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Abstract— We analyze the competition between two firms
when each firm’s market share depends on the average opinion
of the consumer population about their respective products.
All the consumers interact with each other through a social
network and these interactions result in a certain dynamics of
their opinion. Each firm attempts to sway the public opinion
to its own side by spending money on advertising or other
marketing tools (like discounts) on specific consumers. We
propose a novel model in which the firms are aware of the
opinion dynamics and the structure of the social network.
As a result, they can prioritize certain consumer nodes over
others based on the social graph. We tackle the problem by
defining an appropriate static game model and conduct the
corresponding equilibrium analysis. Our results are illustrated
by a numerical performance analysis which provides several
insights into the choice of investment strategies and how they
relate to the consumer social network.

Keywords: Game theory, Opinion dynamics, Duopoly,
Targeted marketing.

I. INTRODUCTION

This paper studies how firms will behave, while trying
to maximize their revenue by optimizing the advertising or
marketing strategy over their consumers in an online social
network. These consumers interact with each other over the
social network and influence the opinions of each other. Two
firms competing for market share from a common consumer
pool are analyzed as a non-cooperative duopoly.

In the field of economics and marketing research, non-
cooperative games between firms associated with advertising
costs and the resulting sales or market share have been
studied since 1958 [1], [2], [3]. However, these models
assume a homogenous population of consumers, and even
recent studies on this topic like [4] do not consider that
firms have access to data from social networks. Recently
[5] investigates the auction mechanisms that are being used
by search engines to sell online advertising, i.e., targeted
advertising. Our contribution is similar in the sense that
it considers targeted advertising by firms. However, unlike
[5] we use an opinion dynamics model to propagate the
advertising in the social network. Therefore, the firms have to
target the ”popular/central” users of social networks and try
to optimize their advertising strategy in order to maximize
their revenue generated by obtaining a higher market share.
The key difference is that instead of targeting users based on
just their behavior (or opinions), firms are also aware of the
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impact popular users can have on the opinion of others. For
example, people may discuss over a social network which
brand of cola they prefer. We are interested in the marketing
strategies of these firms when they optimize their advertising
or marketing strategies based on the structure of the social
network and the dynamics of opinion, which they obtain from
a third party like Google or Facebook.

Opinion dynamics has been studied over the last few
decades by researchers from various disciplines such as
sociology [6], [7], physics [8], computer science [9], [10],
mathematics, and engineering [11], [12], [13]. The primary
motivation behind these studies was to better understand the
propagation of ideas and fads in social networks. Naturally,
some of these opinions that are propagated over a social
network will be on products sold by certain firms, which is
the framework of interest for this work. Among the many
existing models of opinion dynamics, we choose to use an
early one proposed in [14]. It considers a fixed network
in which individuals repeatedly update their opinion by
averaging the opinions of their neighbors. Under some mild
assumptions on the network structure, this dynamics always
leads to consensus.

In this paper we consider a duopoly in which each firm
tries to choose the best marketing strategy based on the
information it has on the social network, i.e., each firm can
identify the impact of a user’s opinion on his neighbors and
how this opinion can propagate. In other words, the two firms
compete for consumers who belongs to a social network with
known topology, and try to shift their opinion to their side,
thereby capturing a larger market share.

The contribution of this work is twofold. First, we in-
troduce a new duopoly model which accounts for the fact
that the firms know that the consumer’s opinion evolves
between two consecutive marketing campaigns according
to a structured social network. The knowledge about the
social network structure can therefore, be exploited to design
the marketing strategy. The proposed model allows one to
capture and translate mathematically intuitions such as the
following. If a firm can convince a very popular user to
use its product, this will return in a larger market share
when compared to convincing an unpopular user. Tradition-
ally, firms sponsor celebrities to influence their fan-base,
however, we are interested in incentives firms can offer to
regular, but users with a significant enough influence on
other users to capture a larger market share. This is because
the popular/influential user can spread his favorable opinion
towards the product thought the social network much more
than other users. In our work, the scale of investment a
firm makes on a user is small, i.e., targeted advertising or



offering discounts, rather than sponsoring/paying money to a
celebrity. The second contribution of the present paper is re-
lated to the game-theoretical analysis of the proposed model.
We conduct the equilibrium analysis of the proposed game,
which includes solving the issues of existence, uniqueness,
and determination of a Nash equilibrium (NE).

The rest of the paper is organized as follows. Sec. II
formulates the problem under study and introduces the main
notation and concepts necessary for the model description.
The game-theoretic analysis of the resulting model is pre-
sented in Sec. III. In subsection III-A we simplify the model
in order to obtain a static game model formulation whose
analysis is conducted in subsection III-B. Ideas on how
to treat the general and more challenging stochastic game
are provided in subsection III-C. Our theoretical results are
numerically illustrated in Sec. IV. The paper ends with some
concluding remarks and perspectives.

II. PROBLEM STATEMENT

We consider a market with Firms 1 and 2 that are inter-
ested in attracting consumers to their product. Consumers
belong to a social network and we refer to any consumer
as an agent. For the sake of simplicity we consider a fixed
social network over the set of vertices V = {1, 2, . . . , N} of
N agents. In other words, we identify each agent with its
index in the set V . To Agent n ∈ V we assign a normalized
scalar opinion xn(t) ∈ [0, 1] that can be interpreted as the
probability of an agent to buy from Firm 1. The revenue
obtained by a firm is proportional to its average market share
i.e., for Agent n the revenue of Firm 1 is proportional to
xn(t) and for Firm 2 the revenue is proportional to 1−xn(t).
We use x(t) = (x1(t), x2(t), . . . , xN (t))> to denote the
state of the network at any time t, where x(t) ∈ A0 and
A0 = [0, 1]N .

In order to obtain a larger market share, Firm i in-
vests according to the investment or action vector ai =
(ai,1, . . . , ai,N )> ∈ Ai on marketing campaigns at time
instants tj ∈ T . A given action therefore corresponds to
a given marketing campaign, the campaign aiming at influ-
encing the consumer’s opinion. These instants corresponding
to the campaigns are known and are collected in the set
T = {t1, t2, . . . , tM} with tM−1 being the last campaign.
Between two consecutive campaigns, the consumer’s opinion
is only influenced by the other consumers of the networks.

We call ai the action of Firm i ∈ {1, 2}, with ai,n ∈ {0, 1}
being the marketing expenditure targeted at Agent n. The
action ai of each firm belongs to a discrete set A1 = A2 =
{0, 1}N . These campaigns modify the opinions of agents
instantaneously according to the function f(a0, a1, a2) :
A0×A1×A2 → A0. We use φ(a0,n, a1,n, a2,n) to represent
the opinion jump of Agent n such that

f(a0, a1, a2) = (φ(a0,1, a1,1, a2,1), . . . , φ(a0,N , a1,N , a2,N ))
(1)

and we assume that

φ(a0,n, a1,n, a2,n) =

 a0,n if a1,n = a2,n

1 if a1,n > a2,n

0 if a1,n < a2,n

(2)

where a0 represents the estimate the firms have about the
opinion vector just after the campaign. If the estimate is
perfect then a0 = x(tj), tj ∈ T . The interpretation of this
model is that both firms have similar attraction (price or
value) to agents when neither or both firms pay for marketing
targeted at Agent n. In this case, the agent retains his
opinion. However, if just one firm invests in n, for instance
using advertising or offering discounts, this results in the
corresponding product being more attractive and the agent
therefore shifts his opinion favorably towards that firm.

Let us introduce some graph notions allowing us to
define the interaction structure in the social network under
consideration.

Definition 1 (Directed graph): A directed graph is a cou-
ple (V, E) with V being a finite set collecting the vertices, and
E ⊆ V×V the set of directed edges. To each edge (m,n) ∈ E
we assign a value Am,n > 0 representing the weight/trust
that Agent m gives to Agent n. If (m,n) ∈ E , we say that
Agent m is a neighbor of Agent n. When (m,n) /∈ E we fix
Am,n = 0. The matrix A with components Am,n is called
the weighted adjacency matrix.

Agent m is said to be connected with Agent n if the graph
(V, E) contains a directed path from m to n i.e., if there exists
at least one sequence (m = m1,m2, . . . ,mk+1 = n) such
that (mh,mh+1) ∈ E ⇔ Amh,mh+1

> 0, ∀h ∈ {1, 2, . . . , k}.
Definition 2 (Strongly connected graph): The graph

(V, E) is strongly connected if for any two distinct agents
(m,n) ∈ V2, m is connected to n

In this work we consider that opinion dynamics in the
social network is characterized by a linear consensus model
described by the following differential equation:

ẋ(t) = −Lx(t) (3)

where L is the Laplacian matrix associated with the graph,
whose components are defined as:

Lm,n =


N∑
n=1

Am,n if m = n

−Am,n if m 6= n

. (4)

As a result of the marketing campaigns, we have the follow-
ing hybrid opinion dynamics model{

x(t) = −Lx(t) ∀t ∈ R \ T
x+(tj) = f(x(tj), a1, a2) ∀tj ∈ T (5)

as shown in Fig. 3.

For ease of exposition, we first consider the campaign
set to be T = {0,T}, i.e., the firms launch a marketing
campaign at t = 0 and look at the revenue generated till
time t = T. We will later extend to the more general case.
As explained previously, the revenue generated by Firm 1
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Fig. 1. Each firm tries to influence the consumer’s opinion through mar-
keting campaigns which take place at discrete time instants. The two firms
conduct their campaigns simultaneous and over a period which is assumed
to be negligible. Between two marketing campaigns, the consumer’s opinion
is only influenced by the interactions it has through the social network it
belongs to. The figure shows an example of trajectory for an agent following
(5). The trajectory is displayed as a piece-wise continuous lines with jumps
when t ∈ T = {0, 4, 8, 12}. The action pairs (a1,n, a2,n) at t1 = 0 is
(1, 0), at t2 = 4 is (1, 1) and t3 = 8 is (0, 1).

over a period [0,T] is assumed to be given by

λ1

∑
n∈V

∫ T

0

xn(t)dt

while the revenue generated by Firm 2 is

λ2

∑
n∈V

∫ T

0

1− xn(t)dt

where λ1, λ2 > 0 are coefficients associated with the amount
of profit earned per agent for unit marketing cost. Due to the
expenditure incurred from advertising, the net profit obtained
after campaign at time T, which we denote by ui for Firm
i can be calculated as

u1(a0, a1, a2) =
∑
n∈V

[(
λ1

∫ T

0

xn(t)dt

)
− a1,n

]
, (6)

and

u2(a0, a1, a2) =
∑
n∈V

[(
λ2

∫ T

0

(1− xn(t))dt

)
− a2,n

]
.

(7)
Although u1 and u2 in (6) and (7) denote the actual

revenue, Firms 1 and 2 may not have access to the actual
opinion level of agents x(0) when they launch the advertising
campaign. Instead, they might have an estimate of this value
which we denote by x̂(0), which we assume is common
to both firms. The study of the case where each firm has a
different estimate and incomplete information on the estimate
of each other, is beyond the scope of this paper, and is

discussed in the conclusion as a potential extension. The
dynamics of x will still be given by (5) and the profit
computed as (6) and (7) but the actions a1, a2 will be decided
based on x(0) = x̂(0) and each firm will estimate its utility
using (5) with x(0) = x̂(0).

III. GAME-THEORETIC ANALYSIS

To tackle the above problem in full generality, one would
need to study the repeated interactions between the firms and
therefore exploit a dynamic game model (a stochastic game
to be precise). The choice we make here is to use a static
game model to study the problem considered. This allows
one to decouple the problem in time (utility functions are
independent from stage to stage); some elements on how
to move to the stochastic game formulation are provided in
Sec. III-C. Note also that the analysis of the static game
is a necessary step to the analysis of the stochastic game.
To make the static game analysis as simple as possible,
we will exploit two auxiliary results. Prop. 1 allows one
to express the utility functions (6) and (7) as a function
of the initial opinion while Prop. 2 shows that the problem
can be decoupled spatially that is, the problem boils down
to studying N component games, each component game
involving the two firms and one agent.

A. Static game formulation

As seen in the preceding section, the utility functions
depend on the time average opinion. But, by exploiting the
agent opinion dynamics (5), each utility function can be
shown to depend only on the initial agent opinion and the
firm actions. This is what the following proposition states.

Proposition 1: Let us denote by a0 the initial opinion
vector i.e., a0 := x̂(0). If (V, E) is a strongly connected
graph then the firm utility functions (6) and (7) can be written
as:

u1(a0, a1, a2) = 1>N [λ1Gf(a0, a1, a2)− a1] (8)

and

u2(a0, a1, a2) = 1>N {λ2 [T1N −Gf(a0, a1, a2)]− a2}
(9)

where 1N is the N−dimensional column vector whose
entries are all equal to 1 and

G := −(L+J)−1
[
e−T(L+J) − I

]
+ (1 + T− e−T)J (10)

with: I being the identity matrix and J = 1Nq
>; q is defined

by q>L = 0 and q>1N = 1. �
Proof: See Appendix A.

The strategic or normal form of the static game of interest
therefore writes as:

G = (F , {Ai}i∈F , {ui}i∈F ) (11)

where:
• F = {1, 2} is the set of players (i.e., Firms 1 and 2);
• Ai = {0, 1}N is the set of pure actions for Firm i;
• ui is the utility function for Firm i as defined per (8)

and (9).



Now, we introduce a very useful quantity: the agent
influential power (AIP). It is useful to derive the proposition
on spatial decoupling and represents a key parameter for
the numerical performance analysis. The AIP is defined as
follows:

∀n ∈ {1, . . . , N}, ρn := e>nG (12)

where en is the nth vector of the canonical basis of RN i.e.,
the entries are all zero except for the nth which equals 1.
The AIP appears in the following auxiliary game, which will
be referred to as a component game:

Gn =
(
F , {0, 1}2, {ui,n}i∈F

)
(13)

with

u1,n(a0,n, a1,n, a2,n) = λ1ρnφ(a0,n, a1,n, a2,n)−a1,n (14)

and

u2,n(a0,n, a1,n, a2,n) = λ2ρn [1− φ(a0,n, a1,n, a2,n)]−a2,n

(15)
where φ is defined by (2) and a0,n = x̂n(0). Therefore, in
Gn, Firm i only chooses a binary action namely, to invest or
not in marketing for Agent n, and the impact of the action
on the total utility ui is measured by ui,n. It is seen that
the AIP is a key parameter for the firms since it represents
the economic efficiency or the return of investment. In the
next section, we show that it suffices to study this component
game to analyze the ”large” game G.

B. Equilibrium analysis of Gn
In the presence of multiple utility functions for which the

players have only partial control of the function variables, it
is necessary to define the problem before solving it, hence
the notion of the solution concept associated with a game
is considered (see e.g., [15]). A famous solution concept is
the Nash equilibrium (NE). There exist many interpretations
to explain that such an equilibrium may be a reasonable
outcome for a problem such as the one considered; this
includes learning procedures which only require local or
measurable quantities [15]. An NE for G is defined as
follows.

Definition 3 (Pure NE): A strategy profile (a?1, a
?
2) ∈

{0, 1}2N is a pure NE for G for a given a0 if

∀i ∈ F , ∀ai ∈ Ai, ui(a0, a
?
i , a

?
−i) ≥ ui(a0, ai, a

?
−i) (16)

where −i stands for the other firm than i. �
To conduct the equilibrium analysis of G we resort to the

following auxiliary result.
Proposition 2 (Spatial decoupling): Any pure NE of G

writes as a? = (a?1,1, . . . , a
?
1,N , a

?
2,1, . . . , a

?
2,N ) where ∀n ∈

{1, . . . , N}, (a?1,n, a
?
2,n) forms a pure NE for Gn.

Proof: See Appendix B.
Based on the previous result, we can now conduct the NE

analysis for Gn. The main issue of the equilibrium analysis
is the existence one. Since the number of players and the
number of actions of Gn are finite, the existence of an NE in
the sense of the probability distributions is guaranteed [16];

we will come back to this form of NE (called a mixed NE) a
little farther into the paper. Here, we start with the existence
issue for a pure NE, which is the most relevant type of NE
in practice [15].

Proposition 3 (Equilibrium conditions): Let a0,n = 1 −
a0,n and Nn denote the set of pure NE of Gn. Then,

1) (1, 1) ∈ Nn iff λ1 ≥ 1
ρna0,n

and λ2 ≥ 1
ρna0,n

;
2) (1, 0) ∈ Nn iff λ1 ≥ 1

ρna0,n
and λ2 ≤ 1

ρna0,n
;

3) (0, 1) ∈ Nn iff λ1 ≤ 1
ρna0,n

and λ2 ≥ 1
ρna0,n

;
4) (0, 0) ∈ Nn iff one of the following conditions is met:

(i) λ1 ≤ 1
ρna0,n

and λ2 ≤ 1
ρna0,n

; (ii) λ1 ≤ 1
ρna0,n

and
λ2 ≤ 1

ρn
; (iii) λ1 ≤ 1

ρn
and λ2 ≤ 1

ρna0,n
.

�
Proof: See Appendix C.

Fig. 2 summarizes Prop. 3 in the (λ1, λ2) plane for
a0,n < 0.5. It is worth noting that Prop. 3 emphasizes
two extreme situations. When the two firms assigns enough
value to the benefit term of their utility namely, when λ1

and λ2 are sufficiently large, the firms should invest on the
considered agent. Interestingly, the corresponding threshold
can be expressed and seen to depend on the API ρn and the
estimate of the agent opinion a0 = x̂0. On the other hand,
when λ1 and λ2 are sufficiently small, the firms have no
interest in investing on the considered agent. Prop. 3 also
shows the other possible intermediate situations. When none
of the conditions of Prop. 3 is satisfied, there is no pure NE.
However, there is a strict mixed NE which can be explicitly
described. Before expressing it, let us define a mixed NE. A
mixed NE is merely a pure NE of the mixed extension (or
expected version) of Gn. By denoting πi the probability that
Firm i assigns to action 1 the expected utility writes as

ũi,n(a0,n, π1, π2) =

1∑
k=0

1∑
`=0

wk,`ui,n(a0,n, k, `) (17)

where wk,` is the probability that (a1,n, a2,n) = (k, `), i.e.,

wk,` = k`π1π2 + (1− k)`(1− π1)π2

+(1− `)k(1− π2)π1

+(1− k)(1− `)(1− π1)(1− π2).
(18)

Therefore, the profile (π?1 , π
?
2) is a mixed NE for Gn if it

verifies the condition of Definition 3 when replacing ui with
ũi. The following proposition provides the mixed NE, which
is a strictly mixed NE since it lies at the interior of the unit
simplices associated with the firm action sets.

Proposition 4: When none of the conditions in Prop. 3 is
met, then Gn has a strictly mixed NE that is given by:

π?1,n =
1− λ2ρna0,n

(λ2ρn)(1− 2a0,n)

π?2,n =
1− λ1ρna0,n

(λ1ρn)(2a0,n − 1)

. (19)

�
Proof: See Appendix D .

Obviously, while the existence of a mixed NE is appealing
mathematically speaking, its operational meaning is not
necessarily clear. In fact, as explained in various references



Fig. 2. Conditions for NE shows as a region in the (λ1ρn, λ2ρn) space
for a0,n = 0.25. The initial opinion of the agents is biased towards Firm
2, which explains why the above partition is asymmetric.

(see e.g., [17]), at least two operational meanings can be
found for a mixed NE. One of them consists in assuming
that the interaction is repeated and each firm has to choose
the frequency with which it invests on an agent. Another
interpretation is given by the Nash mass interpretation,
which assumes a large number of agents, or alternately large
number of small identical and independent networks. In this
situation, the mixed probabilities may represent the fraction
of agents for which investing is relevant.

To conclude this section, we consider the special case
where the firms have no information about the agent opinion.
This case is defined through the following assumption.

Assumption 1: When both firms have no information on
the opinion of any agent, both firms take x̂n(t) = 0.5 for all
n ∈ V and t ∈ R. �

Under this assumption, the equilibrium action takes the
form given by the following corollary.

Corollary 1: Under Assumption 1 the equilibrium action
for Firm i in game Gn writes as

a?i,n =


1 if λi ≥

2

ρn

0 if λi <
2

ρn

. (20)

�
Proof: This can be verified by substituting for a0,n =

ā0,n = 0.5 in the conditions for NE in Prop. 3.
Note that when λiρn 6= 2 for all (i, n), then the game

has a unique pure NE. Otherwise it has multiple pure NE.
Also, it can be noticed that when λi <

2
ρn

for both firms,
the game Gn coincides with a prisoner’s dilemma, which has
been extensively studied in literature [17].

C. Extension to stochastic games

As explained at the beginning of Section III, the choice we
made is to decouple the opinion dynamics and the dynamics
associated with the actions chosen by the firms over time.
But, in full generality, the firms interact with each other
through a repeated game and over several stages. Therefore,
the initial state a0 is in fact action-dependent and thus stage-
dependent. The general model to be considered is therefore
a dynamic game in which the game state is controlled by the
actions. The full analysis of such a game, especially in the
presence of a general observation structure for the estimates

available at the firms, is beyond the scope of this paper.
Note that, however, the analysis is quite simple for some
special cases such as the case with no information about the
initial opinions vector. Indeed, under such an information
assumption, it is possible to build an investment strategy
which relies on the grim trigger strategy [15]. Sufficient
conditions e.g., on the discount factor may then be derived
to ensure that the corresponding strategy be an equilibrium
of the repeated game. This goes beyond the scope of this
present work and constitutes a significant extension which
may be considered as a future work.

IV. NUMERICAL PERFORMANCE ANALYSIS

We consider a network of 5 agents interacting with the
fixed directed graph shown in Figure 2, yielding heteroge-
neous ρn. The campaign instances are T = {1, 2, . . . } and
we take T = 1. We consider that Firm 1 is willing to pay
more for advertising and he takes λ1 = 1 when compared to
Firm 2 with λ2 = 0.5.

Agent 1 :
ρ1 = 2.23

Agent 2 :
ρ2 = 4.37

Agent 3 :
ρ3 = 2.26

Agent 4 :
ρ4 = 0.77

Agent 5 :
ρ5 = 1.61

Fig. 3. Graph structure under consideration. An arrow from m to m
implies that agent m is influenced by agent t and An,m = 1, otherwise
An,m = 0. We compute ρn using (12) for T = 1.

In Figure 4, we plot the opinion against the time when
both firms have no information on the opinion following
assumption 1. As seen in Figure 4, the aggressive marketing
strategy of Firm 1 due to higher λi, results in Firm 1
eventually capturing a larger market share. This is because
of the existence of the pure NE which is favorable to Firm
1 as λ1 > λ2.

In Figure 5, we plot the opinion against the time when
both firms are aware of the exact opinion levels x(t). In this
case, a pure NE does not always exist, and as a result, firms
play a random strategy based on ρn and xn(kT) based on
(19). What is interesting to note is that although λ1 > λ2 as
in Figure 4, Firm 1 is unable to capture the market due to
the mixed NE. Even running the simulation for a long period



Fig. 4. As both firms have no information, we always have a pure NE,
campaign instances are T = {1, 2, . . . }. Agent 2 is highly influential and so
both firms markets to him, but only Firm 1 markets to 3 and 1 as λ1 > λ2.
This results in the opinion of 1 and 3 jumping.

Fig. 5. As both firms have information on x(t), we do not have a pure
NE. This results in the opinion of Agents 1, 3, and 2 jumping randomly
based on the probabilities in (19) for the mixed NE.

of time does not produce a stable configuration as the firms
keep campaigning against each other via a mixed strategy.

Finally, in Figure 6, the average market share captured
by firm 1, normalized to 1 is plotted against λ1. This value
is computed over a long period of time and over several
realizations of the mixed strategies. We fix λ2 = 0.5 for
this figure. What is interesting is that for λ1 around 1, the
market share capture is actually less than when λ1 = 0.5.
This implies that even when the firm is more willing to invest
in marketing, the NE (pure or mixed) is such that the firms
ends up not investing as much as the firm with λ2 = 0.5.
Nevertheless, when λ1 is sufficiently high, firm 1 begins to
take over the market as expected. In order to further analyze
these effects, a highly relevant extension of this work will
be when we study the resulting stochastic game.

V. CONCLUSION

In this paper, we introduce a novel static game which
allows the firms to exploit their knowledge about the social
network the targeted consumers belong to. Remarkably, the
relationship between the way the marketing campaigns are
conducted and the induced revenue for the firms can be
well understood. For this, we have conducted a complete
equilibrium analysis. Obviously, it is possible to extend the
convenient and original model we propose here. Three very
significant extensions may be mentioned: 1) To model the
problem by a stochastic game to account for the correlations

Fig. 6. Average market share captured by firm 1 over a long period of time
and over several realizations of the mixed strategies. We fix λ2 = 0.5 and
plot the average market share (normalized to 1) against λ1. Surprisingly,
increasing λ1 results in a lower market share initially, and yields returns
only when it is sufficiently high.

between the opinions from campaign to campaign. This
will give rise to a problem with multiple scale dynamics,
that of the interaction among the consumers and that of
the interaction between the firms; 2) To study in detail the
impact of an arbitrary observation structure on the social
network (namely, assume an arbitrary estimate for the social
network structure) on the interaction outcome; 3) To conduct
a thorough numerical analysis which exploits real data.

APPENDIX

A. Proof of Prop. 1

Before proving Prop. 1 we provide below a technical
lemma. Recall that L1N = 0N and consider the vector q
such that q>L = 0N with q>1N = 1. Let us also introduce
the matrix J = 1Nq

> having the properties LJ = JL =
0N,N and Jk = J, ∀k ∈ N.

Lemma 1: The matrix L + J is non-singular.
Proof: Since (V, E) is strongly connected one has that

Lx = 0N ⇔ ∃α ∈ R such that x = α1N ,

where the value α can be computed as α = q>x. Conse-
quently, one has

P1 : Lx = 0N and q>x = 0 imply x = 0N .

Let us now show that

ker(L + J) = 0N

which is equivalent with L + J non-singular.
Consider y ∈ ker(L + J). It follows that

(L + J)y = 0N ⇔ Ly = −Jy = −1Nq>y. (21)

Using

q>(L + J) = q>L + q>J = 0N + q>1Nq
> = q>

one obtains that ∀x ∈ RN the following holds

q>(L + J)x = q>x.

In particular
q>y = q>(L + J)y = 0.



Replacing q>y in (21) one obtains that Ly = 0N . We
conclude that y = 0N by using P1.

Proof: [Proof of Prop. 1] Let us first observe that (6)
and (7) can be rewritten in a more compact form as:

u1(a0, a1, a2) = 1>N

[
λ1

∫ T

0

x(t)dt− a1

]

= 1>N

[
λ1

∫ T

0

e−LTdtf(a0, a1, a2)− a1

]

u2(a0, a1, a2) = 1>N

[
λ2

∫ T

0

(
1N − x(t)

)
dt− a1

]

= 1>N

[
λ2

(
T1N −

∫ T

0

e−LTdtf(a0, a1, a2)
)
− a1

]
.

(22)

One can see that (8) and (9) are obtained from (22) by

replacing λ1

∫ T

0

e−LTdt with G. To finish the proposition

we have to show that G is given by the expression (10).
Straightforward computation shows that when Γ is non-
singular one has∫ T

0

eΓtdt = Γ−1(eΓT − I).

Consequently, using Lemma 1 we deduce that∫ T

0

e−(L+J)tdt = −(L + J)−1(e−(L+J)T − I). (23)

On the other hand, as LJ = JL one has that

e−(L+J)t = e−Lte−Jt.

Using Jk = J, ∀k ∈ N we can express e−Jt as

e−Jt = I + J
∑
k≥1

(−t)k
k!

= I + J(e−t − 1).

Therefore

e−(L+J)t = e−Lt + e−LtJ(e−t − 1).

Since LJ = 0N,N one deduces that e−LtJ = J leading to

e−(L+J)t = e−Lt + J(e−t − 1).

Integrating the previous equality one obtains∫ T

0

e−Ltdt =

∫ T

0

e−(L+J)tdt− J(e−T − T− 1), (24)

and replacing the first term in the right-hand side from (23)
we get∫ T

0

e−Ltdt = −(L+J)−1(e−(L+J)T−I)−J(e−T−T−1)

(25)
which finishes the proof.

B. Proof of Prop. 2

Proof: Consider any deviating strategy from the con-
catenated strategy, i.e., consider a?i = (a?i,1, . . . , a

?
i,N ) de-

noting a concatenated NE of the games Gn, and a deviating
strategy a′i /∈ {(a?i,1, . . . , a?i,N )>}. By definition of a?i,n as
the NE for Gn, we know that if the other firm, i.e., 2 picks
a?2,n, then we have

u2,n(a0,n, a
?
1,n, a

′
2,n) ≤ u2,n(a0,n, a

?
1,n, a

?
2,n) (26)

for any a′2 ∈ A2. Now, note that

u1(a0, a1, a2) = 1>N [λ1(Gf(a0, a1, a2))− a1]

=
∑N
n=1 ρnφ(a0,n, a1,n, a2,n)− a1,n

=
∑
n u1,n(a0,n, a1,n, a2,n)

(27)
by definition of ρn in (12) and u1,n in (14). Similarly, we
can also express u2 as a sum of u2,n. From (29) and (26)
we can conclude that

u2(a0, a
?
1, a
′
2) ≤ u2(a0, a

?
1, a

?
2)

for any a′2 ∈ A2. With the same reasoning applying for u1,
we can have that (a?1, a

?
2) denotes a Nash equilibrium of G.

Thus, we have shown that any concatenated NE of Gn is a
NE of G. Now, if a?i is an NE of G, then, consider a′i = a?i
but with ai,m 6= a?i,m for some m. By definition of the NE,

u1(a0, a
?
1, a

?
2) ≥ u1(a0, a

′
1, a

?
2) (28)

for any ai,m. Since all the other elements are identical, we
can remove them from the inequality to get

u1,m(a0,m, a
?
1,m, a

?
2,m) ≥ u1,m(a0,m, a1,m, a

?
2,m)

(29)
for any ai,m, which defines the NE of Gn (similarly for firm
2). Therefore any NE of G automatically has components
why are NE of Gn.

C. Proof of Prop. 3

Proof: For any component game Gn, the utility matrix
can be written as

(
λ1ρna0,n, λ2ρnā0,n λ1ρn − 1, 0

0, λ2ρn − 1 λ1ρna0,n − 1, λ2ρnā0,n − 1

)
(30)

where the actions corresponding to the the i-th row and j-th
column are (i− 1, j − 1). We study (30) and search for the
conditions when each of the points can be a pure NE.

1) If λ1ρn − 1 ≤ λ1ρna0,n and λ2ρn − 1 ≤ λ2ρnā0,n,
then a resulting pure NE is (0, 0).

2) If λ1ρna0,n ≥ 1 and λ2ρnā0,n ≥ 1, then a resulting
pure NE is (1, 1).

3) If λ1ρna0,n ≤ λ1ρn − 1 and λ2ρnā0,n < 1, then a
resulting pure NE is (1, 0).

4) If λ2ρnā0,n ≤ λ2ρn − 1 and λ1ρna0,n ≤ 1 then a
resulting pure NE is (0, 1).

5) Finally, note that when λiρn < 1, a?i,n = 0 as Firm i
will never play the action ai,n = 1.



When condition 1 is met, the action profile (0, 0) is a pure
NE as we see that any agent loses by unilaterally deviating.
Similarly, conditions 2-4 ensures that each of the points
specified are pure NE. Additionally it can be seen that each
of the conditions 1-4 are mutually exclusive, i.e. , if 1 is
satisfied, then 2-4 can not be satisfied and so on. This can be
easily verified (note that ā0,n = 1− a0,n). Finally, condition
5 can also result in a (0, 0) equilibrium, when the other firm
does not play 1, as described in Prop. 3. When none of
these conditions are satisfied, none of the points in the payoff
matrix correspond to a pure NE, which means that the only
NE possible is a mixed equilibrium.

D. Proof of Prop. 4

Proof: When none of the conditions in Prop. 3 are met,
there are no pure NE for the game. If no point is a pure NE,
then a mixed NE must exist, as the game has a discrete action
set. This result is shown by Nash in his work [16]. To find
this mixed strategy, we use the fact that when player 1 plays
at the mixed NE, any action played by player 2 must result
in the same expected utility (and vice versa) [17]. Therefore,
if π?1,n is the mixed NE strategy of player 1 (the probability
of playing 0), it must satisfy

(1− π?1,n)λ2ρnā0,n + 0 = (1− π?1,n)(λ2ρn − 1)

+ π?1,n(λ2ρnā0,n − 1)
(31)

which upon simplification gives the first part of (19). We can
calculate π?2,n similarly to give the rest of (19).

REFERENCES

[1] L. Friedman, “Game-theory models in the allocation of advertising
expenditures,” Operations Research, vol. 6, no. 5, pp. 699–709, 1958.

[2] G. R. Butters, “Equilibrium distributions of sales and advertising
prices,” The Review of Economic Studies, pp. 465–491, 1977.

[3] X. Vives, “Nash equilibrium with strategic complementarities,” Jour-
nal of Mathematical Economics, vol. 19, no. 3, pp. 305–321, 1990.

[4] M. Esmaeili, M.-B. Aryanezhad, and P. Zeephongsekul, “A game
theory approach in seller–buyer supply chain,” European Journal of
Operational Research, vol. 195, no. 2, pp. 442–448, 2009.

[5] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and
the generalized second-price auction: Selling billions of dollars worth
of keywords,” The American economic review, vol. 97, no. 1, pp. 242–
259, 2007.

[6] R. Hegselmann and U. Krause, “Opinion dynamics and bounded
confidence models, analysis, and simulation,” Journal of Artificial
Societies and Social Simulation, vol. 5, no. 3, 2002.

[7] A. Martins, “Continuous opinions and discrete actions in opinion
dynamics problems,” International Journal of Modern Physics C,
vol. 19, no. 4, pp. 617–625, 2008.

[8] E. Ising, “Contribution to the theory of ferromagnetism,” Ph.D. dis-
sertation, University of Hamburg, 1924.

[9] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs
among interacting agents,” Advances in Complex Systems, vol. 3, pp.
87–98, 2000.

[10] C. V. Kerckhove, S. Martin, P. Gend, P. J. Rentfrow, J. M. Hendrickx,
and V. D. Blondel, “Modelling influence and opinion evolution in
online collective behaviour,” PLoS ONE, vol. 11, no. 6, pp. 1–25,
2016.

[11] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione,
“Binary opinion dynamics with stubborn agents,” ACM Transactions
on Economics and Computation, vol. 1, no. 4, p. 19, 2013.
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