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Guaranteed cost control design for descriptor systems with
time-varying delays

Mohamad Taki Asghar, Marc Jungers, Irinel-Constantin Morărescu, Ahmed Khelassi and Julien Francken

Abstract— Motivated by a real problem in cold rolling
of steel, we propose a design methodology of guaranteed
cost controllers for descriptor type systems in presence of
multiple time-varying delays. We first analyse the existence
and uniqueness of solutions for the class of systems under
study. This enable us to define the compatible initial conditions
for this class of systems and show that for the closed-loop
dynamics they depend on the controller. Consequently, we
provide a methodology to avoid this dependency. Secondly, we
consider the problem of designing a controller that stabilizes
the system and ensures some performance guarantees. The
proposed solution consists of minimizing a cost function related
to the energetic aspects of the system. The main tool used for the
control design is a modified Lyapunov–Krasovskii functional
that takes into account the singularity of the system. Our
solution can be easily implemented since the controller is
obtained by solving some linear matrix inequalities (LMIs). A
numerical example illustrates the implementation of our results.

I. INTRODUCTION

Stability analysis and control design for dynamical
systems in presence of time-delays is a problem of recurring
interests [1], [2]. Although there exists an extensive literature
on the analysis of systems affected by fixed point-wise
delays, we can also find many results related to dynamics
affected by distributed [3], [4] and time-varying delays [5],
[6]. Despite this rich literature, the research on time-delay
systems is still very active and new computationally oriented
stability criteria [7], [8] are regularly proposed. This is
certainly due to the demand of industrial companies for easy
and fast implementable analysis and control design tools.

Beside the delay presence, another features that
characterizes many real processes are the complexity
and the heterogeneity of the dynamics describing them.
Often the evolution of the state variables of the system is
constrained by some algebraic relations with an explicit
physical meaning. This complex behavior is mathematically
captured by the class of descriptor or singular systems [9],
[10].

The analysis of the class of descriptor systems with
tine-varying delays discussed in this paper is motivated by an
industrial application. One important process in metallurgy is
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de Lorraine, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye,
Vandœuvre-lès-Nancy, France and CNRS, CRAN, UMR 7039.
Corresponding author marc.jungers@univ-lorraine.fr.

M. T. Asghar, Ahmed Khelassi and Julien Francken are with Control and
Measurement Department, ArcelorMittal Maizières R&D, Voie Romaine BP
30320, F-57283 Maizières-lès-Metz, France.

This work has been supported by a grant of the French Agency for
Research and Technology (ANRT).

the metal rolling in which the metal strip achieves a desired
thickness. Tandem Cold Mill (TCM) [11] is composed by
several stands that sequentially reduce the thickness of the
metal strip. Therefore, the thickness of the metal sheet
entering one stand is the delayed version of the thickness
of the sheet that get out from the precedent stand. In other
words, the delays consist in the transportation durations
of the metal strip between two consecutive stands. The
speed of the metal strip varies in function of the thickness
reduction, accordingly to the flow conservation law, which is
the algebraic relation stating that the flow of metal entering
one stand is equal to the flow of metal exiting the stand.
Consequently, the time-delay introduced by the transport
from one stand to the next is also time-varying. In [12], we
showed that the behavior of the TCM, with five stands, is
accurately described by a non-linear descriptor system with
four time-varying delays. We also proposed a linearization
of this model around the operating point and we proved that
the linearized model is valid in a wide domain of parameters
variation.

Up to now, several models have been elaborated [11],
[13]–[16], to accurately express the challenges of this
system. These models have been studied and examined
with respect to industrial data in order to calibrate their
coefficients and adapt them to the existing mills. They have
been used for control synthesis, system diagnosis, signal
measurements, estimation and observations, quantitative and
qualitative studies [17]. While a lot of efforts have been
oriented toward model accuracy and calibration the control
design remains quite basic since nowadays the rolling is
controlled by means of PIDs controllers. Due to the evolution
of the technology, the specifications required for the steel
sheets continuously change asking for thinner sheets with an
increased performance assessment (mainly hardness, but also
flatness...) [18]. In order to accomplish this objective one
needs to adopt new control strategies aiming at: reaching
the required specifications of the steel sheets; taking into
account the complex interactions inside the system; reducing
the energy cost of the rolling process and finally being ready
for the further introduction of new actuators such as flexible
lubrication [19], [20].

The main contribution of this work is related to the control
design with performance guarantees for descriptor systems in
presence of time-varying delays. We emphasize that stability
analysis and the control design for descriptor systems with
fixed delays has been considered in [21]. When the delays are
time-varying the results are oriented more toward stability
analysis [22]–[24]. To the best of the author knowledge,



the control design with performance guarantees was not yet
addressed for this class of systems. We are treating this
problem motivated by the ArcelorMittal application, related
to the TCM.

The rest of the paper is organized as follows. Section II
introduces the time-varying delays descriptor system under
study and formulates the state-feedback control design
problem that will be solved. The existence and uniqueness
of trajectory of the underlined system are provided in
section III. The main results on the control design are
gathered in section IV: firstly conditions ensuring the
stabilization of the time-varying descriptor system are
proposed as linear matrix inequalities and secondly an
optimization problem, that minimizes an upper bound of the
performance cost is provided. We numerically illustrate our
results in section V and we give some concluding remarks
in section VI.

Notation

In the rest of the paper, the following notations will be
used. R is the set of real numbers. For all θ ∈ [−h, 0] we
us the notation xt(θ) = x(t+ θ). |x| is the absolute value of
x ∈ R. ‖x‖ is the Euclidean norm of x ∈ Rn. ‖A‖ denotes
the Euclidean induced norm of the matrix A ∈ Rn×n. λ(A)
denotes the vector of the eigenvalues of the matrix A and
A(i) its ith row. In ∈ Rn×n represents the identity matrix
of dimension n. The relation P > 0 refers to that the
matrix P ∈ Rn×n is positive definite. The superscript T
means the transpose, and the symbol ? represents the term
induced by symmetry. diag{. . . } stands for a block diagonal
matrix. He(·) is the matrix Hermitian operator. Finally, Tr(·)
is the trace of a square matrix and E(·) is the expectation of
stochastic variables.

II. STUDIED SYSTEM AND ISSUE TO SOLVE

Motivated by the preliminary modeling of the TCM in [12]
with ` + 1 stands, in the sequel we consider the following
singular system with `-time-varying delays:

Eẋ(t) = A0x(t) +
∑̀
i=1

Aix(t− τi(t)) +Bu(t) (1)

= f(x(t), xt(−τ1(t)), . . . , xt(−τ`(t)), u(t)), (2)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input
vectors respectively. E,Ai ∈ Rn×n and B ∈ Rn×m are
constant matrices. The matrix E is singular and such that
rank(E) = r < n. For the TCM, the state gathers physical
variables and naturally the system is a concatenation of
r nonlinear differential equations and (n − r) nonlinear
algebraic equations leading to a singular matrix E of type
E = diag(Ir, 0n−r). We will assume this value in the
sequel of the paper. We introduce the associated partition of
matrices Ai, i ∈ {0, 1, . . . , `} as follows into two subspaces
of dimensions r and (n− r)

Ai =

[
Ai1 Ai2
Ai3 Ai4

]
, ∀i ∈ {0, . . . , `}, B =

[
B1

B2

]
. (3)

The same decomposition holds for the notation x(t) =(
x1(t)
x2(t)

)
and u(t) =

(
u1(t)
u2(t)

)
.

The delays τ1(·), . . . , τ`(·) in the dynamics (1) consist
in propagation times of the metal strip between the stands:
they are state-dependent (mainly strip speed dependent) but
we will consider here only robustness with respect to these
delays and assume only they are time-dependent with the
following assumptions:

– The delays are causal and upper bounded

0 ≤ τi(t) ≤ hi, hi > 0, ∀i ∈ {1, . . . , `}. (4)

We denote h = max{hi | i = 1, . . . , `}.
– The delays are derivable functions of time t and

τ̇i(t) ≤ di < 1, ∀i ∈ {1, . . . , `}. (5)

It should be pointed out that the conditions (4) and (5)
are physically natural for TCM, due mainly to the bounded
speed and also the bounded acceleration of the metal strip.
In inequalities (5), the upper bound di are strictly less than
1, thanks to the fact that the strip does not fold and that
the passing order of the slices of the strip into the stands is
preserved.

To complete the definition of our system we have to
introduce the initial condition as:

x(θ) = φ(θ), ∀θ ∈ [t0 − h, t0] (6)

with φ ∈ Ch,n = C([t0 − h, t0],Rn). The notation

φ(t) =

(
φ1(t)
φ2(t)

)
is induced by the decomposition of E.

Additional conditions allowing φ(·) to be compatible, that is
ensuring the existence and the uniqueness of a continuous
trajectory issued from (1) and (6), will be given in the
following section.

Selecting a control law is guided, in practice, by the
willingness to reach a collection of specifications related to
the TCM and to the product. A large number of specifications
can be formulated into a quadratic cost function to minimize.
The induced multi-objective optimization problem may be
recasted into a mono-objective one by considering a suitable
weighting sum of these specifications defined as

J (φ, u) =

∫ +∞

t0

(xT (s)Qx(s) + uT (s)Ru(s))ds, (7)

where Q = QT ≥ 0n and R = RT > 0m.
The tuning parameters are thus these weighting

coefficients. Furthermore if the trajectory related to
the initial condition φ(·) and the control u(·) exists and is
unique, the cost J depends only on φ(·) and u(·).

Remark 1: It should be noticed that the criterion J
defined by (7) does not contain time-delayed quadratic terms.
This choice is for simplicity, an easy physical interpretation
of each term as well as to avoid redundancy of variables over
the integral support [t0,+∞). Nevertheless, quadratic terms
with respect to delayed states xs(τi(s)), (i ∈ {1, . . . , `}) may
be added thanks to the use of the extended state ξ(t) given
by (22).



Beside the issue of existence and uniqueness of a
continuous trajectory, the problem that is investigated in this
paper is defined as follows

Problem 1: Considering the system (1) and (6) under the
assumptions (4) and (5), design a control law u(·) stabilizing
the system and in addition minimizing the quadratic cost
function J given by Equation (7).

The tools of optimal control theory are not well adapted
to the presence of time-delays [2]. The main idea to solve
Problem 1 is to restrict the control synthesis to a particular
class of controllers, here the class of state-feedbacks

u(t) = Kx(t) (8)

and to use the approach of Lyapunov-Krasovskii functionals
firstly ensuring the stabilization of the system and secondly
providing an upper bound of the cost function J .

III. EXISTENCE AND UNIQUENESS OF SOLUTION

The existence (but also the uniqueness) of a solution of the
system (1) and (6) is not always guaranteed mainly because
of the presence of the singular matrix E. Therefore, in
this section we determine sufficient conditions on the initial
condition φ(·) ensuring the existence and the uniqueness of
a continuous trajectory of the system (1) and (6).

Before presenting the result of this section, let us recall
some existing contributions in the literature on the existence
and uniqueness of solution for descriptor systems. According
to [9], [10], [25], the regularity and free impulsiveness of the
delay-free singular system (i.e. A1 = . . . = A` = 0) ensure
the existence and uniqueness of its solution. In the case of
singular systems with constant delays, as mentioned in [22],
[25], the regularity and the free impulsiveness accompanied
by a compatible continuous initial function φ(·) ensure the
existence and the uniqueness of the solution. The regularity
and free impulsiveness are required to be able to locally
propagate the definition of a continuous trajectory. The
compatible initial condition is required to avoid jumps at
time t = t0. This issue is known as the Initial Value Problem
(IVP). Inappropriate initial conditions can induce jumps [26]
which may propagate through the solution due to delays. This
may affect the uniqueness of the solution.

A classical way of proving the existence and uniqueness of
continuous solution for singular systems with constant delays
is to reformulate the dynamics as a neutral delay system with
constant coefficients [22], [25], [27]. However, it is not trivial
to extend this approach to the case of descriptor systems
with time-varying delays. The main difficulty is related to
the fact that, in this case, the delay derivative is not zero
and supplementary terms appear in the neutral dynamics
formulation.

Theorem 1: Consider a regular impulse free singular
system with time-varying delays described by (1) and (6).
The system admits a unique continuous solution x(t, φ)
over

[
t0 − h̄;∞

)
if the time delays τi(t), i = 1, . . . , ` are

continuous and the initial value problem IVP φ(·) verifies

the following condition:

0 = A03φ1(t0) +A04φ2(t0)

+

2∑
j=1

∑̀
i=1

Ai,j+2φj(t0 − τi(t0)) +B2u(t0). (9)

Proof: The proof is inspired by the one in [9], that
is related to the constant delays and contains two parts. The
first one ensures that the algebraic relation in system (1), that
is their (n − r) last lines, is verified at t = t0. The second
one allows to propagate the existence and continuity of the
trajectory.

The first part concerns only the algebraic relation at time
t = t0. Thanks to the decomposition of E, we should have
the algebraic relation concerning the state as follows, ∀t ≥
t0,

0 = A03x1(t) +A04x2(t)

+

2∑
j=1

∑̀
i=1

Ai,j+2xj(t− τi(t)) +B2u(t). (10)

At time t = t0, by substituting x(·) by φ(·), thanks to
Equation (6), we obtain the desired relation (9).

The second part is proven based on the structure of the
dynamics (1), on the regularity of the time delays and on the
regularity of the initial condition φ(·). Precisely, using the
Cauchy-Schwartz inequality one can write the following:

‖f(x(t1), xt1(−τ1(t1)), . . . , xt1(−τ`(t1)), u(t1))

− f(x(t2), xt2(−τ1(t2)), . . . , xt2(−τ`(t2)), u(t2))‖
≤
∥∥[A0 A1 . . . Ad B

]∥∥×∥∥∥∥∥∥∥∥∥∥


x(t1)− x(t2)

x(t1 − τ1(t1))− x(t2 − τ1(t2))
. . .

x(t1 − τ`(t1))− x(t2 − τ`(t2))
u(t1)− u(t2)


∥∥∥∥∥∥∥∥∥∥
. (11)

This yields that the function f(·, . . . , ·, ·) is globally
Lipschitz if the time delays, the control input and the past
of the trajectory (that is at least φ(·)) are continuous time
functions. Consequently, assuming that a unique trajectory
exists and is continuous until time t, one can uniquely define
locally, by propagation, the value of the continuous trajectory
x1(s) over s ∈ [t, t + δt], with δt small enough, using the
expression of ẋ1(t). The regularity of the system implies that
A04 is not singular. That permits to define the continuous
value of x2(s) at each instant s ∈ [t, t + δt] by knowing
x1(s) over s ∈ [t, t+ δt].

Remark 2: It should be noticed that the relation (9)
introduces a constraint between the initial condition φ(·)
and the control input u(·). As a consequence, if the initial
condition is imposed, the control synthesis should take it into
account. On another side, if the control law is given, then its
properties will be guaranteed only for the set of functions
φ ∈ Ch,n verifying the induced relation (9).



Remark 3: When the state feedback control law (8) is
applied to the system (1), the condition (9) may be rewritten
as

0 = (A03 +B2K1)φ1(t0) + (A04 +B2K2)φ2(t0)

+

2∑
j=1

∑̀
i=1

Ai,j+2φj(t0 − τi(t0)), (12)

where K =
[
K1 K2

]
, according to the decomposition

of the matrix E.
Remark 3 points out that, the compatibility of the initial

condition for the closed-loop dynamics depends on the
choice of the state-feedback control gain. In order to avoid
this dependence we design a time-dependent state-feedback
control gain K(t) defined such that

– K(t0) = 0,
– K(t) is continuous on [t0,∞),
– ∃ε > 0 such that K(t) = K(ε) , K, ∀t ≥ ε.

Choosing K(t0) = 0 the condition (9) will be used to define
a compatible initial condition which is independent on the
state-feedback control gain. Roughly speaking equation (9)
simplifies into

0 = A03φ1(t0) +A04φ2(t0)

+

2∑
j=1

∑̀
i=1

Ai,j+2φj(t0 − τi(t0)). (13)

The continuity of K(t) is required to ensure the continuity
of the closed-loop system trajectory. The value of K will
be designed in the next section in order to guarantee some
performance guarantees. The parameter ε can be chosen
arbitrarily small in order to reduce the interval on which
the controller does not provide any stability or performance
guarantee. Nevertheles a compromise should be reached
because a small value of ε may induce important overshoots.
Such an approach is natural in practice, because the operator
should apply progressively the control associated with a
permanent behavior, during a transient period.

IV. CONTROL SYNTHESIS

This section is devoted to design a control law that
solves Problem 1. The main tool is a Lyapunov-Krasovskii
functional, that is suitable for time-delayed singular system,
for which the delays satisfy the constraint (5). More
particularly, we will use the Lyapunov-Krasovskii functionals
that are modified to cope with time-delayed singular
systems [27]. The main result is gathered in Theorem 2.

Theorem 2: Let us consider the system (1) and the
assumptions detailed in the previous sections. Assume that
there exist symmetric positive definite matrices 0n < Gi =
GTi ∈ Rn×n, i ∈ {1, · · · , `}, an invertible matrix W ∈ Rn×n
and a matrix Y ∈ Rm×n such that the relation

WTET = EW > 0n, (14)

and the linear matrix inequality (LMI)

Ψ WTH Y T A1W · · · A`W
? −In 0 0 · · · 0

? ? −R−1 0
...

? ? ? −(1 − d1)G1 0

? ? ? ?
. . . 0

? ? ? ? ? −(1 − d`)G`


< 0

(15)
are verified, with

Ψ = He(A0W +BY ) +
∑̀
i=1

Gi, (16)

and H ∈ Rn×n defined by Q = HHT . Then the state
feedback (8) with the feedback gain K = YW−1 stabilizes
the system with the Lyapunov-Krasovskii functional

V (t, xt) = xT (t)ETPx(t) +
∑̀
i=1

∫ t

t−τi(t)
xT (s)Six(s)ds,

(17)
with P = W−1 and Si = PTGiP , i ∈ {1, · · · , `}. In
addition we have the upper bound

J (φ, u) ≤ V (t0, φ) = φT (t0)ETPφ(t0)

+
∑̀
i=1

∫ t0

t0−τi(t0)
φT (s)Siφ(s)ds. (18)

Remark 4: Thanks to the structure of the singular matrix
E, the equality (14) is verified by choosing the symmetric
positive definite matrix W of the form

W =

[
W1 0r×(n−r)
W3 W4

]
, (19)

with W1 = WT
1 > 0r and without constraint on W3 and

W4.
Proof: Let us consider that the assumptions of the

Theorem 2 are verified. Applying a Schur complement to
the LMI (15), it yields

Ψ + WTQW + Y TRY A1W · · · A`W
? −(1 − d1)G1 0
...

. . . 0
? · · · −(1 − d`)G`

 < 0.

Thanks to the invertibility of the matrix W ,
post-multiplying and pre-multiplying the latter inequality by
diag(W−1,W−1,W−1) and its transpose leads to

Φ =


Ω PTA1 · · · PTA`
? −(1− d1)S1 0

. . .
? ? −(1− d`)S`

 < 0 (20)

where

Ω = He(AT0 P +KTBTP ) +Q+KTRK +
∑̀
i=1

Si. (21)



By denoting

ξ(t) =


x(t)

x(t− τ1(t))
...

x(t− τ`(t))

 , (22)

we have

V̇ (t, xt) + xT (t)Qx(t) + uT (t)Ru(t) ≤ ξT (t)Φξ(t) < 0,
(23)

for all ξ(t) 6= 0, where the time derivative V̇ (t, xt) exists
due to the assumptions on the delays and

V̇ (t, xt) =
dV (t, xt)

dt

= ẋT (t)ETPx(t) + xT (t)ETPẋ(t) +
∑̀
i=1

xT (t)Six(t)

−
∑̀
i=1

(
1− τ̇i(t))xT (t− τi(t)

)
Six(t− τi(t)), (24)

that is in other words, thanks to Assumption (5)

xT (t)
[
Q+KTRK

]
x(t)+ẋT (t)ETPx(t)+xT (t)ETPẋ(t)

+
∑̀
i=1

xT (t)Six(t)−
(
1− τ̇i(t))xT (t− τi(t)

)
Six(t− τi(t))

≤ xT (t)
[
Q+KTRK

]
x(t)+ẋT (t)ETPx(t)+xT (t)ETPẋ(t)

+
∑̀
i=1

xT (t)Six(t)−
(
1− di)xT (t− τi(t)

)
Six(t−τi(t)) < 0.

(25)

Because by the definition of the cost function,

0 ≤ xT (t)Qx(t) + uT (t)Ru(t), (26)

it implies that dV (t,xt)
dt < 0, that is the global stability of the

system. As a consequence

lim
t→+∞

V (t, xt) = 0. (27)

In addition, by integrating the inequality (23), and due
to the limit (27), one obtain the upper bound (18). That
concludes the proof.

Based on Theorem 2, it is possible to build an optimization
problem offering a solution to Problem 1. The idea is to
select among all the state feedbacks induced by Theorem 2,
the one that minimizes the upper bound in (18), that is
the initial Lyapunov-Krasovskii functional taken at t = t0:
V (t0, φ).

In practice, we would like to provide an optimization
problem that is independent on the initial condition φ in
order to avoid a new controller synthesis for each initial
condition and also the dependency of the controller on the
initial condition. Following this approach, we assume that the
initial condition is a stochastic realization of a zero-mean and
identical and independent process, then E[φ(t)] = 0n×1 and
E[φ(t)φ(t)T ] = In, ∀t ∈ [t0 − h, t0].

Under these assumptions, we consider the expectation of
the upper bound V (t0, φ) as the cost to miminize:

E[V (t0, φ(·))] = Tr(EP +
∑̀
i=1

τi(t0)Si), (28)

which can be approximated by

Tr(EP +
∑̀
i=1

hiSi), (29)

in order to be independent also of the initial time delays.
Nonetheless, the cost defined by (28) is not express

straightforwardly with variables used in Theorem 2. To
circumvent this difficulty, we introduce a further auxiliary
upper bound, based on the following lemma.

Lemma 1: Let us introduce a symmetric and positive
definite matrix U ∈ Rn×n in addition of the whole matrices
introduced above. The inequality, which is an LMI in the
variables,

U

[
Ir

0(n−r)×r

]
In · · · In

? W1 0r×n
. . . 0r×n

? ? D

 > 0, (30)

with D = diag(W + WT − h1G1, · · · ,W + WT − h`G`),
implies

EP +
∑̀
i=1

hiSi < U. (31)

Proof: Assume that the LMI (30) is feasible,
then Gi are invertible. Thanks to the relation (W −
hiGi)(hiGi)

−1(W − hiGi)T ≥ 0, it yields
U

[
Ir

0(n−r)×r

]
In · · · In

? W1 0r×n
. . . 0r×n

? ? D̃

 > 0, (32)

with D̃ = diag(W (h1G1)−1WT , · · · ,W (h`G`)
−1WT ).

Applying a Schur complement to the latter inequality results
in

U >

[
W−11 0

0 0

]
+W−T (

∑̀
i=1

hiGi)W
−1, (33)

= EP +
∑̀
i=1

hiSi (34)

and concludes the proof.
To sum up, the optimization problem solving Problem 1

writes
Optimization problem 1:

min
U,W,G1,··· ,G`,Y

Tr(U)

over the constraints (14), (15) and (30). �
The following section focuses on numerical examples to

illustrate the main result.



V. ILLUSTRATIVE NUMERICAL EXAMPLE

In order to illustrate the above result, a numerical example
is proposed. Consider the following time delayed descriptor
system where n = 2 and r = 1, with ` = 2 time varying
delays, described by its matrices

E =

[
1 0
0 0

]
, A0 =

[
2 −2
−0.7 −6.4

]
A1 =

[
−0.5 0.3

0 −0.9

]
, A2 =

[
−0.4 0

1 −0.6

]
, B =

[
2
1

]
Note that the matrix A0 is not stable. We set t0 = 0. The

time varying delays are given by the time functions

τ1(t) = 0.5 + 0.3 sin(t), τ2(t) = 1 + 0.5 sin(0.4t), ∀t ≥ 0.

The following values are chosen for the present example:
d1 = 0.3, d2 = 0.2, h1 = 0.8, and h̄ = h2 = 1.5. The plot
of these continuous delays are given in Figure 1 below.
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Fig. 1. System time delays τ1(t) and τ2(t) in function of time t.

Let us choose a compatible initial condition φ(·), that
verifies the relation (13). We select the function φ(·) in the
class of time affine functions of the form:

φ(t) =

[
β1t+ α1

β2t+ α2

]
.

Precisely, we fix here α1 = 2.5, α2 = 0.2, β1 = 1.3 and by
verifying the relation (13), we obtain β2 = 2.03.

The weighting matrices associated to the performance cost
function J are given by the following values

Q =

[
10 0
0 1

]
, R = 1.

The controller is obtained by solving the constrained
optimization problem 1 given in section IV. The numerical
solutions are

W =

[
0.192 0
0.169 1.220

]
; P = W−1 =

[
5.201 0
−0.720 0.820

]
;

G1 =

[
0.005 0.0704
0.070 1.764

]
; G2 =

[
0.034 −0.099
−0.099 0.333

]
;

U =

[
11.473 −0.878
−0.8778 1.615

]
; Y =

[
−2.000 −1.000

]
.

The state feedback gain is thus given by the relation K =
Y P yielding the numerical value:

K =
[
−9.682 −0.820

]
.

Notice first that it results in the costs Tr(U) = 13.08
and Tr(EP +

∑2
1 hiSi) = 10.49. The gap between these

two costs comes from the linearization of the nonlinear
inequality (32) in Lemma 1.

In order to impose the continuity of the trajectories in
closed loop, a modification of the control input as mentioned
at the end of section III is applied. The control is given by

u(t) = K(t)x(t) = α(t)Kx(t),

where the weight α(·) is defined as, with ε = 0.5,

α(t) =

 1− e−500t2

1− e−500ε2
, if t ∈ [0, ε],

1, if t ≥ ε.

The weight α(·) is depicted on Figure 2 and should be
viewed as a bumpless control concerning the continuity at
the origin.
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Fig. 2. Additional weight α(t) in function of time t.

Figure 3 shows the trajectory of the system. We can see
that the state trajectory converges to the origin. A zoom on
the time axis in Figure 4 allows to compare the control law
u(t) = α(t)Kx(t) and the pure state feedback Kx(t). It is
emphasized that the discontinuity is replaced thanks to α(·)
by a smooth peak.

Now in order to emphasize how the operator may influence
the behavior of the trajectories x(t) and the controlled
input u(t), the same optimization problem is considered
by modifying only the weights of the cost J , all other
parameters being the same:

Q =

[
10 0
0 1

]
, R = 0.01,
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Fig. 3. State trajectories x1(t), x2(t) and the control input u(t) in function
of time t.
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Fig. 4. Zoom on state trajectories x1(t), x2(t) and the control input u(t)
in function of time t. The control input u(t) = α(t)Kx(t) is compared to
the time invariant feedback Kx(t).

which leads to the state feedback

K =
[
−8.415e2 −0.4984e2

]
.

The weight R of the controlled input being reduced with
respect to the initial illustration, the state feedback gains
increase consequently. The time trajectories are depicted on
Figure 5. The component x1(t) tends faster to the origin, and
a more significative peak appears for the component x2(t)
and the control u(t). This modification can be also shown
on the phase portrait on Figure 6. This academic illustration
points out the crucial important of the weights tuning for the

VI. CONCLUSION

Motivated by a real problem in cold rolling of steel we
proposed a guaranteed cost control design for descriptor
systems with time-varying delays. We first analyzed the
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Fig. 5. Comparison between the time trajectories induced by two distinct
sets of weights in the cost J .
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Fig. 6. Comparison between the trajectories induced by two distinct sets
of weights in the cost J . The line consists in the initial simulation and the
dot dashed one to the second one. The red part of the trajectory corresponds
to the system history traced for t ∈ [−h̄, 0].

existence and uniqueness of the solution for the class of
systems under study. Next, we proposed a control design
based on the minimization of a cost function expressing
an overall energy of the system. The main tool utilized for
this design was a modified Lyapunov-Krasovskii functional
that takes into account the singular nature of the system.
It is important to emphasize that our solution can be easily
implemented since the controller design is expressed in LMIs
form. Numerical simulations illustrates the effectiveness of
the proposed procedure.
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