notations to define the SSD:

• Given a subset of transitions T ⊆ T , we define Enable T (m) = {t ∈ T | m [t >}, as
the set of transitions in T that are enabled at marking m. The extension to a subset of markings

M ⊆ R(N, m 0), is Enable T (M) = m∈M Enable T (m).
• Given a subset of markings M ⊆ R(N, m 0) and a transition t ∈ T , we define Img(M, t) = {m ∈ R(N, m 0) | ∃m ∈ M : m [t > m } as the set of markings reachable from the markings in M by firing transition t. The generalization to a subset of transitions T ⊆ T is Img(M , T) = t∈T Img(M , t).

• Given a marking m ∈ R(N, m 0) and a subset of transition T ⊆ T , we define

Reach T (m) = {m} ∪ {m ∈ R(N, m 0)|(∃s ∈ T *) : m [s > m }
as the set of markings reached by firing a sequence of transitions in T from marking m (will be used particularly for the unobservable reachability). The generalization of this notion to a subset of markings M ⊆ R(N, m 0) is Reach T (M) = m∈M Reach T (m).

The Structure of the diagnoser node

In order to capture the main feature for analyzing diagnosability, which is to keep tracking the ambiguous behavior of the system, i.e., normal and faulty executions that share the same observable event sequence, each node in the SSD is partitioned into two subsets of markings, each of them is encoded using a BDD.

1. the set of normal markings (denoted by M N), which is the subset of markings in the node that are reachable by firing fault-free sequences.

2. the set of faulty markings (denoted by M F), which is the subset of markings in the node that are reachable by firing faulty sequences. Moreover, there may exist some faulty transitions that link some markings in M N to some others in M F within the same node. The existence of such transitions is also encoded within each node using a Boolean variable. The general structure of the diagnoser node is depicted in Figure 1. Actually, such a node structure can be advantageously explored for rendering diagnosability analysis more efficient than using the classical structure of diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF][START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF].

One can differentiate between three types of nodes:

• N-certain diagnoser node: is a diagnoser node with an empty set of faulty markings (M F = ∅);

• F-certain diagnoser node: is a diagnoser node with an empty set of normal markings is empty (M N = ∅);

• F-uncertain diagnoser node: is a diagnoser node for which neither the normal set, nor the faulty set of markings, is empty, i.e., M N = ∅ and M F = ∅.

To simplify the notation, we use a.M N (resp. a.M F) to indicate the set of normal markings M N (resp. set of faulty markings M F) of a given diagnoser node a.

The SSD can be defined as a directed deterministic graph, where each node is composed of two BDDs encoding respectively, its subset of normal and faulty markings, while the arcs are labeled by observable events only.

Definition 2. (Semi-Symbolic Diagnoser)

The SSD associated with an LPN N L is a directed deterministic graph D = Γ, Σ o , δ D , Γ 0 , where:

1. Γ is a finite set of diagnoser nodes; 2. Σ o is a finite set of events associated with LPN N L ; 3. Γ 0 is the initial diagnoser node with:

a) Γ 0 .M N = Reach Treg (m 0); b) Γ 0 .M F = Reach Tu (Img(Γ 0 .M N , T f)). 4. δ D : Γ × Σ o → Γ is the transition relation, defined as follows: ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇔ a .M N = Reach Treg (Img(a.M N , T σ)) ∧ a .M F = Reach Tu (Img(a .M N , T f) ∪ Img(a.M F , T σ)).

Diagnosability Analysis

The authors in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] have established a necessary and sufficient condition for diagnosability on the basis of the generator/diagnoser models. The same condition has been reformulated in [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] for analyzing diagnosability of bounded LPNs.

In the SSD approach, a necessary and sufficient condition for diagnosability is formulated on the basis of the SSD structure and a systematic procedure for checking such a condition on the fly and directly upon the diagnoser is developed. These main features rely on some theoretical results that are briefly recalled in what follows. It should be noticed that for the sake of space, all proofs of propositions and theorems introduced in this section are omitted and can be found in [START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF].

Proposition 1. Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. Then, there exists at least one fault-free cycle in LPN N L that shares the same observation (σ 1 , σ 2 , . . . , σ n) * . This result is interesting for checking F -indeterminate cycles, using any diagnoser-based approach. It is, in fact, sufficient to check that an F -uncertain cycle in the diagnoser corresponds to a faulty cycle in the original model (or the intermediate model), without needing to check the existence of a faulty-free cycle.

Necessary and Sufficient Condition

In the SSD approach, the necessary and sufficient condition for diagnosability is established on the basis of the notion of 'indicating sequence', which is associated with the F -uncertain cycles.

Definition 3. (c -indicating sequence)

Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D (the starting node a 1 can be arbitrarily chosen in the cycle), with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. c -indicating sequence ρ c = S 1 , S 2 , . . . , is an infinite sequence of sets of markings, such that:

-S 1 = a 1 .M F ; -∀ i > 1 : S i = Reach Tu (Img(S i-1 , T σ (i-1) modn)).
In fact, the c -indicating sequence tracks the subsets of faulty markings in each node of c without considering the faulty markings generated through the occurrence of some faulty transitions outgoing from the normal set of markings in the traversed nodes (except for S 1 which holds all the faulty markings of a 1 .M F , i.e., S 1 = a 1 .M F).

Theorem 1. For an F -uncertain cycle c = a 1 , a 2 , . . . , a n in D, and ρ c = S 1 , S 2 , . . . its corresponding c -indicating sequence. Then, c is an F -indeterminate cycle if and only if ∀i ∈ N * : S i = ∅.

Actually, Theorem 1 states that an F -uncertain cycle is an F -indeterminate one if the c -indicating sequence does not reach an empty fixed-point (see [START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF]).

A Procedure for Checking Diagnosability

For the actual verification of diagnosability, a systematic procedure is derived directly from Theorem 1 and can be performed as follows:

When an F -uncertain cycle c is found in SSD D, then:

1. generate the successive elements of c -indicating sequence ρ c (starting from S 1), and for each element S i check the following conditions:

(a) if S i = ∅, then cycle c is not an F -indeterminate cycle and therefore the procedure is stopped;

(b) else, if S i = ∅ and ∃k ∈ N : i = 1 + kn (with n = |c |), then:

i. if S i = S (i-n) , then cycle c is an F -indeterminate cycle and stop the procedure; ii. else continue. This procedure is repeated on each F -uncertain cycle generated on the fly in D.

Features of DPN-SOG tool

DPN-SOG consists in a modified and re-implemented version of ObsGraph tool [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF], which is a BDD-based tool implementing various verification approaches for workflows/PNs using symbolic observation graph through an on-the-fly model-checker.

DPN-SOG is a command-line software tool developed in C++ programming language (available for Linux). It integrates the BDD package Buddy [START_REF] Lind-Nielsen | BDD package buddy[END_REF] which is used for symbolic manipulation of automata and other computation models. Actually, DPN-SOG takes as inputs: (i) the LPN models in prod format [START_REF] Varpaaniemi | Prod 3.2 an advanced tool for efficient reachability analysis[END_REF], (ii) the bound k of the net as an integer and (iii) a text file which specifies the sets of observable, non-observable and faulty transitions. Using these ingredients, DPN-SOG builds on the fly the SSD and simultaneously analyzes the diagnosability. When the LPN model is non-diagnosable, DPN-SOG outputs the generated part of the diagnoser as well as a witness diagnoser event-trace that violates the diagnosability property (the first encountered event-trace). When the LPN model is stated to be diagnosable, DPN-SOG generates the part of the diagnoser that is sufficient to perform the online diagnosis. Further complementary information that help the evaluation of the approach can be output, namely, the required CPU time, the size of the diagnoser, the number of used BDD nodes and memory size of the diagnoser (in kilobytes).

Experimental Evaluation of DPN-SOG

In order to evaluate DPN-SOG tool (and thus the implemented approach), some experimentations have been performed using a parametric PN benchmark, which illustrate the concept of permanent fault and fulfills the assumptions considered by the approach.

The PN benchmark, depicted in Figure 2, describes a manufacturing plant characterized by three parameters: m, k and b, where:

• k is the number of production lines;

• m is the number of units of the final product that can be simultaneously produced, while each unit is composed of k parts;

• b is the number of operations that each part must undergo in each line.

The faulty transitions are indicated by red boxes, while the other transitions (observable or unobservable depending on the experiments we will carry out) are in gray.

The obtained results are discussed with respect to a reference approach for fault diagnosis of LPNs, called MBRG/BRD technique [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF]. In fact, the MBRG/BRD technique is implemented as a Matlab Toolbox called PN DIAG tool [START_REF] Pocci | A toolbox for diagnosability of petri nets[END_REF]. It allows generating two models, namely the MBRG and the BRD graphs, which are respectively more or less equivalent to the generator Figure 2: The PN benchamrk and the diagnoser in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], but for PNs. The diagnosability analysis is then performed based on these models.

In this work, two series of tests are considered: Series (1): we evaluate the efficiency of our approach while varying the number of observable and unobservable transitions in the model. Thus, we consider the following parameters: m = 1, b = 10, and k = 4. Transitions t 0 and t 1 are observable while transitions f i ∈ T f are faulty (for 1 ≤ i ≤ 4). Regarding transitions t i,10 (i.e., transitions in parallel with faulty transitions), two cases are considered: Test 1 : transitions t i,10 are non-observable (for 1 ≤ i ≤ 4), in this case the model is non-diagnosable; Test 2 : transitions t i,10 are observable (for 1 ≤ i ≤ 4), in this case the model is diagnosable.

Concerning the reset of transitions, we first consider them unobservable and then after each simulation, we increase the number of observable transitions in the model, i.e., we increment the number of observable transitions after each simulation, from 2, 6,. . . , until 38 observable transitions, for Test 1 and from 6, 10,. . . , until 42 observable transitions for Test 2. Finally, it should be noticed that for the sake of clarity the transition labels and names are the same (i.e., ϕ(t 0) = t 0).

Series (2): we evaluate the memory efficiency of our approach regarding the ratio of observable and unobservable transitions in the PN models. In this series, we consider that parameters m = 2, k = 4, and b = 2 . . . , 10. Transitions t 0 and t 1 are observable. Transitions In this last series, we are only interested in the construction of the diagnoser, without the verification of diagnosability.

Experimental Results

The experiments have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz, RAM: 6GB). We fix 4 hours as a maximum analysis duration above which we consider that the tool failed to return a result. The experimental results are summarized in Table 1 for Series (1) and Table 2 for Series [START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF], where:

-Obs is the number of observable transitions in the considered model; -'T e ' is the time required for giving diagnosability verdict using MBRG/BRD approach.

Discussion

In this section, we highlight the main observations that can be derived from the obtained results. Firstly, by considering m = 1, k = 4 and b = 10, the LPN benchmark has 45 places, 46 transitions, while its reachability graph contains 14642 markings and 58566 transitions.

Time Efficiency of the SSD Approach from Series (1)

• In the case of non-diagnosable models (i.e., Test 1), one can observe that our tool efficiently analyzes the diagnosability by only constructing the relevant part of the diagnoser. Actually, as soon as an F -indeterminate cycle is found, the construction/verification process is stopped and the model is stated to be non-diagnosable. Consequently, the diagnosability verdicts are given in less than one second even for large values of Obs.

• In the case of diagnosable models (i.e., Test 2), the SSD approach potentially needs to generate a larger part of the diagnoser state-space. Consequently, the verification process checks all the F -uncertain cycles that exist in the diagnoser. Thanks to the systematic procedure for checking diagnosability, the verification time is not too much affected.

A Comparative Analysis with the MBRG/BRD Approach

• In the case of non-diagnosable models (i.e., Test 1), our approach is largely more efficient compared to the MBRG/BRD approach. This is basically due to the fact that our approach is based on an on-the-fly procedure for generating the diagnoser and analyzing diagnosability.

• Our approach remains more efficient when there is a large number of unobservable transitions compared to the MBRG/BRD approach in the case of diagnosable models (Test 2). This may be explained through three points:

1. Our approach only constructs one graph since diagnosability analysis is performed directly on the diagnoser;

2. The systematic procedure for checking the F -indeterminate cycles allows reducing the verification time compared to the MBRG/BRD; 3. Our approach generates only the necessary part of the SSD for analyzing diagnosability contrarily to the MBRG/BRD approach, where the whole state-spaces of the MBRG/BRD are generated.

• As shown in Table 1, when the model contains more than 30 observable transitions, PN Diag tool spends more than 4 hours without generating the BRD and thus without deciding the diagnosability. However, our tool achieves the task in few seconds.

• Regarding the diagnosability analysis using PN DIAG tool, some accident quits occur during its running (i.e., an exit without any output results). This may be caused by eventual bugs in the tool. Thus, we do not compare the elapsed time for checking diagnosability.

Memory Efficiency of the SSD Approach from Series (2)

• The needed memory for representing the SSD is measured by considering the memory needed for representing one BDD node, which is fixed by the used BuDDy library in ObsGraphTool to 20kbytes, multiplied by the total number of nodes in all the bdds that represent the diagnoser.

• the number of nodes/transitions of the SSD is not affected by increasing the number of the unobservable transitions. However, it is very sensitive to the number of observable transitions.

• the SSD spends more computing time to construct the diagnoser when the number of observable transition increase than when the number of unobservable transitions increases. This is a consistent consequence for the increasing of the state-space size in this case.

• the symbolic representation leads to an important memory saving when the model contains a large number of unobservable transitions. That is, when the SSD nodes contain a large number of markings (which corresponds to the case of a large number of unobservable transitions in the model), then the corresponding BDDs will be efficiently compacted. This is due to the fact that BDDs are particularly convenient to represent large sets of markings. However, when the SSD nodes contain a few number of markings, it is more difficult to compact them using BDDs. Thus, this explains the considerable memory consumption when the model contains a large number of observable transitions. In fact, when the number of observable transitions increases in the model, the SSD converges to the classic diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF][START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] in terms of memory required for the diagnoser construction, which decreases the efficiency of the symbolic representation.

Conclusion

DPN-SOG is a software tool for fault diagnosis of bounded labeled Petri nets, on the basis of the semi-symbolic diagnoser approach developed in [START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF][START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF]. DPN-SOG serves to analyze diagnosability on the fly of LPNs, generating only the necessary part of the diagnoser for performing the diagnosability analysis and online diagnosis and evaluating the memory/time consumption. As future works, we intend to endow DPN-SOG with a graphic interface in order to facilitate the use of the tool. Moreover, we wish to extend the tool in order to deal also with quantitative properties of diagnosability (K/K min -diagnosability). Finally, we are working on a modular version of the semi-symbolic diagnoser approach, that will be integrated in the tool.

Figure 1 :

 1 Figure 1: The general structure of the SSD node

f

 i and t i,b for 1 ≤ i ≤ 4 are unobservable. Regarding the rest of transitions two cases are considered: a) all the other transitions are unobservable; b) all the other transitions are observable.

-

 |M S | and |M T |, are the number of states and transitions of the reachability graph respectively; -|D S | and |D T | are, respectively, the numbers of nodes and arcs in the SSD; -D e and D m are, respectively, the elapsed time (in seconds) for generating the SSD and analyzing diagnosability on the fly, and the memory required for building the SSD (in kilobytes); -|G1 S |, |G1 T | and G1 e are, respectively, the numbers of states and transitions in the M BRG and the elapsed time for constructing the M BRG; -|G2 S |, |G2 T | and G2 e are, respectively, the numbers of states and transitions in the BRD and the elapsed time for constructing the BRD;

Table 1 :

 1 Experimental Comparative Results for Series[START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF]

			SSD			MBRG			BRD
	Obs	|D S |	|D T | D e (s)	|G1 S | |G1 T | G1 e (s) |G2 S | |G2 T | G2 e (s)	T e
	10 14 18 22 26 30 34	20 28 36 44 52 60 68	19 ≤ 0.1 27 ≤ 0.1 35 ≤ 0.1 43 ≤ 0.1 51 ≤ 0.1 59 ≤ 0.1 67 ≤ 0.1 10001 36017 257 785 626 2017 1297 4337 2402 8249 4097 14353 6562 23345	2 6 17 47 120 289 685	164 514 1252 2594 4804 8194 *	*	1 a.q. 10 a.q. 68 a.q. 419 a.q. 1493 -4543 -o.t. -	Non-diagnosable
	14	257	770	0.6	257	1026	2.28	515		8 a.q.
	18 22 26 30 34	626 1297 2402 4097 14338 2002 4322 8234 6562 23330	0.8 1 1.1 1.6 1.8	626 1297 2402 4097 16386 2502 9606 9606 6562 26246	7.15 20.29 55.18 155 371 13125 1253 2595 4805 1084.5 a.q. 53.6 a.q. 261.1 a.q. 8194 3489 -9991 -	Diagnosable
	38	10001 36002	2.5 10001 40002	721	*	*	o.t.	-
		*: No result obtained		o.t.: Out of time (≥ 4 hours).	a.q.: 'accident quit'
			Table 2: Experimental results for series (2)	
		b	|M S |		|M T |	|D S |	|D T | D e (s) D m (kb)
		2	1378		8264	6	8 ≤ 0.1	27
		3	10257		65538	6	8 ≤ 0.1	50
		4	51251		341252	6	8	0.1	85
		5	195778	1341362	6	8 ≤ 0.2	
		6	617058	4317000	6	8	0.2	
		7 1683713 11658514	6	8 ≤ 0.3	
		2	1378		8264	196	564	0.16	
		3	10257		65538	2756	11128	1.2	11916
		4	51251		341252	20514	98564	18.9	112823
		5	195778	1341362 102502	546504	330	674500
		6	617058	4317000 391556 2236470	4051 2857630
		7 1683713 11658514	*	*	o.t.	*

DPN-SOG: A Software Tool for Fault Diagnosis of LPN Using the SSD Boussif et al.

Acknowledgments

The authors acknowledge the support of the ELSAT2020 project. ELSAT2020 is co-financed by the European Union with the European Regional development Fund, the French state and the Hauts-de-France Region Council.