LOGARITHMIC DEGENERATIONS OF LANDAU-GINZBURG MODELS
FOR TORIC ORBIFOLDS AND GLOBAL tt* GEOMETRY

ETIENNE MANN AND THOMAS REICHELT

ABsTrRACT. We discuss the behavior of Landau-Ginzburg models for toric orbifolds near the
large volume limit. This enables us to express mirror symmetry as an isomorphism of Frobenius
manifolds which aquire logarithmic poles along a boundary divisor. If the toric orbifold admits
a crepant resolution we construct a global moduli space on the B-side and show that the
associated tt*-geometry exists globally.
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1. INTRODUCTION

The present paper deals with classical Hodge-theoretic mirror symmetry for smooth toric Deligne-
Mumford stacks. One of the first mathematical incarnations of this type of mirror symmetry
was a theorem of Givental identifying a solution (the so-called J-function) of the Quantum
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D-module of a (complete intersection inside a) smooth toric variety with a generalized hyper-
geometric function (the I-function). This has laid the foundation to express mirror symmetry
as an equivalence of differential systems matching the Quantum D-module on the A-side with
certain (Fourier-Laplace transformed) Gauk-Manin systems coming from an algebraic family of
maps (the Landau-Ginzburg model) on the B-side. An analytic proof of this fact using oscillat-
ing integrals was given by Iritani in [Iri09]. A purely algebraic proof was given in [RS15] where
it was also shown that the Frobenius manifold on the A-side, which encodes the big quantum
cohomology, is isomorphic to a Frobenius manifold on the B-side which comes from the Landau-
Ginzburg model. The construction of Frobenius manifolds is a classical subject in singulartity
theory. The first examples arose from the work of K.+ M. Saito on the base space of a semi-
universal unfolding and later it was shown by Sabbah partly with Douai [DS03],[DS04],[Sab06]
that these results carry over to an algebraic map which satisfies certain tameness assumptions.
However, their construction is not unique in the sense that it depends on the choice of a good
basis, which provides a solution to a Birkhoff problem, and on the choice of a primitive section.
To circumvent this problem a careful analysis of the Fourier-Laplace transformed Gaufs-Manin
system and its degeneration along a boundary divisor, which contains the large volume limit, was
carried out in [RS15] in the case of Landau-Ginzburg models which serve as mirror partners for
smooth nef toric varieties. Beyond the smooth case partial results for weighted projective spaces
were obtained in [DM13] where mirror symmetry is proven as an isomorphism of logarithmic
Frobenius manifolds without pairing.

In this paper we prove mirror symmetry for smooth toric Deligne-Mumford stacks, satisfying
a positivity condition, as an isomorphism of logarithmic Frobenius manifolds, which general-
izes the theorem obtained in [RS15] for smooth nef toric varieties. In order to ensure a good
behavior of the connection and the pairing along the boundary divisor a careful choice of the
coordinates on the complexified Kéhler moduli space is needed. Since the Fourier-Laplace trans-
formed Gauf-Manin system is a cyclic D-module, the generator is a canonical candidate for the
primitve section. The Birkhoff problem is solved at the large volume limit where we identify the
fiber of the holomorphic bundle with the orbifold cohomology of the toric Deligne-Mumford stack.

The notion of tt* geometry was introduced by Cecotti and Vafa in their study of moduli spaces of
N = 2 supersymmetric quantum field theories. Hertling [Her03| formalized this structure under
the name of pure and polarized TERP-structures and showed that the base space of a semi-
universal unfolding of an isolated hypersurface singularity carries such a structure. In the case of
a tame algebraic map, a theorem of Sabbah [Sab08] shows that the corresponding Fourier-Laplace
transformed Gauk-Manin system underlies a pure and polarized TERP-structure. In [RS15] this
was used to show that a Zariski open subset of the base space of the Landau-Ginzburg model
carries a pure and polarized TERP-structure. Using mirror symmetry this induces tt* geome-
try on the quantum D-module. Iritani [Iri09] gave an intrinsic description of the corresponding
real structure on the A-side using K-theory. In this paper the result of [RS15] is generalized
to toric orbifolds. If the toric orbifold X admits a crepant resolution Z we construct a global
base space which contains two limit points corresponding to the large volume limit points of X
and Z respectively. We prove that there exists tt*-geometry on the whole moduli space which,
when restricted to some analytic neighborhood of the large volume limits, is isomorphic to the
tt*-geometry coming from the quantum cohomology of X resp. Z. The result here is in the
sprit of Y.Ruan’s Crepant Transformation conjecture which has stimulated a lot of research:
[BMP11, BMP09, Per07, BG09b, BG09a, BG09c, BG08, BGP08, CLLZ14, CLZZ09, CIT09,
Coa09, CR13, Rua06, Iwa08, LLW16a, LLW16b, LLQW16].
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Shortly after finishing this paper we learned that Coates-Corti-Iritani-Tseng [CCIT20] also stud-
ied Hodge-theoretic mirror symmetry for toric orbifolds. While their result is broader in the
sense that firstly they allow orbifolds with generic stabilizer, secondly they do not need the
nef assumption and thirdly they construct a mirror Landau-Ginzburg model even for the big
orbifold quantum cohomology, their construction is inherently local on the complexified Kahler
moduli space since they use a formal version of the Gauf-Manin system in the non-nef case and
an analytic version of the Gauf-Manin in an analytic neighborhood of the large volume limit.
The Gau-Manin system which we construct in this paper is defined on the whole complexified
Kahler moduli space and is algebraic. These two facts are essential in the proof of the existence
of tt*-geometry on the whole Kéhler moduli space.

We give a short overview of the contents of this paper: In section 2 we recall some standard facts
on toric Deligne-Mumford stacks. An import ingredient in the construction of the mirror Landau-
Ginzburg model is the extended stacky fan of Jiang [Jia08]. This enables us to introduce the
extended Picard group and the extended Kéhler cone which are needed to construct coordinates
on the base space of the mirror Landau-Ginzburg model. In section 3 we review the notion of the
Fourier-Laplace transformed Gauf-Manin system and cite some results of [RS15],[RS17] which
identifies the FL-Gaufs-Manin system of a family of Laurent polynomials with a FL-transformed
GKZ-system for which an explicit description as a cyclic D-module is available. However, the
results for the duality of FL-transformed GKZ-systems and the construction of a pairing do not
follow from loc. cit. We therefore prove some statements concerning the duality of algebraically
micro-localized GKZ-systems and conclude from these the existence of a pairing. In the fourth
section we use the results of the previous section to calculate the FL-transformed Gauf-Manin
system corresponding to the Landau-Ginzburg model (cf. Proposition 4.4). As a next step we
show that the FL-transformed Brieskorn lattice is coherent over the tame locus of the Landau-
Ginzburg model (Theorem 4.10). We then analyze the degeneration behavior along a boundary
divisor which contains the large volume limit. Finally we prove that there exists a canonical germ
of a logarithmic Frobenius manifold associated to the Landau-Ginzburg model. Section 5 reviews
orbifold quantum cohomology and the Givental connection. We show that the big quantum
cohomology gives rise to a logarithmic Frobenius manifold (Proposition 5.7). In section 6, using
a Givental-style mirror theorem of Coates, Corti, Iritani and Tseng [CCIT15b|, we combine the
last two sections to express mirror symmetry for toric Deligne-Mumford stacks as an isomorphism
of logarithmic Frobenius manifolds (Theorem 6.6). In section 7 we consider a toric orbifold X
admitting a crepant resolution Z and construct a global Landau-Ginzburg model. We prove
that there exists a pure and polarized variation of TERP structures on the base space M of
this model which gives the tt*-geometry of the corresponding quantum D-modules in different
neighborhoods of M.

Acknowledgements: The second author would like to thank Takuro Mochizuki and Claude
Sabbah for continuing support and interest in his work, Christian Sevenheck and Uli Walther for
useful discussions. We thank an anonymous referee for noticing a gap in the proof of Proposition
3.18, for pointing out a number of inaccuracies and for suggesting several improvements of the

paper.

2. SOME TORIC FACTS

We start with some notations on groups, homomorphisms of groups and associated tori. Let G be

a free abelian group. We associate to it the group ring C[G] which is generated by the elements

x9 for g € G. Its maximal spectrum Specm(C[G]) = Hom(G,C*) is naturally a commutative

algebraic group (i.e. a torus). Let a : G — H be a group homomorphism between the free
3
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abelian groups G and H. This induces a ring homomorphism
¢a : C[G] — C[H],
7 = 9
and a morphism of algebraic groups
g : Specm(C[H]) — Specm(C[G]) .
Choose a basis ¢1,...,9n resp. hi,..., hy of G resp. H. The homomorphism a is then given
by a matrix A = (a;;) with a(g;) = Z;nzl a;jh;. The bases also determine coordinates x; = x%
resp. y; = X" which identifies Specm(C[G]) with (C*)" and Specm(C[H]) with (C*)™. In these
coordinates the map 1, is given by
(€)™ —(C)",
(yl,' .. ,ym) = (le»- . »yg")

Qg

where y% =[]\, v

2.1. Toric Deligne-Mumford stacks. A toric Deligne-Mumford stack is constructed by a so-
called stacky fan which was introduced by [BCS05]. A stacky fan

¥ =(N,%,a)
consists of

e a finitely generated abelian group N of rank d,

e a complete simplicial fan ¥ in Ng := N ®z Q, where we denote by (k) the set of
k-dimensional cones of ¥ and by {p1, ..., pm} the rays of X,

e a homomorphism a : Z™ — N given by elements ay,...a,, of N with a; € p; and
a(e;) = a;, where ey, ..., e, is the standard basis of Z™.

Assumption: In the remainder of the paper we will assume that N is torsion-free. The geomet-
ric meaning of this assumption is that the associated toric stack have a trivial generic stabilizer

group.
If we choose a basis vy, ...,vg of N the map a is given by a matrix A = (ag;).

The morphism a gives rise to a triangle in the derived category of Z-modules

7™ %5 N — Cone(a) B2y
We apply the derived functor RHom(—,Z) and consider the associated long exact sequence
(2.1) 0 — N* °5 (Z™)* — Ext!(Cone(a),Z) — 0,

where the injectivity of a* follows from the fact that the image of a has finite index in N and the
surjectivity of (Z™)* — Ext'(Cone(a),Z) follows from Ext!(N,Z) = 0, i.e. from our assump-
tion that N is free.

Applying Hom(—,C*) to the exact sequence (2.1) gives the short exact sequence
0— G 2% (C*)™ — Hom(N*,C*) — 0,

where G := Hom(Ext' (Cone(a),Z), C*) (The notion G was used before for a free abelian group,
we will stick to the definition given here for the remainder of the paper). Here we have used the
4
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fact that C* is a divisible group, hence Hom(—,C*) is exact.

The set of anti-cones is defined to be

A= {I c{1,...,m}| Zonpi is a cone inZ} .
il
Each I € A gives rise to a subvariety C! ¢ C™ given by {(z1,...,2,) € C™ | x; =0 fori ¢ I}.
We set
Us:=Cm\ T
I¢A
The toric Deligne-Mumford stack associated to this data is the following quotient stack:

X :=X(X2) = [Ua/G],

where G acts on U4 via ,.

For o € ¥ we set
(2.2) I,:={ie{l,...,m}|a; €c}.
and define
Box(oc)={a e N|a= Zriai,ogri <1}.
a; o
We set
Box(X) = U Bozx(o).

The inertia stack ZX(3X) is the fiber product taken over the diagonal maps X — X x X. Its
components are indexed by the set Box(X):

X)) = || X,
vEBox(X)

where X, is the toric orbifold X' (3 /o (v)) with o(v) being the smallest cone in ¥ which contains
v (cf. [BCS05] Section 4).

We have the following description of the orbifold cohomology ring of X'. As a Q-vector space it
is isomorphic to the direct sum of the cohomology groups of the components of its inertia stack:

a(XQ) = @ HTP(X),Q),

vEBox(X)

where i, := Y r; for v € Box(X). The orbifold cohomology of X carries a product which makes
H:,(X,Q) into a graded algebra. A combinatorial description in terms of the fan has been

given by Borisov, Chen and Smith [BCS05] and, in the semi-projective case, by Jiang and Tseng
[JT08]. We equip
QV] = P Qx°
ceN
with the product

C1 C2

X =

{Xcl+c2 if there exists o € ¥ such that ¢1, ¢ € o,
X

0 otherwise .
5
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Let ¢ € N and o(c) be the minimal cone containing c. Then ¢ can be uniquely expressed as
c= Z ria; .
a;€o(c)
We define
deg(x©) = deg(c) := Zri.
Using this graduation Q[N] becomes a graded ring. By [BCS05] we have the following isomor-
phism of Q-graded rings:
. N Q[N
(2.3) ort(X, Q) =~ 5 r(a) [RENT
Denote by PL(X) the free Z-module of continuous piece-wise linear functions on ¥ having integer
values on N. We have the natural embedding of N* = Hom(N, Z) into PL(X), where the cokernel

of this map is isomorphic to the Picard group of the underlying coarse moduli space X := X (X):
(2.4) 0— N*— PL(X) = Pic(X) — 0.
We have isomorphisms

0—=N"®Q——PL(E)®Q —Pic(X)®Q——0

0—=N*"®Q Q™ H2(X,Q) —=0

where the image of the standard generator D; € Q™ in PL(Y) ® Q is the piece-wise linear
function having value 1 on a; and 0 on a; for j € {1,...,m} \ {i}. We denote the image of D;
in Pic(X) ® Q by [D;].

2.2. Extended stacky fans. Toric Deligne-Mumford stacks can also be described by a so-called
extended stacky fan (cf. [Jia08]). To the datum of a stacky fan ¥ = (N, X, a) one adds a map
Z¢ — N and writes S = {am41,...,am+te} for the image of the standard basis. By abuse of
notation we will call the following map still a:

a:Z"te — N,
e;—ale)=a; fori=1,...m+e.

The S-extended stacky fan 3¢ = (N, X, a) is given by the free group N, the fan ¥ and the map
a:Zmte - N.

Assumption 2.5. In the following we will choose @41, ..., @mte in such a way that a is sur-
jective i.e., the lattice generated by ai,...,am4e in N is saturated.

We denote by IL the kernel of a. This gives us as above the two exact sequences

(2.6) 0 —L-—2Zm"* 5 N-—0,
(2.7) 0— N* — (Z"™)* — L* — 0.
We denote by Dy, ..., Dy, . the standard basis of (Z™¢)*, i.e. D;(e;) = d;; and by [D1], ..., [Dpte]

the images of Dy, ..., Dyqe in L*.

Applying the exact functor Hom(—,C*) to the sequence 2.7 gives a map

Yo : GE — (T,
6
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where G¢ := Homgz(IL*,C*). We set
UG =Uy x (C)°,
then G acts on U§ via 1, and the quotient stack
s /G
is isomorphic to the stack X(X) by [Jia08].

Remark 2.8. Given a stacky fan ¥ = (N, 3, a) there exists a “canonical” choice of an extended
stacky fan X¢. Let Gen(o) be the subset of Boxz(c) of elements which are primitive in ¢ N N,
i.e. which can not be generated by other elements in the semigroup ¢ N N and set Gen(X) :=

U, ex Gen(o).

Assumption 2.9. In the following we will always choose
S = Gen(Y)
and we will set
n:=m-+e

and G := {a1,...,an} UGen(X). Notice that {ay,...,am} N Gen(X) = (), hence the cardinality
of G is n.

Lemma 2.10. The map ay, : Nj — N given by e; — ay,(e;) = a; is surjective.

Proof. We assumed that the fan ¥ is complete. Hence every a € N lies in some cone o. Denote
by o(a) the minimal cone containing a. The element a can be written as a non-negative rational
linear combination Zaieg(a) gia;. Write ¢; = n; + & with n; € Ny and & € [0,1). Hence
@ =3 co(a) i T X co(a) §i0i Where the last term lies in Box(c). By the definition of S this
term can be written as a non-negative integer linear combination of Gen(o). g
This choice of an extended stacky fan will allow us to give a different description of the orbifold
cohomology ring which will be very useful for our purposes.

We introduce for every a; € G a formal variable ®;. For a top-dimensional cone o € 3(d) define
in C[Dy4,...,D,] the ideal

j(o)::< II 2:- I @;“|Zliai:0,lieN>.

1;>0,a;€0 1;<0,a; €0 a; €0
We call relations [ = (11, ...,l,) of such type cone relations. The ideal
J(E) = ) J)
ocex(d)

is called the cone ideal of 3.
Let K(X) be the ideal which is generated by

m
Ej = Zak@i for k=1,....d,
i=1
where ay; is the k-th coordinate of a; € Z¢.
We call I C {1,...,n} a generalized primitive collection if the set {a; | ¢ € I} is not con-

tained in a cone of ¥ and if any proper subset of {a; | ¢ € I} is contained in some cone of ¥. We
7
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denote by GP(X) the set of generalized primitive collections.

The orbifold cohomology of X can then be expressed in the following way.

Lemma 2.11 ([TW12] Lemma 2.4). Let deg(®;) = deg(a;) for i = 1,...,n, then we have an
isomorphism of graded C-algebras
Cl®1,...,9,]
TJ(E)+KE)+ (L, 0: [ T e GP(X))’
which sends ©; to x* fori=1,...n.

orp () =

orb

Remark 2.12. We would like to remind the reader that the ordinary cohomology ring of the
underlying coarse moduli space X is given by
Cl®1,...,Dm]
KE) + ([lie; D [ T € P(%))
(see [Ful93, p. 106]) where P(X) is the set of primitive collections. Here a collection I C

{1,...,m} is primitive if the set {a; | i € I} does not lie a cone of ¥ but any proper subset does
(see [Ful93]).

H*(X,C) ~

2.3. The extended Picard group. As PL(X) are piece-wise linear function on X, we can
pre-compose them with a: Z" — N and we get the morphism

(2.13) O : PL(S) < (Z")*,
¢ O(p)(e;) = p(a;) -

We have the following commutative diagram (cf. (2.4))

0 —— N* —— PL(¥) —— Pic(X) ——=0

P

0—— N*—— (Z")* L 0
We want to determine the image of this map. For this we consider the distinguished relations
(2.14) mtk — Zrkiaizo fork e {1,...,e},
iel,

which give elements [y,...,l. € L ® Q.

Lemma 2.15. The image of © is a saturated subgroup of (Z™)*, i.e.
(O(PL(X)) @2 Q) N (Z")* = ©(PL(Y)).
Remark 2.16. This implies that the cokernel of O is free.
Proof of Lemma 2.15. Denote by K the kernel of the map
(@) — @
x> (x(ly),. .., z(le))
In order to show the claim it is enough to show the following equality
K=0(PL(X)).

since a kernel is always saturated. It is clear that ©(PL(X)) C K since a function in PL(X)
is linear on each cone o € 3. Now let u € K and let ¢ € X(d) be a maximal cone. Choose a
8
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Z-basis aj,,...,a;, in the set Gen(o) U{a; | a; € o}. The values u(aj,),...,u(a;,) determine
an element m, € N*. Since u € K we get u(a;) = my(a;) for alle a; € o with j = 1,...,n.
Repeating this for any cone we get an element in PL(X) whose image under © is w. O

Notation 2.17. (1) Wedenote by PL(X¢) the full sublattice of (Z™)* generated by ©(PL(X))
and the elements Dy, y1,..., Dipyye = Dy
(2) We denote its image in L* by the extended Picard group Pic®(X).

We get an exact sequence of Z-free modules

(2.18) 0 — N* — PL(X°) — Pic*(X) — 0.
The map © induces a map
(2.19) 0 : Pic(X) — Pic®(X).

Notice that the images of [D;] € Pic(X) ® Q for i = 1,...,m in Pic®(X) ® Q are given by
€
0([Di]) = [Di] + Zrm‘[Derk] )
k=1
which follows from the formulas 2.13 and 2.14.

Using Lemma 2.15, one can summarise the previous objects in the following commutative dia-
gram.

(2.20) 0 N* PL(%) Pic(X) — 0

0 —— N*—— PL(X¢) —— Pic®(X) ——0

]

0 z° Zz° 0

Proposition 2.21. We have the following isomorphism
Pic®(X) ~ Pic(X) ¢ Z°
Proof. From the previous diagram (2.20), we have an exact sequence of free Z-module
0 — Pic(X) —%> Pic*(X) —=Z¢ —=0
As Ext!(Z¢,Pic(X)) = 0, then the exact sequence splits. O

2.4. The extended Ké&hler cone. In this section we follow [Iri09]. Inside PL(X) we consider
the cone of convex functions CPL(X). It has non-empty interior since X is projective. We denote
its Q>o-span in H?(X,Q) by K. Consider now the cone CPL(X¢) generated by O(CPL(X)) and
Dppti, .., Dige. We denote the Qx¢-span of ©(CPL(X)) resp. CPL(X°) in L* ® Q by K resp.
K¢ and call it the Kéahler resp. extended K&hler cone.

We denote the image of anti-canonical divisor — Ky of X in Pic(X)® Q ~ H?(X,Q) by p. It is

given by p = [D1] +...[D]. The toric variety X is weak Fano if p € K. Cousider the following
class in L*

p:=[D1]+ ...+ [Dmte] -
Later we will impose the following condition
pEKe.
9
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There is the following characterization of this condition

Lemma 2.22. [Iri09, Lemma 3.3] We have p € K¢ iff p € K and deg(a;) < 1 fori = m +
1,...,m+e.

Proof. The element p can be expressed in the following way

p=[Di]+...+ D] = 0([D1]) +. ) + Z (1- Zm k]

=0([D1]) + ... +0([Dm]) + Z(l —deg(am+))[Dm-+]
k=1

€ K @ @ QD] -
=1

The last term is in K¢ iff deg(am4r) < 1for k=1,... €. O

Notice that the degree function deg gives rise to a piece-wise linear function ¢ which is given by
(2.23) ola;) =1 for i=1,...,m

This piece-wise linear function corresponds to the anti-canonical divisor. If we assume that X is
nef (i.e. p € K) then ¢ is a convex function.

Remark 2.24. It follows from Lemma 2.11 and Lemma 2.22 that for the choice S = Gen(X)
we have an isomorphism Horb(X Q) ~L*®Q.

We now introduce the so-called extended Mori cone. Set
A ={ITu{m+1,....m+e}|I €A}
and
K:={deL®Q|{ie{l,....m+e}|(D;,d) €Z} € A},
f={deLoQ|{ic{l,...,m+e}|(Dsd) €Zso} € A°}.

Notice that the lattice L. C K acts on K.
Denote by [-], || and {-} the ceiling, floor and fractional part of a real number.

Lemma 2.25 ([Iri09, Section 3]). The map
K/L — Box (%),

m-+e

d—v(d) := Z [(D;,d)]a;
i=1
18 bijective.

Proof. We first notice that 3."*°[(D;,d)]a; € N. From the definition of K and the exact
sequence 2.6 we get

m-+te m—+te
(2.26) v(d) = Z({ (Dy,d)} + (Dy, d))a; = Z{ (Dy,d)}a; = Z{ (Dy, d)}a;

for some o. This shows v(d) € Boz(c). From the formula 2.26 we easily see that the map d —

v(d) factors through K — K/L. Choose v € Box(X). We can express v either as v =} n;a;

with n; € N since S = Gen(X) or as v = > _;; ma; € Box(X) with r; € [0,1) (cf. (2.2) for the

definition of I,,). The equation > n;a; —Eielg r;a; = 0 gives rise to an element in K C L®Q,
10
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this shows the surjectivity. In order to show injectivity let d,d’ € K with v(d) = v(d'). This
means there exists a 0,0’ € ¥ such that

> {=Dudl = o) = old) = 3 A=(De}e,

since both cones are simplicial we find a cone ¢’/ C o N ¢’ such that

= 3 {(~Didta = 3 {(~(Di,d)}a; = v(d)

a;€c’’ a; €0’
and therefore {—(D;,d)} = {—(D;,d)} for all i = 1,...m + e. Hence {(D;,d —d')} = 0 and
there fore d — d’ € L. This shows the injectivity. O

Denote by Pic*(X)* C L ® Q the lattice dual to the extended Picard group Pic®(X) C L* which
gives the following short exact sequence of free Z-modules

(2.27) 0 — Pic*(X)* — PL(X°)" — N — 0.
Lemma 2.28. There are the following inclusions
L Cc K C Pic®(X)*.

Proof. The first inclusion follows from the fact that {1,...,m + e} € A°. In order to prove
the second equation we notice that for each v € Box(¥) we can write v = >, . nja; =
Zie 1, Tii- Denote by d, € L ® Q the element in K C L. ® Q which corresponds to the relation
Za,;eo n;a; — Ziel(, r;a; =. The proof of Lemma 2.25 shows that K is the union of the sets
dy + L for v € Box(X). So in order to prove the second inclusion it is enough to show that
d, € Pic®(X)*. For this we need to check that L(d,) € Z for every L € Pic®(X). Recall
that Pic®(X) is the image of PL(3°) C (Z"™)* which in turn is generated by O(PL(X)) and
Dty -y Dinye. Take a lift ¢ = O(p) + Z;’;tneﬂ t:D; =30 p(a;)D; + Z;-ZJZH t;D; of L in
PL(X¢). We have

m m-te
= @e(z i€ — Z ri€i) = Zni<ﬁ(ai) + Z ting — @(Z ria;) € Z
a;Eo 1€l =1 1=m-+1 i€l,
since ¢ is integer-valued on N. O

3. LAURENT POLYNOMIALS AND GKZ-SYSTEMS

In this section we review some results from [RS15] and [RS17] concerning the relationship be-
tween (Fourier-Laplace-transformed) Gaufi-Manin systems of families of Laurent polynomials
and (Fourier-Laplace-transformed) GKZ-systems.

Notation 3.1. We will first review some notations from the theory of algebraic D-modules. Let
X be a smooth algebraic variety over C of dimension d > 1. We denote by Dx the sheaf of alge-
braic differential operators and by Dx = I'(X, Dy ) its sheaf of global sections. Recall when X
is affine there is an equivalence of categories between D-modules on X which are quasi-coherent
as Ox-modules and the corresponding D x-module of global sections. If M is a D-module on
X we will write M for its module of global sections. We denote by M (Dx) the abelian cate-
gory of algebraic Dx-modules and the abelian subcategory of (regular) holonomic Dx-modules
by M;(Dx) (resp. M,,(Dx)). The full triangulated subcategory of D®(Dx) which consists
of objects with (regular) holonomic cohomology is denoted by D?(Dx) (resp. Db, (Dx)). Let
f: X — Y be a map between smooth algebraic varieties and let M € D?(Dx) and N € D?(Dy).

L
The direct (resp. inverse) image functors are defined by fy M := Rf.(Dy.x ® M) (resp.
11
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FEN =Dy & N,

Let V' := C; x X be a trivial vector bundle on X of rank one and denote by V = C, x X its
dual. Denote by can : V' X x V — C the canonical pairing between its fibers.

Definition 3.2. Let £ := Oyry,pe™ " be the free rank one module with differential given by
the product rule. Denote by py : V' xxV = V', pa: V' xx V — V the canonical projections. The
Fourier-Laplace transformation is defined by

L
FLx(M) :=par(py M & L) for M € D)(Dy).

Set z =1/7 and denote by j, : C* x X - C, x X and j, : C* x X <5 V:=C, x X =PL\ {r =
0} x X the canonical embeddings. The partial, localized Fourier-Laplace transformation is defined
by

FLR(M) :=j. jTFLx(M)  for M € D}(Dy).

Set V :=C. x A , where A = C™ with coordinates Ay, ..., \,. Let A be a d x n integer matrix
with columns (aq,...,a,) and entries ax; for k = 1,...,d, ¢ = 1,...,n. Let 8 be a vector

(Bi,...,Bq4) in C?. We denote by L C Z" the Z-submodule of relations among the columns A,
i.e. (ll, .. ,ln) e L iff Zi li@i = 0.
Assumption 3.3. Later, we will construct the matrix A from an extended stacky fan. Hence
we can and will assume that each element of Z¢ can be written as a non-negative integer linear
combination of the vectors (a;)ieq1,... n} since this will be guaranted by the Assumption 2.9. We
write NA = Z? for this condition.

Definition 3.4. The Fourier-Laplace-transformed GKZ-system M\Xg"’m is the left Dy -module

DV[z_l]/I, where I is the left ideal generated by the operators ﬂb E,— Byz and E — Boz, which
are defined by

0 : H (z-0y,)7 " — H (z-0\)1 forlel,

i:0; <0 2:0; >0

E:=2%0, + Z ZAi0h, ,

i=1
m
Ek = E akiz)\iaxi.
i=1

We denote the corresponding Dy, -module by /(/l\ff(”ﬁ),

Remark 3.5. 1.) Set V = Cy, x A. Denote by A the (d41) X (n+ 1) matrix whose columns are
given by ao := (1,0),a; := (1,a,),...,an := (1,a,). Denote by L ; C Z"*! the Z-submodule of
relations among the columns g, ie. (lo,...,ln) € Lyiff Y7 l;a; = 0. The GKZ-system M%BO’B)

is the left Dy-module Dy /I3, where I3 is the left ideal generated by the operators Oy, Ej — S
and F — 3y, which are defined by

D= [ @)™~ [ @) forleLs,

2:0; <0 i:1;>0
n

E() = E )\16‘&,
1=0

Ek = Z aki)\i@i .
i=1

12
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M\,(fo’ﬁ)

An easy computation shows that the Dy -module is the localized Fourier-Laplace trans-

form of the GKZ-system M%ﬂo_laﬁ).

2.) Right Multiplication with z¢ gives an isomorphism
NEGo?) _, Jp(po=t6).
Let Y = (C*)4, we define a related family of Laurent polynomials:
oa=(da,pra): Y x A — V :=C,, x A,

(Yo A1seees An) (—ZA&%,AL...,A“).
i=1

The Gauk-Manin system is the zeroth cohomology of the direct image of the structure sheaf
Oy« in the category of D-modules:

HO(pa,+Oyxn) -
We now consider the localized partial Fourier-Laplace transform of the Gaufs-Manin system of

PA:
ng = FL%CHO(QOA7+OY><A) .

Write Gt := HO(V,G*) for its module of global sections. Then there is an isomorphism of
Dg-modules (cf. e.g. [RS17, Lemma 3.4])
Gr=H (Q;ftdA/A[Zi]ad — 27! 'dy¢A/\) ;

where d is the differential in the relative de Rham complex QS e
The following result relates the localized FL-transform of the Gaufs-Manin system of p4 with a
FL-transformed GKZ-system with a special parameter.

Proposition 3.6. Under Assumption 3.3, we have an isomorphism
ng ~ M\A%O»o) .

Proof. This follows from [RS17, Proposition 3.3] and Assumption 3.3. The latter one guaran-
tees that R>gA N Z? = Z? hence the former reference gives us for (8y,3) = (0,0) the stated
isomorphism. O

In the following we set /\//YA = /\//\lf’o) resp. ]\//.7,4 = MO0,

For certain parameters A € A the fibers of ¢ 4(-, A) acquire singularities at infinity. Outside this
set the singularities of the D-module GT are particularly simple.

Let @ be the convex hull of the set {a; :=0,4a,,...,a,}
Q = conv(0,ay,...,a,)-
The volume of () is denoted by
= vol(Q).

where the volume of a hypercube [0,1]? is normalized to d!.
Let T be a face of Q and denote by Ylf”t’(k”’é) the set

{(r, - wa) €Y | Y Aiy® =05 4y, (D Ay%) =0 forall ke{l,...,d}}.

a;el’ a, €l
13
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We say that the fiber gpzl()\m A) has a singularity at infinity if there exists a proper face I' of
the Newton polyhedron @ such that ch’()‘O’A) # (). The set
A% :={(Ao,A) € Cy, x A | A0 # @ such that Y (o) £ gy

is called the non-tame locus of ¢ 4. Notice that A% is independent of A\ since 0 lies in the
interior of @ (see Assumption 3.3.), hence no proper face of @ contains 0. Denote the projection
of A%¥ to A by A%, Let A* := A\ {\1-... -\, =0} and define

A® = AF\ AP
The following was proven in [RS17] Lemma 3.13:

Lemma 3.7. Consider M\A as a Dp1  x-module, where A is a smooth projective compactification
of . Then My is reqular outside ({z=0} x A) U (PL x (A\ A°)) and smooth on C: x A°.

Next we want to consider natural lattices in M\ 4. For this we need the notion of R-modules.

Definition 3.8. Let X be a smooth variety . Then the sheaf of (non-commutative) rings R, x x
is by definition the Oc, x x -subalgebra of D¢, xx locally generated by 220,20y, , ..., 20,, , where
(x1,...,2n) are local coordinates on X.

Definition 3.9.

(1) Let T be the left ideal in Re, xa+ generated by (Dl) and (Ek);C 0....d (cf . Definition 3.4).

Write OMA resp. OMA for the cyclic R-module Re_xa/Z resp. Re.xa-/I.
(2) Consider the open inclusions A° C A* C A and define the Dg¢_ x po-module

O'K/TA = (M\A)\CZXAO

and the R, x e -module

My = (O*M\A)

|CoxAe

Remark 3.10. It follows from Lemma 3.7 that O/(/I\A is a meromorphic connection with poles
exactly along {0} x A°.

We now list some properties of the R-module OOM\ A

Proposition 3.11. [RS17, Proposition 3.18, Corollary 3.19]

(1) The sheaf 0//\/\IA is a locally free Oc, xpo-module of rank p.

(2) The natural map o./\/lA — ./\/lA, which is induced from the inclusion Re,xae — De, xae,
18 injective.

The so-called Fourier-Laplace transformed Brieskorn lattice of the FL-transformed Gaufs-Manin
system G7 is given by the following Rc_ x pc-module:

HO (nydAO/AO[ ], 2d — dy¢A/\) :

By Assumption 3.3, the semigroup NA is saturated then we have the following identification:

Proposition 3.12. [RS17, Proposition 3.20] There exists the following Rc_ xae-linear isomor-
phism
HO (Q;,';dAO/AO[ ], zd — dqu)AA) ~ oMy .
14
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Before constructing the pairing on OOM\ A , we need to introduce some notations. The basic
ingredient for the proof is the so-called Euler-Koszul complex. (cf. [MMWO05]). We put R =
ClOxy,---,0n,] and S = R/ Jz where J5 is the toric ideal generated by (0y)ier ;. Both rings are
71 graded, where deg(0,,) := —a; € Z4*1.

We also have a natural Z?*!-grading on D defined by deg(\;) = @; and deg(dy,) = —a;.
Let P be any Z4t!-graded D-module, and & € C4*+! arbitrary, then by putting

(Bx — ag) oy := (Bx — &y, — degy(y))(y)

for k =0,...,d and for any homogeneous element y € P and by extending C-linearly, we obtain a
D-linear endomorphism of P. We also have that the commutator [(E; —a;)o, (E; —a;)o] vanishes
for any 4,j € {0,...,d}. Therefore one can define the Euler-Koszul complex Ko(E — @, P), a
complex of Z4+1-graded left D-modules, to be the Koszul complex of the endomorphisms (Ey —
@p)o,...,(Eq—ag)o on P. Notice that here E is an abbreviation for the vector (Ey, E1, ..., Ey,)
and should not be confused with the single vector field used in the definition of the modules
M\fo’ﬁ ). The definition of the Euler-Koszul complex applies in particular to the case N :=
D®RT, where T is a so-called toric R-module (see MMWO05, definition 4.5]), in which case we also
write Co (E—a, T') for the Euler-Koszul complex instead of ICo (E—a, N). Similarly one defines the
Euler-Koszul cocomplex, denoted by K*(E — &, T), where K'(E — &, T) = Kyy1-:(E — &, T) and
the signs of the differentials are changed accordingly. In particular, we have H*(K*(E — &, T)) =
Hy1-i(Ke(E — &, T)).

We will use the construction of the Euler-Koszul complex resp. cocomplex for example in the case
of the toric R-module S. In this case Hy(Ko(E —@, S)) ~ Mg. Notice however that Ke(E —a, S)

does not provide a resolution of M g in general because the complex has higher homologies if the
R-module S is not Cohen-Macaulay.

The components of the Euler-Koszul complex Ko (F — @, T) are direct sums of D ® g T. De-
note by U, a resolution of T in the category of Z%*!-graded R-modules. We get a double
complex Ko(E — @,U,) of free D-modules, so that the 0-th homology of its total complex
is isomorphic to Ho(Ke(E — @, T)). Applying the functor Homp(—, D) to the double com-
plex and taking first cohomology in the U, direction gives row-wise Euler-Koszul co-complexes
K*(E+a+ez, Exty(T, R)) ~ K*(E+a, Exty(T,wg))(—c 5), where e 1 := > a; € Z!. Tak-
ing cohomology in the Euler-Koszul direction afterwards one gets the second page of a spectral
sequence. More precisely we get the following Lemma.

Lemma 3.13 ([MMWO5, theorem 6.3]). There is a spectral sequence
(3.14)

EY? = HY(K*(E + &, Bath(T,wg))(—e5) = HPT~ "D (H,\ (_(n1)(Ke(E — &, T))) " .

Here (=)~ is the auto-equivalence of D-modules induced by the involution \; — —X; and Oy, —
—0y,. Notice that it is shown in [MMWO05, lemma 6.1] that Exth,(T,wg) is toric. Notice also
that the dualizing module wg is nothing but the ring R, placed in Z4'-degree 5 (see, e.g., [MS05,
definition 12.9 and corollary 13.43] or [BH93, corollary 6.3.6] for this). -

We now introduce a localized version of this Euler-Koszul complex. For this notice that D[(’?/\_Ol]
is also Z*™!-graded with deg(d;.") = @, € Z**'. Set R'** := R[0;'] and "¢ := R'**/.J; and
more general for all toric R-modules T we set T'¢ := R @  T. We have D[@;OI] Qp DRrT ~
D[@;()l] ® groe T'°. Because D[@/{Ol] is D-flat the localization of the Euler-Koszul (co-)complex
gives
D[0y.'1®p Ke(E — @, T) ~ KY(E — a,T'")
15
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where Kl°¢(E—a@, o) is the corresponding localized Euler-Koszul complex Doy, N@pKe(E—a,e).
We get the following localized version of the spectral sequence above

Lemma 3.15. There is a spectral sequence
(3.16)

Eg 4 __ Hq(ICloc(E""a El'tRzoc (Tloc, WRLOC))(_ég) E— Hp+q—(n+1)Dloc (Hp+q,(n+1)(ICZ.OC(E _ &’ Tloc)))_
where D'°¢(—) is the derived functor RHomD[agol}(—,D[agol])[n + 1] together with a right-left
transformation.

Proof. Applying D0, '1®p to the double complex Ko(E — &, U,) gives Kl°¢(E — &, UL¢) where
Ul°¢ is a resolution of Tl"C in the category of Z¥*!-graded R!°“-modules. Applying Hom pioc(—, D'¢)

to this double complex and taking cohomology in the Ul°¢ direction gives row-wise localized Euler-

Koszul co-complexes ICIOC(E—F&—FEA, Ext$,,.(T"¢ R"¢)) ~ K*(E4+a, Extth,. (T, wpioc)) (—€ 7).

Taking again cohomology in the Euler-Koszul direction afterwards one gets the second page of a
spectral sequence stated above. Its abutement is just the localization of the abutment stated in
Lemma 3.13. g

Let (M, F) be a filtered Dy-module. Denote by loc : M — Moy, '] the localization map. We
define the following filtration on M [8>\0_1]:

FieeM([0, 2] =) 03T oc(Fiy; M).
j=0

Proposition 3.17. (1) Let B = (Bo, B),7 = (70,7) € Z4*L. Right multiplication by z~7°(20)"
induces an isomorphism

27 0(20)7 Mﬁ M[H"y

where (20)Y = (20x,)" ...(20x,)" for k € N" satisfying v = Arx (notice that the
morphism is independent of the choice of k).

(2) There exists ¢ = (co,c) € Z* such that for any E € 73" we have an isomorphism of
holonomic left Dy -modules

M B—E+(2,0) *]D./\/lﬁ

where v is the automorphism sending (z,A) to (—z,A).

(3) Write F? OC]D)I"CMB[ ]for the dual filtration ofFlocMB[ﬁ 1 ie. ]D)l"c(Mﬁ[@ '], Flee) =
(]D)locMg[a)\o },FlD’ ) (see e.g. [Sai94, page 55

F]iocMgﬁfaJr(Q,(]) FIPLUC;+“+CO ]D)locMg vg c Zd+1.

(4) For any 5 € 74+, F.Mf; induces a filtration GJ by Oy, -modules on the Dy -module .X/l\i
and we have an isomorphism of Oc, xa-modules

G().K/‘\A ~ OM\A-
Moreover, for any k € Z (GkﬂA> Cxa s Oc, xao-locally free.
>< o

We obtain from the dual filtration F,DLDC on DZOCMI’; a filtration G2 by Oc, x -modules

on ]D)/\//Tg. Moreover, for any k € Z (GI,? ]D)/\//l\A> e is Oc, xae -locally free.
16
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(5)

Proof.

Consider the isomorphism
¢ DMy ~ M\;E—r(zg) — My

then ¢(1*GY DM\A) = G.+d,n,2ﬁ/l\, where ¢ is the concatenation of the isomorphism in
(2) for B =0 and the isomorphism in (1) for = —¢+ (2,0) and ¥ = —f.

(1) One can conclude from [RS17, Theorem 2.11] that there exists a § ; € NA such
that M% o~ ./\/lii/ for a,a’ € 67 + (R>0A N Z41). Furthermore, it follows from [Reild,
Proposition 1.15] that for p € Rzoﬁﬂ Z4+1 the isomorphism M% — Mifﬁ is given by
right multiplication with 0.

Given B = (Bo, B),7 = (70,7) € Z4*1, the shape of the matrix A and Assumption 3.3
guarantees that we can find ¢, d € Z such that (5o +c, 8), (Yo+d,7) € 5g+(RZ(]gﬂZd+l).
Hence we get an isomorphism

Hotd7) . M(B(H_C’B) N M(50+c+’yo+d,5+’y)
A A ’
where 904 .= gFo . gk for (yo + d,7)"" = Ak (again Assumption 2.9 and the
shape of A guarantees that (ko,...,k,) € Z x Nj. By enlarging d we can even achieve
Ko € No)
Applying a localized Fourier-transformation multpilication with 9047 becomes

QLoFd) _y pmrogihe e — pmRo=IRl(29) YL (20, )5 = 27707 9(29)7,

where |k| := > | k;. Since left multiplication with 2* gives an isomorphism M ﬁo’ﬁ —

M g“ik’ﬁ we get a commutative diagram where all maps are isomorphisms:

Mgﬁwcﬁ) 207 N(20)" Affotetnotd.pty

J(ZC \ch+d

T780.8 27 70(20)7 TFBo+0,8+
MAO MAO Yo vy

We will use Lemma 3.15 for T = S. Since the columns of A generate Z¢ (cf. Assumption
3.3) the ring S'°¢ is isomorphic to C[Z4*+1], in particular it is Gorenstein, hence Cohen-

Ftoc (8¢ wpoc ) vanishes for p # n —d and Ewt’éﬁ,‘f (S%¢ wptoe)

is isomorphic to S'¢ in the category of noetherian R'°*-modules. Since we can com-
pute Extl, 2 (8¢, wpio) with a Z4+1-graded filtration the Ext-group is graded as well
and is therefore isomorphic to S'°¢(&) for some é € Z9+!1. Hence the spectral sequence

degenerates at the second page, so that

Macaulay. Therefore Ext

E;z—d,q — Hn—d—i—q]D)loc (H(nfd)+q7(n+1)(lclooc(E _ &7 Sloc)))_ )

On the other hand, since E:ctz;cf(sl"c,wmoc)) ~ Sloc[¢] we get

By~ = HUK}, (B + &, 5'°(8))) = Hawr—g(KE°(E +a +2,5'))(@).

Since S'°¢ is Cohen-Macaulay the Euler-Koszul complex KY¢(E — &, S'°¢) can only have
homology in degree zero (cf. [MMWO05, remark 6.4], hence Eg_d’q =0 unless ¢ =d + 1.
Summarizing we get an isomorphism of Z4*!-graded D'°°-modules

HO(D1 (Ho (K°(E — &, §'°))))~ ~ Ho(KY(E + & + & 8'°9)) (2).
17
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Since FL!°¢ M ~ FL°¢ Dy, [6/\51] ®p, M for all holonomic Dy-modules M we get

L*Dﬂ/l\iﬂl’o) ~ M\Zafaru,o).

Notice that the extra term (1,0) appears beacuse of the localized Fourier-Laplace trans-
formation where zd, —1 acts as A\g@y, . Setting 3 = @+ (1,0), we obtain —a—é+(1,0) =
—5 — ¢+ (2,0). This gives the statement we claimed.
Let Lo be the total complex of Le o := Ko (E—B, U,) where U, is a Zd“—graded resolution
of S. In particular this resolution is Z-graded for the grading of R = C[d,,,...,0x, ]
with deg(dy,) = 1. On the other hand, the differentials of the Euler-Koszul complex
are constructed from linear differential operators. We put on each term of the double
complex (which is D-free) a filtration F,, which is on each factor of such a module the
order filtration on D, shifted appropriately. The corresponding total complex is also
filtered. B

We now consider the localized Euler-Koszul complex Ll."ﬁ = Kle¢(E—3,U,). On each
term of this double complex we construct a filtration

FéoCLl.(jf = Z 8;§1loc(Fk+jL.7.)
>0

where loc : Le o — Ll,"C is the canonical localization morphism. Of course, this also gives

,®

a filtration on each term of the total complex L!°° making this complex a filtered one.

We already know that the localized total complex LY is a resolution of M 2[8;01].
Now we want to prove that this resolution is also strictly filtered where M 2[8;01] carries

the localized order filtration F}°¢. It suffices to show that gr’” O (Loe) = gt M 2[8;01].

For this we consider the graded double complex grfloc (Ke(E— B, Uloc). Clearly, we have
Tot g™ (Il (E — B,ULee)) = g™ Lio.

The cohomology of Tot grt" ™ (Klo¢(E — 3, Ul¢)) can be obtained from the spectral
sequence of the double complex grf’ e (Kloe(E — B, Ulee)), where we first take cohomology
in the Ul°*-direction. However, the differentials of the R'°°~free resolution UL¢ — Sloc
are homogeneous, hence taking the graded object has simply no effect and so we conclude
that this spectral sequence degenerates at the Ej-term. Hence we are left to show that
gt Kloe(B — B, Sloc) —» nglDC(Mg[aAgl]) is a quasi-isomorphism. It is shown in
[BZGM15, Theorem 1.2| that the elements Y, ax; A& which give the Koszul complex

grf Ko (E — E, S) are a system of parameters for gr’” D @ S ~ k[A, ..., \,][NA], hence
they are also a system of parameters for gr_Floc D[a;;] @ pioe S1¢ = kAo, ..., An][Z9H1]
which is just a localization of the former ring. However, since k[\o, ..., A\, ][Z9T!] is

Cohen-Macaulay this system of parameters is a regular sequence. Hence
Hi(ngZOC ]CL.OC(E . B’ SlOC)) =0 fori>0

and N
loc ~ loc
Ho(gr!" " K9 (B — B,5°°)) = gr™" (M7[0, 1))

From the construction of the strictly filtered resolution L€ — M 2[8;01} we see that

Liee =0 for all k > n-+1. We have seen that the filtration on LI, is the order filtration
on D¢ shifted appropriately. This shift is the sum of the length of the Euler-Koszul
complex (i.e. d + 1) and the degree (with respect to the grading of R'¢ for which
deg(dy,) = 1 and deg(@;ol) = —1 of Ext",%(5%¢, wpioc). The latter is equal to n+1— ¢

Rloc
18
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which is the first component of the difference between the canonical degree of R'*° (i.e € 5

and the canonical degree of S'°¢ (i.e. &). Hence the filtration on L, is Folo—c(d+n—c0+2)'

By definition (see, e.g.[Sai%4, page 55| one has
DZOC(MZ7 F.loc) _ Hn+1HOleoc ((Ll.oc’ F.lOC)’ ((Dloc ® Q$+1)v’ F.l(icg(n_,_l)Dloc ® (Q'r‘z/+1)\/))

where F°¢ is the strict filtration on L!°¢ constructed above. This implies the formula
loc 3 —1
for FP" DleM [0 1.
(4) One easily sees that

FeM% = Tm(95, Clho, M- Al (031 05,10, 05,/ 0n,) € ME[0L 1.
The filtration F1°°M? induces a filtration Gy on M = I(V, M7) with
Gk]\’/fé =Im (7"Clz, M, ..., A)(20h,, ..., 205, 2°0.)) C J\/ZE

Hence we obtain a filtration (G on the sheaf M\i and we have Goﬂ/l\ﬁ = OM\Z as required.

Moreover the left multiplication with 2* gives an isomorphism 2*. : Gp/T/l\i —

Gp_k./\//YE. It follows from Propositon 3.11 that (GOJT/I\A)‘C o OOM\A is Oc¢,xpo-
2 xA°

locally free and hence all (Gpﬂ A)I N are also O¢_ xao-locally free.
C. xA°
Concerning the filtration G2 we consider the filtered module (D!°¢M g[(“)i}],F?loc).
From the second statement follows that it is equal to (Mig[agol],F.lfdinch). This

induces G2 on M 4 which under the isomorphism from statement (2) is given by
Gker,n,CO/T/l\_E"—(?’Q) o~ L*G]E D/\//\IA.
We conclude that the restrictions (Gﬂ,f DM A) are Oc_ xao-locally free.

|C. xA°
(5) This follows from the isomorphisms

L*GH;? DM\A =~ Gk+d—n—c0-/(/l\:46+(27g) - Gk+d—n—2M\A .
|

This proposition is a direct generalization of [RS15, Corollary 2.19]. For the convenience of the
reader we copy the proof with adapted notations.

Proposition 3.18. (1) There is a non-degenerate flat (—1)%-symmetric pairing
P:oMayo (O/\?A) s Ot e (+{0} x A°).

where ¢ is the automorphism sending (z,\) to (—z, \).

(2) We have that P(OOM\A, OO.K/l\A) C 290¢_xne, and P is non-degenerate on OO.K/l\A. i.e., it
induces a non-degenerate symmetric pairing

M M
[270P): |2 | @ | —22A | 5 Ope.
z- ¢Ma z- eMa
Proof. (1) The statement can be reformulated as the existence of an isomorphism

1/) : O./T/I\A — " (oM\A)* s
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where (—)* denotes the dual meromorphic bundle with its dual connection. We deduce
from [DS03, lemma A.11] that D(°M4)((x{0} x A°) = (°M4)*. On the other hand

Proposition 3.17 (1) and (2) give an isomorphism oMy~ L*D(OA//YA) so that the latter
module is already localized, i.e. equal to (°M4)*, which gives the existence of the
isomorphism v from above.

We have seen in point 1. that the duality isomorphism
¢ DMy~ MY 5 My
yields an isomorphism
e OJT/I\A — (O./\//\IA)*
of meromorphic bundles with connection. Now it follows from [Sai89, formula 2.7.5] that
we have

HOWL@CZ Y AO (GkoM;h O(Cz ><A°> = G]]ICDJrnJrQDOMA.
Hence by Proposition 3.17 (5) from above we conclude that ¢ sends the module
Go° My = oMy
isomorphically into
HomOCZ X A° (G*doM\Av O(Cz ><A°> = zd'HomoszAo (GOOM\Aa O(Cz ><A°>
= 2z"Homo,__ . (()OMA, Oczon) ;

which is equivalent to the statement to be shown.

4. CONSTRUCTION OF THE LANDAU-GINZBURG MODEL

4.1. Local Landau-Ginzburg models. Let X’ be a projective toric Deligne-Mumford stack
with extended fan 3¢ = (N, X, a) (cf. Remark 2.8). In this section we explain the construction
of a (Zariski local) Landau-Ginzburg model which will serve as a mirror partner for X.

Recall the sequence 2.6

0——L-%7" %N 0.

We apply the functor Hom(—, C*) to the sequence above which gives the following sequence of
algebraic tori:

1 — Hom(N,C*) — V' := Hom(Z",C*) X% T := Hom(L,C*) —> 1.

We denote the standard basis of Z™ by ey, ..., e,. This equips )’ with coordinates wi, ..., wy,.
Consider the map

Wy —CoxT,

(Wi, .. wy) = (— wa{(w)) .
i=1

Usually this map W’ is called the Landau-Ginzburg model of the toric orbifold X. However
to ensure a correct limit behavior we need to consider a covering of this model. Consider the
inclusion

¢: L < Pic*(X)*
20
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(the inclusion Lemma 2.28), which gives rise to a covering 9, : My := Hom(Pic®(X)*,C*) — T.
We get the following cartesian diagram

(4.1) y y

G

(Cthm(CtXMX

Definition 4.2. Let X be a projective toric orbifold. The mirror Landau-Ginzburg model of X
is given by

WZ(F,pTQ)Zy%CtXMx.

We have to compute the Fourier-Laplace transformed Gauf-Manin system and the Brieskorn
lattice for the map W. For this we will construct a map C; x A* + C; x T such that W becomes
the pull-back of the map ¢4 from Section 3 (recall that A is the matrix corresponding to a after
the choice of a basis for V) under the cocatenated morphisms A* < C; x T + Cy x My .
Here we will identify A* := Hom(Z"™,C*) with A\ {A\1-... -\, =0}.

Since we assumed that N is free, we have Ext'(N,Z) = 0 which gives us the following commu-
tative diagram whose vertical maps are isomorphismsm

t

(4.3) 0 L " —2>N 0

le
0——L—L®N—>N—->0
where £ = 5 + a with s : Z" — L and €' = t + g with g : N — Z". The maps satisfy the

following relations

(1) aot=0and sog=10
(2) aog=ridy and sot=idL

We have a push-out diagram (see below for the arguments)

(4.4)

— i (XM @ XX ) C[N] ® C|Z"] — C[Z"] ~ C[L @ N](by isomorphism ) ->

I | |

t® x°k C[t) ® C[Z"] C[t] ® C[L]

t ® Xek t ® Xs(ek)

Here we made the following identifications
C[N] ® C[Z"] ®cpecizn) Clt] © C[L] — C[N] ® C[L]
1@x“ @11 1@ ™)
1010t@1— - (X" @x*))

i=1

21
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and
C[N]® C[L] — C[Z"™]
X" ® Xl — Xs(n)xt(l) )

From the pushout diagram (4.4) and Diagram (4.1), we get the following cartesian diagrams,
where Y := Spec C[N].

(4.5) Y XA =YV T XY <~—YMyxY

LT

(CtXA* CthWCtXMX

idX s
We denote by 9 := 15 0 9.
Proposition 4.6. Let X be weak Fano. We can choose a Z-basis p1,...,Prte in Pic®(X) com-
patible with the splitting that is it satisifes the following conditions:
(1) p1,...,pr €0(K) C K,
(2) Prii = [Dm+d forie{l,... e},
(3) pE Cone(pl, tee 7pT'+€)'

Proof. From Proposition 2.21, we have that Pic®(X) ~ Pic(X) x Z°¢. It is a general fact that
one can resolve singularity in toric geometry (see [Ful93, §2.6]). This means that one can find a
subdivision of a cone in smooth cones. We fix such a smooth subdivision of the cone K. As X is
weak Fano, that is p € K, there is a maximal smooth cone o5 that contains p. Hence, we choose
the primitive vectors of the rays of o7 and they form a Z-basis of Pic(X). Then we apply 6 to
this Z-basis and we denote them by p1,...,p,.. Then we set p,y; := [Dpq] for i € {1,... e}
and by definition of p, we have p € Cone(p1,...,Prie). O

The dual Z-basis of (pg)e=1,... r+e €quips My = Hom(Pic®(X)*, C*) with coordinates x1, . .., Xrte-

Using the coordinates x, the map ¢ is given by
Y=y My — A* s
X1y xr) = (X, XPre)

where n := cos with ‘
n(e:) =Y NaiPa -
a=1
After the choice of the splitting ¢ in Diagram (4.3) (see also Diagram (4.5)) above the Landau-

Ginzburg model for X is given by
(4.7) W:Y2Y x My — Cy x My,

(10— (= Y x™y™.x) -
i=1

Since L is a full sublattice in Pic®(X)* the map ¢ becomes an isomorphism after tensoring with
Q. Let
t:Picf(X)"@Q —L®Q
be its inverse. We denote by
m: Pic’(X)* ®,Q — Z" ®2 Q
22
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the concatenation tot. With respect to the basis ey, ..., e, and the dual basis of p1,...,pr1e
the map m is given by the matrix M = (m;,). It follows that

r+e

(48) [D’L] = Z MiaPa -
a=1

Now we want to compute the Fourier-Laplace transformed Gauf-Manin system of the map W.
We do this by computing an inverse image of the FL-transformed Gaufs-Manin system of ¢ 4.

Proposition 4.9. Let 1Z = (id,, ) : C, x My — C, x A*.

(1) The inverse image QM4 = 1,/)v+(*./i/l\,4) is isomorphic to the quotient of Dc_ xma /L,
where L is the left ideal generated by

—1;—1 r+e l;—1 r+e
O = H Xap“@ H H (mezxaﬁxa—yz)f H X(fp“@ H H(Z Mia2XaOy, — V%)
a:pq (1)>0 ;<0 v=0 a=1 a:pe(1)<0 i:1;>0 v=0 a=1

for any I € L and by the single operator

r+e m-+e

E:=2%9, + Z Z MiaZXaOy, -

a=1 i=1
(2) There is an isomorphism of Dc. x m» -modules
OMy ~ FLYS (H'W,Oyxamy) -

Proof. We first choose bases wy,..., w4 of L and vq,...,v4 of N and denote the dual bases
by wi,...,wy,. and vf,...,vy, respectively. This gives rise to coordinates 7i,...,7.1. on
T = Hom(L,C*) and hq,...,hg on H = Hom(N,C*). We set a; = a(e;), s; = s(e;) for
i=1,...,nand t, = t(w,) resp. g; = g(v;) fora=1,...,r+eresp. j=1,...,d.

We will first compute the inverse image under the map s, which was induced by the linear
morphism s : Z" — L. We factor s in the following way:

s: 2" YL NS L

where p; is the projection to the first factor. Hence we get a factorization of ¢ given by

Yo, : T — T x H,
(T1yeeey )= (11,0, Ty 1,000y 1)

'LZJ(57a) :TXH—)A*,
(Thoe e s Ty ity ha) = (TR, 2ombe - homte)

rt+e _sp1

where 7°1 :=[[, 1, 7" etc. and the inverse of ¢, q is given by

w(;}a):A*—>TxH,
()\17"'7)‘m+6) = (Azl’_._7317«7&31’_._7&361)_
23
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Notice that the ideal Z in Definition 3.4 is generated by

(H A?’) Q=TI T 0 o) = T 0" o)t forte L,

2:0;>0 2:1;<0 2:1;>0
—1;—1 li—1
_H/\l H H(z)\z@)\ —vz) H Hz)\ﬁ,\ vz)li forlel,
2:1; <0 v=0 i:1;>0 v=0
m-—+te
E:=2%9, + Z ZAi0h, ,
i=1
m-+te
Ey = Z ki ZAi0n,
i=1

We have the following transformation rules for the coordinate change (s q):

r+e d
XiOx, = > tivToOr, + Y ginhaOn,
b=1 k=1

where t;; = D;(tH(wp)).

Since (g, q) is an isomorphism, we have that ’(/J(J; o) (*./\//\IA) is isomorphic to D¢, xa+/Z’ where the
left ideal 7’ is generated by

r+e —1;—1 r+e li—1 r+e
1)
2:: wb( H H E D;(t(wyp)) 20, — vz H H E D;(t(wyp)) 2760, — v2)
b=1 ;<0 v=0 b=1 i:1; >0 v=0 b=1

for any [ € L and by the Euler operators

r+e m-+te
E' =20, + Z (Z Di(t(wb))> 7507,
b=1 \i=1
E]/c::hkahk fOI‘k:].,...,d.
Notice that we used the relations hy0p, = in the presentation of Di . We also used the formulas

m-+te m-+te r+e d r+e
H A L H b hl a; _ TbX:,;lisbi H hk:iliaki _ TbX:iliSbi
b=1 k=1 b=1

and

Z lisip = Zlin(S(ei)) = wy (s(t() = wy (D).

It is now easy to see that the inverse image wj(*M\A) ~ 1p;w(4;’a)(*/\//7,4) is isomorphic to
Dc, x7/Z" where the left ideal Z" is generated by O and E’.
We will now compute the inverse image under v.. Denote by 1, ..., gr+e the basis in Pic®(X)*
dual to p1,...,prre C Pic®(X). With respect to the bases wy,...,Wr4e T€SP. q1,...,Grte the
Z-linear map ¢ is given by a matrix C' = (cgp), i-e. c(wy) = ZZ;? Cabda. We factorize this matrix
to obtain

C=C,-D-Cy
with Cy = (c},),C2 = (¢},) € GL(r,Z) and D = diag(dy,...,dr+c) a diagonal matrix with
strictly positive integer entries.
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The factorization of C gives also a factorization of R = C~!, i.e.
R=Ry D' Ry
with R; = (rl,) = C; ' € GI(r,Z). We define new bases

r

+

e r4+e

/o 2 /o 1
wy, = ThRWh and qp = E Conda -
1 a=1

o
Il

With respect to these bases ¢ is diagonal, i.e. ¢(w)) =dp - g},

The choice of these bases gives rise to coordinate changes on 7 and M y:

r+e r+e

2 1
T}Iz — H Tl;’bh and X;z — X;ah
b=1 a=1
with inverses
r+e r+e
— / C%b d _ / T,l
= ]| ()" an Xa = | | (Xn)"™e.
h=1 h=1

Hence we get a factorization of 1. = 1) o Kk o 1)1, where the maps are given by

v T — T,
rte . r+e )
(T{, .. ’T'li+e) — (Tl = H(T;L)Ch17 ey Trge = H(T}/L)Chm+e) ,
h=1 h=1
K:Mx — T,
(X/D e 7X;"+e) = (T{ = (X/l)dlv e 7T7i+e = (X;Jre)dwre) 9
Yot My — My,
r+e 5 r+e ,
(Xl’ e ’X’H—c) = <XI1 - H Xzal LA X:“—O—e = H(Xa)ca’r+e) .
a=1 a=1
Notice that we have the following transformation rule:
r+e
Tba'rb = Z T%hTf/La‘F{L .
h=1

Since vy is an isomorphism 1} Dc, «7/Z" is isomorphic to De, x7/J" where J" is generated by

r+e —1;—1 r+e l;—1 r+e
O] := H(T}/l)(wh) @ H H (Z Di(t(wy,)) 27,071 —v2) — H H(Z Di(H(w},))274,05 —vz)
h=1 i1;<0 v=0 h=1 §:1;>0 v=0 h—=1

where [ € L and

r+e /m+e
220, + Z (Z Dz(t(wfl))> 277,0r1 .
h=1 \i=1

Here we have used that

r+e r+e r+e . w; (D r+e r+e
H e H (H(T;L)cih> - H(Té) v ewp () H(TA)(“’”@
b=1 h=1

b=1 \h=1 = h=1
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and

r+e r+e r+e
Z D;(H(wp))2m,07, = Z D;(t(wy))z (Z rghf,’laﬁ)
h=1

b=1
r+e r4+e
= Z Di(t(z rihwb))zT,;aT;L
h=1 b=1
r+e

—ZD (wp,)) 277,05 -

In order to compute £+ D, x7/I" ~ Kkt Dc,x7/T, we first notice that

K" De.x7/T = Opmn @ 67 (Dexr/J)
where the operators xj, resp. x},0y; act by
(xn) " (foP)=fonP
resp.
Oy, (f ® P) = X0y, (f) ® P+ f @ (dn73,07; )P

An easy computation shows that ™ Dg¢, «-/J" is isomorphic to the quotient D¢, x7/J’ where
the left ideal J’ is generated by

r+e —lLi—-1 r lLi—-1 r
[Toa) @@ IT I O Dittor(@)=xidyg, —vz)— T] TI Q- Diltor(;)2xhdy;, —v=)
h=1 i:l;<0 v=0 h=1 i:1;>0 v=0 h=1

for any [ € L and by the single operator

r+e m-+te
220, + Z <Z Di(tot(q;l))> ZX;zax;~
Here we used c¢(w},) = dp, - p),, i.e. ¢*((q},)*) =dp, - (w},)*.
The final step consists in computing 1/)2 +¢1 Dc, x7/Z" which is completely parallel to the com-

putation of the inverse image under ;. Therefore the first claim follows.

For the second claim consider the cartesian diagram

Y x My Y x A*
W\L \LWA
Cpx My —8Y ¢, x A

We have the following isomorphisms
A= Ma)
~ 12*‘ FLlOC HO(pa, 1+ Oy xn~) cf. Proposition 3.6
~ FLY; (ide, x ¥)TH (pa,+ Oy xn)
~ FLY; (HOW, Oy x i)

where the third isomorphism follows from the compatibility of the localized Fourier-Laplace
transform with base change and the fourth isomorphism is base change with respect to the
diagram above.
O
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Write
(4.10)
m-+te
M = HA®) = {(X1y- s Xrge) EMx | W = — Z x"iy% is Newton non-degenerate}.
i=1

We have the following statement for the Brieskorn-lattice:

Proposition 4.11.

(1) The inverse image (in the category of O-modules)
(4.12) QM4 = 0" (¢Ma) = Oc_xms, ® ¥ (M)
carries a natural structure of an Rec. xms, -module. It is isomorphic to the quotient

Re.xms, /Lo, where Iy is the left ideal generated by (EL)LG]L and E.
(2) There exists the following Rc, x ms, -linear isomorphism

(Q?x’"ﬂeo Jms, 2] 2d = dyW/\> ~ 0QMa

where CQMy = T'(MS, FOM 4).
(3) There is a non-degenerate flat (—1)%-symmetric pairing

P (QMA)Kc;xM; ® L (QMA)w;xM; = Ocrxams,-
(4) P(§QM 4, fOM 4) C zd(’)@zxM&, and P is non-degenerate on QM 4.

Proof. First notice that the map ¢ factorizes as (id x 1)5) o (id x wc) The map (id X 1)) is non-
characteristic with respect to %M 4 since the singular locus of 9M 4 is contained in ({0,00} x A°)
and the map (id X 1) is non-characteristic with respect to any coherent D¢, x7-module since
(¢d x 1)) is smooth. Hence the inverse image is nothing but the inverse image in the category

of meromorphic connections. The inverse image of the lattice OOM\ A is then simply given by the
formula (4.12).

The second point follows by base change and the fact that 1:/;* = (id X 1p)* o (id X 1s)* is exact.
The third and fourth point follow from Proposition 3.18. O

The following Lemma will be used later (See the proof of Lemma 6.2) to prove that the I-function
is killed by the operators DLX .

Lemma 4.13.
(1) The Dc, x My -module QM 4 is isomorphic to the quotient Dc_x1/Z where J is the left
tdeal generated by E and

m-+te m —l;—1 mte m l;—1
H w® 11 27411 11 (2 -v2) H oI 2 11 1@ =v2)
i=m+1 i=1 p=0 i=m+1 i=1 p=0
pa(l)>0 1;<0 1;<0 pa(l)<0 1;>0 1;>0

where

20 fori=m+1,... m+e.

Xi—m-+r
(2) The Re, xms, -module §QM 4 is isomorphic to the quotient Rc. xams, /Jo where Jy is the
left ideal generated by Df( and E.

9 {ZHi Mia2XaOy, fori=1,....m
P =

Proof. Notice that we have the following identifications

(1) p'r’+z(£) = [Dm+z](é) = lm+’i for 1 = 17 s 6
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(2) Mumtiq=0rtiqfori=1,...,e
where the second point follows from formula 4.8 and our choic of the basis (pg)a=1,... r+e. We
can therefore write

r+e —1;—1 r+e r+e l;—1 r+e
a(l —pa(l
HXP()H H Zmzazxa Xa — V% HX P )H H meZXa —vz)
Pa(1)>0 :1; <0 v=0 a=1 pa(l)<0 i:1; >0 v=0 a=1
e m—+te m —l;—1
— (l) m+1 7n+1 _
- H Xa" Xr+i Xr+i @ VZ
i=1 i=m+1 i=1 =0
pa(l)>0 m+l>0 U4 <O 1;<0 1;<0
r e mte m l;—1
_ —Pa@) m+1 m+z l; _
H Xa r+z X'rJrz ‘@z VZ
= i=1 i=m41 i=1 p= 0
Pa(l)<0 U 44 <0 7,,_,_,>0 1;>0 1;>0
e
_ il | x
- H Xr-l-i ’ DL .
=1
Since the x, are invertible on C, x My this shows the first and second point. O

4.2. Logarithmic extension. Let Y be a smooth variety and D be a reduced normal-crossing
divisor in Y. Denote by Rc, «xy (logD) the subsheaf of Rc_xy generated by Oc,xy, 220, and
z-p~1Der(logD), where p : C, x Y — Y is the canonical projection and Der(logD) the sheaf of
logarithmic vector fields along D.

Recall the definition of the base space My = Hom(Pic®(X)*,C*) ~ (C*)"*¢ of the Landau-
Ginzburg model from section 4.1. The choice of a basis p1,...,pr4+e determines a partial com-
pactification My ~ C"+¢. Let Dy C My be the normal crossing divisor given by x1 - - x» = 0.
Recall from last page that

m-+te

M = HA®) = {(X1y s Xrge) EMx | W = — Z X"y is Newton non-degenerate}.
i=1
Denote by A := Mx \ M5, (i.e., W is degenerated on A) and let A be the closure of A in M.
Define MOX := Mx \ A. We denote by py the point with coordinates y; = ... = x,4e = 0.
Remark 4.14. Notice that until now any object with index A (like fQM4) only depends on
the matrix A which is given by the generators of the rays of the extended stacky fan. Moreover

there is no difference between the rays coming from the original stacky fan and the rays which
are added for the extended stacky fan.

Lemma 4.15. The point px is contained in ﬂ;

Proof. Tritani proves in [Iri09, Lemma 3.8] that in My = (C*)"T¢ C My := C"*¢, there exists
an open neighbourhood U,, of px := 0 € My such that when one restricts W to U,, N My is
non degenerated. This means that A does not meet Up, . This implies that py is not in A. O

Notice that the operators ((*);er. and F are in Re, w716, (logDy).

Definition 4.16. Let OQMIOQX be the quotient R, wze (logDx)/Zx where Ty is the ideal
generated by (Df)leﬂl and E (notice that these operators are global sections of Re, Vi (logDx)).

Theorem 4.17. There is a Zariski open subset Uy C M} containing the point px such that
oQMlog X QM10‘7> (C. Xt s Oc._ xu -coherent.
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Proof. Let R'(logDyx) be the sheaf associated to the ring
Clz, X15- > Xr[{(2X10x1 5 -+ 2XrOx, s 205,41y - -5 20y, 1. )-

Notice that OQMZXQ Y carries a natural R’ (logD .y )-module structure. We denote the correspond-
ing R'(logDx)-module by For,25_(o Q/\/lff;g’x). Notice that it is enough to prove the coherence

for For,25,(0QM'?9¥) in the neighbourhood of the point py since it is isomorphic to o QM'?9*

as a O(Cz Xﬂox—module.

Because of the operator E = 229, + >/ 1¢ Z:[e Mia2Xa0y, the module For,25_(o QM{Z%X) is

a=1

isomorphic to R’(logDX)/(DLX)!e]L. Now consider on R'(logDyx) the natural filtration F, given
by the orders of operators, i.e. the filtration FyR’(logDyx) is given on the level of global sections
by

FrClz, X1, XrJ{(#2X10xy 5 - - -, 2Xs0y,) = P | P = Z 9s(2, X)(2X10x, )" - oo - (2Xr0y, )"
Is|<k

This filtration induces a filtration Fy on For,25_(o QM{XQ’X) which is good, i.e.

FyR'(logDy) - FyFor 25, (OQMfXg’X) = Fy For,zp, (OQMff;g’X) .
We have a natural identification
QTF(R/(ZOQDX)) = 7T>~<O<czxT*ﬂ;(logDX)
where T' *ﬂ;(logDX) is the total space of the vector bundle associated to the locally free sheaf
Qlﬂg{ (logDx) and 7 : C, x T* My (logDx) — C, x My is the projection. The symbols of all
operators DLX for [ € L cut out a subvariety C, x S of C, x T*ﬂox(logDX).

It will be sufficient to show that the fiber over y = 0 of S — ﬂ; is quasi-finite since this implies

that S — ﬂ} is quasi-finite in a Zariski open neighborhood of x = 0, denoted by Uxy. Since S
is homogeneous this shows that S is equal to the zero section of T*Ux (logDx) over this neigh-
borhood. Adapting a well-known argument from the theory of D-modules (see, e.g. [Pha79]) we
see that the filtration F, will become eventually stationary and we conclude by the fact that all
FypFor,2p, (OOQMfZg’X) are stationary in this neighborhood.

Therefore, it remains now to prove that that the fiber over z = xy =0 of S — M; is quasi-finite.

First notice that in the limit 2 = x = 0 the operators

9, — ZQZ? MiaZXalOy, fori=1,...,m
i 20y, s fori=m+1,...,m+e

in R'(logD~) degenerate to

(4.18) D, — > MiaZXaOy, for z =1,...,m
20y, s fori=m+1,...,m+e.
Since the fan X is simplicial, we have for each a;, j =m+1,...,m 4 e a cone relation Lcj:
(419) Z lla, - ljaj =0
i=1

29



Log degenerations of LG models for toric orbifolds and tt* geometry

with l;,1; € Z>o. Because of p1,...,p, € §(K) C 0(Pic(X)) and the definition of the map © one
easily sees that

(4.20) Pa(l) =0

for all (cone) relations [. Hence the corresponding Box operator is

m lifl
ngj =@ -1 1] @ -v2).
1=1v=0

Because deg(a;) = 1 for i = 1,...,m and deg(a;) < 1 by Lemma 2.22 we get from (4.19) the
inequality [; > >~ ;. Hence the symbol of Df; is
*C;

Y’ . _
(4.21) o(OF ) = ‘7(9])1_ - ) ?f deg(a;) <1
i U(@j) 7= Hi:l U(@i) ‘ lfdeg(aj) =1
which degenerates to
D;)’ if deg(a;) < 1
4.22 O )y = o(D; ;
( ) U( Lcj) =x=0 {O’(Dj)lj _ H:"Zl O-(Di)li ifdeg(aj) —1.

Now suppose that {a; | i € I} for I C {1,...,m} is a primitive collection. Denote by [; € L® Q

a primitive relation
m-+te

Zai— leaj:()

iel jel,
where I, was defined in (2.2).
We claim that

(4.23) pa(ly) >0 for a=1,...,r.

Recall that p, € K and that K is the image of ©(CPL(X)). Let ¢, € CPL(X) be a convex,
piece-wise linear function such that ©(y,) is a preimage of p,. By the definition of © (cf. (2.13))

we have
pally) = 3 gala) = 3 ligalag) = 3 palad) — 0al 3 ljay)

i€l j€ls i€l j€ls
> @a(d_ai) = pa( Y lja;) =0.
i€l J€l,

Additionally, the following inequality

#I=D 1> I

i€l j€ls
is true for the relation [; , because deg(a;) = 1 for i = 1,...,m. Clearing denominators we get
a relation [} := c¢-I; € L for some ¢ € Z~;. The symbol of a box operator with respect this

relation is

r W , .

o) = [ [[ @) ~[[o@)c  tor #1=31

a=1 Jj€l, el jel,

and
o) =—[[eo(2)°  for #1>>"1;
el jel,
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For X = (X17 BRI aXT+e) = 0 this giVGS
(4.24) U(Df)\z:gzo - _ H o(D;)°

in both cases.
Notice that for i = 1,...,r the D;, and therefore also the o(D;) satisfy

(4.25) Zam—Di = Za’” mezxaaxa = Z (Z akimm> ZXaOy, = 0.

i=i i=1  a=1 a=1 \i=1
If we keep Remark 2.12 in mind, identify ®; with ¢(D;) for ¢ = 1,...,r and use the relations
(4.21), (4.25), (4.24) we see that the dimension of the reduced ring (S).—,—0)"* satisfies the
bound: a

m-+te
dim¢ ((S‘Z:X:O)red) < H*(X(E),(C) . H lj
j=m+1
where here we denote by I; the j-th component of lcj'
In conclusion, this shows that the variety S over z = y = 0 is zero dimensional. This finishes
the proof. N
O

Proposition 4.26. Let OOQMng’X be the R(logD)-module defined above. We have the following
isomorphism of finite-dimensional commutative algebras:

o log,X *
OQMA(] ‘Z:XIO ~ oTb(X’ (C) .

Proof. Let | € L be a cone relation. The corresponding box operator in the limit 2 = x = 0 is
equal to

m—+e m-+e
x —1; l;
(4.27) (O == == || D;" - ]] Di
zii=<10 lii=>lo
where we have used the fact that for a cone relation [ we have p,(l) =0fora=1,...,r.
Now suppose that I C {1,...,m+e} is a generalized primitive collection and consider a primitive
relation [;:
m-+e
Zai - Z ljaj =0.
i€l j=1
aj €or

where o7 is the unique minimal cone containing ), ; a;. Notice that we have p,(l;) > 0 for

a=1,...,r which can be shown similarly to (4.23).
We now claim that there exists an a € 1,...,r such that p,(l;) > 0. Notice that the kernel of
the map

L—7Z",

L= (pa(D), - pe(D)
is e-dimensional, since p1, ..., p, is part of a basis of Pic®(X). Because the p, vanish on all cone
relations for a = 1,...,r (cf. (4.20) and the space of cone relations has rank e, the claim follows
by dimensional reasons. We therefore get
(428) (D?I{)\ZZK:O = - H Di .

il
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Using Lemma 2.11 and the formulas (4.25), (4.27) and (4.28) we get the following surjective map
(4.29) So(X.C) — QMY
by sending ©; to D;.

x=0"’

Notice that °Q/\/llog ¥ is coherent by the theorem above and its generic rank is equal to u by
Proposition 3.11. Since H},(X,C) is also p-dimensional and the dimension of the fibers of a
coherent sheaf is upper-semi-continuous, we conclude that the map above is an isomorphism.

O

Corollary 4.30. The Oc, xu. -module OOQMZOQ X is locally free of rank pu.

Proof. Since Dy C My is a normal crossing divisor it carries a natural stratification {S;};er by
smooth subvarieties. The restriction of OQMlOg Y to CZ x S; is equipped with a Dc: x 5,-module
structure, so that it must be locally free. Since each stratum contains py in its closure the
claim follows again by semi-continuity of the dimension of the fibers of a coherent sheaf and from
Proposition 4.26 above. O

The R(logD)-module structure on OQMlOg " induces a flat meromorphic connection denoted
by V. Let Ex be the restriction (OOQMA )\CZX{X:O} and let Ex =T(C,,Ex) be its module of
global sections.
Lemma 4.31. There is a canonical isomorphism
ax : Oc, @c H (X, C) = Ex
It comes equipped with a connection
ViesX €y — Ex ® 2729%&

induced by the residue connection of V. Let wx : SQMAOQ’X — Ex be the canonical projection.
Set Fx := wx(Clzx10y,, - -, 2XrOx,» 20x, 11+ - - - » 20x,..] and denote by Fx C Ex the correspond-

ing sheaf a C-vector spaces. Then ax(1® H} ,(X,C)) = Fx. The connection operator ngs’i
sends Fx into 27 2Fr ® 2 ' Fx.

Proof. Recall that Eyx is a quotient of C[z, 2x10y,, - .. 2XrOy,, 20y, 1 - - -, 20y, ] and Ex /zEy is
canonically isomorphic to H} ., (X, C). Denote by w1, ...,w, a basis of H} (X, C) which can be

represented as monomials s := (s1,...,s,) in Clzx10y,, ... 2XrOy,, 20y, 1, - - -+ 20y, .| of degree
di,...,dy,. Denote by (Ex)q) the localization of Ex at 0. By Nakayama’s lemma the basis
51,...,5, lifts to a basis in (Ex)() and hence provides a basis in a Zariski open neighborhood

of 0 € C,. Since the (s;) are global sections we have to show that they are nowhere vanishing,.
From the presentation of OOQMng * we see that

r r+e

(2 2v7“€3 X) H(ZXaaXa)ka ) H (289@)]%
a=1 b=r+1
r r+e
:(2’262) H(ZXaaXa)ka ’ H (Zaxz;)kb
a=1 b=r+1
r r+e r+e
= H(ZXaaxa)ka : H (ZaXb)kb : <(22(9Z) + Z ke - Z)
a=1 b=r+1 =
r+e m r+e m-+te r4+e
= (-Zmezxa(?Xa +z- <Zk + Z ky - (1 — Z mw))) H (2XaOx.) H (zaxb)kb.
a=1 =1 b=r+1 i=1 a=1 b=r+1
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Hence, we have

2 T€S,X
(4.32) (z Va. =)(s) =s- (Ao + zAx)
where Ay, Ao € M(pn x p,C) and A is a diagonal matrix with entries dy,...,d,. Since the
connection has no singularities in C% we conclude that s is nowhere vanishing, hence is a C[z]-
basis of Ex. This contruction gives the isomorphism «y which is of course independent of the
choice of the basis s. O

Remark 4.33. Notice the the entries dy, ..., d, of the matrix A, are the (algebraic) degrees of
the cohomology classes corresponding to the operators [, (2xa0y, )" [T} Zr. | (20y,)*. For the
first factor this is clear because elements in the untwisted sector have (algebraic) degree one. For
the second factor we recall that the m;a are matrix entries of the map m : Pic®(X)*®@Q — Z"®Q
with respect to the basis e; ..., e, and the dual basis of py,...,p,. It follows from Lemma 2.15
that the elements ly,...,l, defined in (2.14) are part of the dual basis of pi,...,prte, namely
l; = py ;. Hence

m-—+te

Zmib:l*Zﬁm‘, where b=r+k
i=1 icl,

Since ) J;c; 7Tki is the (algebraic) degree of D,y the claim follows.

Lemma 4.34. Write QMfZg’Xfor the restriction (o QMif;g’X)m;; xitr- Then foranya € {1,...,r}
the residue endomorphisms

ZXaaxa S SNdOC; ((QMZ)%X)W’; X{X:O})
are nilpotent.

Proof. Under the identification of (OOQMf:g’X)Z:K:o with H ., (X,C) the action of the opera-
tor zxq0y, corresponds to the cup product with ®,. Hence the class of zx,0,, is nilpotent in
Endc((o"Q./\/leg’X)V:X:O). On the other hand, the class of zx,0y, gives rise to a well-defined

element of Endp, ((OOQMfXg’X)XZO), which is flat on C* with respect to the residue connec-

tion. Its eigenvalues are algebraic functions on C, which are constant on C} and take the value
zero at the origin. This implies that the eigenvalues are zero over all of C,, hence the residue

endomorphisms are nilpotent as required. O
Denote by Dy the reduced normal-crossing divisor in Uy given by {x1 ... x» = 0} and denote
its components by D, fora =1,...,r.

Proposition 4.35. There is a non-degenerate flat (—1)%-symmetric pairing
P: fOMEIY @0 QMBI — 290¢ sy
i.e. P s flat on C5 x (Ux \ Dx) and the induced pairings
P (§QMET™) om0 @ 17 (FQME ) om0 — 20
and P : (OOQMIXQ’X)‘DQ @ 1 ($QMYIN)p  — 290, p, are non-degenerate.

Proof. Denote by M,, a = 1,...,r, the unipotent monodromy automorphism corresponding to

a counter-clockwise loop around the divisor C* x D, and by M, the monodromy automorphisms

corresponding to a counter-clockwise loop around z = 0. Denote by M, , resp. M, , their

unipotent and semi-simple part. We set N, = log M, and N, = log M, ,. Denote by H*

the space of multi-valued flat sections on which the monodromy operators M, and M, act.

Let fi1,..., fu be a basis of flat multi-valued sections of QM 4|c:xy, Which is adapted to the
33



Log degenerations of LG models for toric orbifolds and tt* geometry

generalized eigenspace decomposition of the space H> with respect to the automorphisms M,
and M,. We define the single-valued sections

T
3, = e~ logz(pit o) H e~ logxaz £,
a=1
for some p; such that e?™* is the generalized eigenvalue of f; with respect to M. These sections
provide a basis for OOQMng’X‘C:XuX. Notice that P(5s;,s;) is holomorphic on C x (Ux \ Dx).
By the flatness of P we get that P(5;,5;) = 2~ 7P P(f;, f;) which shows that P(s;,5;) extends
over C; x Uy and is non-degenerate. Together with Proposition 4.11 we get a non-degenerate
pairing on the restriction 00QM£ZQ7X|((C U\ [0} x Dy SIDCE, {0} x Dx has codimension two in

C, x Uy, P extends to a non-degenerate pairing on OOQ./\/leg X O

Lemma 4.36. The induced pairing P : Ex®.* Exy — zd(C[z], restricts to a pairing P : Fy X Fy —
2%C. The pairing z~*P on Fx coincides under the identification made in Lemma 4.31 with the

orbifold Poincaré pairing on H ., (X,C) up to a non-zero constant.

Proof. Let {do,...,d;} = {g € Q | H>%,(X,C) # 0} where d; < d; for i < j. Set r}, =

dimHgglf (X, C) and notice that dy =0, d; = d and g = r; = 1. Choose a homogeneous basis

w17d07 w17d17 A 7w7‘17d17 A 7w17dt717 AR 7w7‘t71,d1717w17dt

2d
where w; g, € H [ (X,C). Denote by S1,dy, Si,dys---»Sri,dis-->S1,di 13-+ Sri_1,ds_1>51,d, the

corresponding sections of £y under the isomorphism ay of Lemma 4.31. By Lemma 4.34
and a construction similar to the one in the proof of Proposition 4.35 we can find sections
51,d0, 51,d1, R §7n17d1, ceey gl,dt,1 RN th717dt71 s §17dt which Satisfy (gi,dk)ICzX{K:O} = Sidy and

T
yoNa
Vixady, (H €108 Xe 27y si7dk> =0 for a=1,...,r,
c=1

T
Ng _
V.o, (Helogxc%isi7dk> =0 for b=r+1,....,7r+e.
c=1

From the definition of the sections 3; 4, and the flatness of P then follows
P(Sidy» 85,4,) (2, X) = P(Sidy» 85,4,)(2)
and therefore
0 = 2XaOx, P(8i,d,» 55,d)) = P(Vaxaoy, Sidir 85.d1) — P(Sidys Vaxaoy, $idi) s
0 = 20y, P(8i,d,,55,d,) = P(VzaXb Side»Sj,d) — P(éi,dk,VzaXb 5j.d,) -

By continuity this holds on C. x {x = 0}. This shows the multiplication invariance of the
corresponding pairing on Fx ~ C[z] ®c H,,(X,C). It follows from equation 4.32 that

orb
Thk+1
res,q
eV H(sia) =i sig + - D Omiksmagsr for k<t
m=1

res,q

2Vy. “(s1,4,) =d - s1,4,,

where 0., % = (Ag)u., With u = m + Z;;l rpand v = 7+ Zé:ll r; and Ay is the matrix
with respect to the basis s10,...,51,4, of the endomorphism —c;(X)U. Since the pairing is
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multiplication invariant it is clear that P(s; 4, , $;.4,) = 0 for dj +d; > d since H(?f,zk+d’)(X, C) is

zero in this case. For d + d; < d we compute
(4.37)  20,P(Si ay,Sj,d;)

Th+1 Ti41

=P(dy - sia, + - Y OmikSidit1s Sjd) + Plsiaedi- 5.4, + 2 )~ O jisid+1)
m=1 m=1

1 Tk+1 Ti+1
=(d + di)P(siap, sj.a) + (P(Z OmikSidi 415 55,0) + P(Sidis D Omjisiar) | -

m=1 m=1
In the case di + d; = d this amounts to

z

1 Tl TI41
(20: = d)P(si,d, Sj.d,) = — (P(Z Om.ikSid 415 55.d) + P(Sidys D Omjisia) | -

m=1 m=1

Hence P(si.,8j.4,) € 2%C. For d; + dy < d we get by induction

1 Th+1 Ti+1
(20— (dr+di)) P(siay, 55,0,) = s (‘P(Z Oumi kSisdp+1 Sj,di) + P(Si,ds Z Om,jisjdi+1) | € LAk tdi
m=1 m=1

Since P(siay,8j.4,) € 22C[2] we conclude that P(s; a,,s;a,) =0 for dy +d; < d.
It remains to show that the pairing =" P coincides, under the isomorphism o : 1® H},, (X,C) —
F and possibly up to a non-zero constant, with the Poincaré pairing on the cohomology algebra.
First notice that by construction, z~"P, seen as defined on H (X, C) is again multiplication
invariant. It suffices now to show that P(1,a) equals the value of the Poincaré pairing on 1
and a. But as we have seen above, P(1,a) can only be non-zero if a € H2%(X,C). Since
dimH?" (X,C) =1, the P on H*,, (X, C) is entirely determined by the non-zero complex number
P(s1,do» 51,d,)-

(|

Proposition 4.38. Consider the Oc_-module Ex with the connection VX and the subsheaf
Fx C Ex from lemma 4.51.

(1) Let gX = Opixqoy @c Fx be an extension of Ex to a trivial Pl-bundle. Then the
connection V"X has a logarithmic pole at z = oo with spectrum (i.e., set of residue
eigenvalues) equal to the (algebraic) degrees of the cohomology classes of HY ., (X, C).

(2) The pairing P on Ex extends to a non-degenerate pairing P : Ex®0,,1*Ex — Op1(—d, d),
where Op1 (a, b) is the subsheaf of Op1 (x{0,00}) consisting of meromorphic functions with
a pole of order a at 0 and a pole of order b at co.

Proof. The formula 4.32 shows that the connection V™**X has a logarithmic pole at z = oo
and Remark 4.33 shows that the residue eigenvalues are equal to the (algebraic) degrees of the
cohomology classes of H} ,(X). This shows the first point. The second point follows from
Proposition 4.35 and the definition of £x.

O
Set ji : CI — PL\ {0} and E>~ := ¢%j%7!(8}")l%;s’x (where 1 is the nearby cycle functor at
z = 00). It is known (cf. e.g. [Her02, Lemma 7.6, Lemma 8.14] that there is a correspondence
between logarithmic extensions of flat bundles and filtrations on the corresponding local system

res,x

of flat sections. With respect to the connection (2°V, =)(s) = s- (Ao + 2A), the isomorphism

(4.39) Fy — E®
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is given by multiplication with z = z~4°. Hence, this correspondence gives a filtration, denoted
by Fe on Fly.

Lemma 4.40. The filtration Fy on Fx is given by
Fy= 3 C(zxad)™ e (23000 (200,0)" - (20, )"

|k|=—p
The residue endomorphism N, of Q./\/llog X along Cx D, acts on E*° and satisfies NoFy C Fo_1.
Proof. The first claim follows from the identification of H ,(X) with Fx and the computation

of the residue connection (22V}, 62 *)(s) in Lemma 4.31. The second claim is immediate since the
residue endomorphism is induce by left multiplication with x40y, . d

The next result gives an extension of OQ./\/lf:g to a family of trivial P!-bundles, possibly after
restricting to a smaller analytic open subset inside U*". Set r := inf{|x|: x & M}} and let
B := B,(0) C U%" the open ball with radius . Notice that r > 0 by Lemma 4.15.

Proposition 4.41. There is an cmalytic open subset Vy CUY" still containing the point px and

log,
a trivial holomorphic bundle OQMAg IP’; x Vy
such that
log,X ° an
(1) (0QMs icoxvw = (FQMETY) ™) v,

log,X

2) (0 OM, )P x {0} = (Ex)™™,
_— log, ~

3) The connection V has a logarithmic pole alon DX on OQM o0 where Dy 1is the
( g P g A

normal crossing divisor ({z = oo} U, _;{xa = 0}) NPL x Va,
(4) The given pairings P : OQMlog - OOQMZ;Q’X — zd(’)czxu; and P: Ex ®o,, L"Ex —

Op1(—d, d) extend to a non-degenerate pairing

log,X log,X
OQMA X0 L OQMA O]P’l vy (—d,d),

where the latter sheaf is defined as in point 8. of proposition 4.38,
(5) The residue connection along + =7 =0

Pl xVy

log,X log,X —— log,X log,X

\7es,z=00 . OQMA /7— OQMA — OQMA /7- OQMA Q%o(:)’r]L»XVX(IOg({OO} X D))

———log,X

has trivial monodromy around {co}x D and the element of 1 € F C HO(PLx U, QM 4 )
is horizontal for V7e%#=>°,

Proof. Set D :=J._,{xa = 0} N B. A logarithmic extension of (oMo X)TS*X(B\D) over
({z = 0o} x B)U(PL\{0} x D) is given by a Z"*!-filtration on the local system £ = (QM" % X)Tg Z(B\D),

which is split iff the extension is locally free (cf. [Her02, Lemma 8.14].

We are looking for an holomorphic vector bundle oM, — (PL1\ {0}) x B which should satisfy
two constraints. First, Q/J\/l\A should restrict to ( OQMlog X)“IC"* g on C; x B and second it should
restrict to (éx)ﬁﬁ\{o} over P\ {0} x {x = 0}.

The Z"-filtration P, corresponding to the extension over C} x D is trivial since its the Deligne ex-
tension due to Lemma 4.34. Let L* be the space of multi-valued flat sections of (Q./\/llog’ >|<C* (B\D)
and let £°° be the space of multi-valued flat sections of £¢" from above. We have an isomorphism

L> — E* which is given by multiplication with []’_; X[;””, where N, is the logarithm of the
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(uni-potent part of the ) monodromy, and restriction to {x = 0}. This allows us to shift the
filtration Fy on E*° (resp. Fy) to a filtration, denoted by F,’Ton L*°. This gives a Z"t!-filtration
(Fe, Ps) which is split, since P, is trivial. The corresponding extension m has logarithmic
poles along ({z = oo} x B) U (P! \ {0} x D) and restricts to ( FOM'9* )¢« p on C; x B resp.

(EX) i\ 0} o0 PL\ {0} x {x = 0}. We therefore can glue QM and ( OQMIOQX)%‘ .p toa
holomorphic bundle on P! x B, which is trivial on on P! x {x = 0} since its restriction is iso-
morphic to Ex. Because triviality is an open condition there exists a subset Vy C B such that
the restriction of the glued bundle to P! x Vi is trivial. This shows the points 1. to 3. . For the
fourth point notice that the flat pairing P gives rise to a pairing on L which in turn gives rise to
a pairing on £°°. The pole order property of this pairing on Ex at z = 0o can be encoded by an
orthogonality property of the filtration F, with respect to that pairing (see e.g. [Her03, Theorem

7.17, Definition 7.18]). Hence the same property must hold for P and F, seen as defined on L,
—log, —log,
so we conclude P : QMAq Q0 v, %o QMAq — (’)Pl v, (—d, d) as required.

The last statemini ZE%H;?WS from the fact that the residue connection V7¢5*= defined on
0 MA /2719QM,  has trivial monodromy around DxN{z = oo} x Bifforanya =1,...,r
the nilpotent part N, of the monodromy of £ kills grf/, i.e. NoFy C Fy_1. Using the identifi-
cation (L°°, F,) with (E°°, F'*) this has been shown in Lemma 4.40. From this follows that the

element 1 is a global sections over P! x Vi and flat with respect to the residue connection.
O

4.3. Frobenius structures. We begin with a definition from [Rei09] which formalizes the struc-
ture which we obtained in Proposition 4.41.

Definition 4.42. Let M be a complex manifold of dimension bigger or equal than one and
D C M be a simple normal crossing divisor.
(1) A log-TEP(d)-structure on M is a holomorphic vector bundle H — PL x M which is
equipped with an integrable connection V with a pole of order two along {0} x M and
a logarithmic pole along (C, x D) and a flat, (—1)?-symmetric, non-degenerate pairing
P:HRUH — 220c_xnr- If D is empty we will simply denote it as a TEP(d)-structure.
(2) A log-trTLEP(d)-structure on M is a holomorphic vector bundle H — Pl x M such
that p*p*ﬁ =H (where p : PL x M — M s the projection) which is equipped with
an integrable connection V with a pole of order two along {0} x M and a logarithmic
pole along (PL x D) U ({00} x M) and a flat, (—1)%-symmetric, non-degenerate pairing
P:HRUH— Opixnm(—=d, d). If D is empty we will simply denote it as a tr'TLEP(d)-
structure.
Here, v is the automorphism sending (z,m) to (—z,m).
Proposition 4.43. Let X(X) be a projective toric Deligne-Mumford stack with an S-extended
stacky fan 3¢ with S = Gen(X) and let W : Y x My — C x My the corresponing Landau-
Ginzburg model. Then the tuple (OQ//\\/ll:g’X,V,P) from Proposition 4.41 is a log-trTLEP(d)-
structure on Vy C ME.

Proof. This follows from Proposition 4.41. O

The following theorem which is a combination of Proposition 1.20 and Theorem 1.22 in [Rei09]
gives sufficient conditions when a given log-trTLEP (d)-structure can be unfolded to a logarithmic
Frobenius manifold.

Theorem 4.44. Let (M,0) be a germ of a complex manifold and (D,0) C (M,0) be a nor-
mal crossing divisor. Let (H,0),V, P) be a germ of a log-trTLEP(d)-structure on P* x (M, 0).
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Suppose that there is a section ¢ € HO(P! x (M,0),H) whose restriction to {oo} x (M,0) is
horizontal for the residue connection V' : H/27'H — H/z7"1H ® Q}w}xM(log(m} x D)) and
which satisfies the conditions
(IC) The map ©(logD)|y — p«H|o induced by [2V,](§) : O(logD) — p.H is injective.
(GC) The vector space p«H,o is generated by & and its images under iteration of the maps U
and [V x] for any X € O(log)D.
(EC) ¢ is an eigenvector for the residue endomorphism V € Endo,__, . ,,(H/2z7'H).

Then there exists a unique (up to canonical isomorphz’sm} gern of a logarithmic Frobenius manfold
on (M, D) with a unique embedding i : M — M with i(M)ND = i(D) and a unique isomorphism
H — p*O©y(logD))i(ary of log-trTLEP(d)-structures.

Using the theorem above we are now able to construct a logarithmic Frobenius manifold from
the Landau-Ginzburg model corresponding to a projective toric Deligne-Mumford stack.

Theorem 4.45. Let W : Y X My — C x My be the Landau-Ginzburg model corresponding to
a projective toric Deligne-Mumford stack. Then there exists a canonical logarithmic Frobenius
manifold on (Vx x CF=7,0) with logarithmic pole along (D x CF~",0).

Proof. In order to apply Theorem 4.44 to the log-trTLEP(d)-structure obtained in Proposition
4.41 we define the section £ to be the class of 1. Because of Proposition 4.41 5. this section is
flat with respect to the residue connection along 1 = 7 = 0. The conditions (IC) and (GC)

follow from the identification of (OOQMZ;Q’X)M with the cohomology ring (H},,(Xs,C),U) (cf.
Proposition 4.26 and Formula 4.29), the definition of the D; for ¢ = 1,...,n (cf. Formula
4.18) and the representation of H},(Xs,C) in Lemma 2.11. The condition (EC') follows from

orb

Proposition 4.38 1. O

5. ORBIFOLD QUANTUM COHOMOLOGY

In this section we review some constructions from orbifold quantum cohomology in a very general
context (In particular, we do not assume any positivity assumptions in this section.
Let X be a smooth proper Deligne-Mumford stack over C. The inertia stack of X is defined by

Ix Z:XXXX)(X

with respect to the diagonal morphism A : X — X x X. A geometric point on IX is given by a
geometric point € X and an element g € Aut(X) of the isotropy group. We call g the stabilizer
of (x,g) € IX. The inertia stack is a smooth Deligne-Mumford stack but different components
will in general have different dimensions. Let T be the the index set of the components of I.X.
Let 0 € T be the distinguished element corresponding to the trivial stabilizer. We thus have

I:|_|XU.

veT
The orbifold cohomology of X is defined, as a vector space, by H},.,(X,C) := H*(IX,C), hence

T
we have

54(X,C) = H*(X,C) & ) H'(%,,C)
veT’
where 7" := T\ {0} is the index set of the twisted sectors.
In order to define a grading on the orbifold cohomology , we associate to any v € T a rational
number called the age of &,.
The genus zero Gromov-Witten invariants with descendants are defined by
(', e Vo a 5:/

!
o H ev; (a; )y

Mo, (X, d)]vir ;5
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where «; € H?,(X), d € H2(X,Z), k; is a non-negative integer, My (X, d) is the moduli stack
of genus zero, [-pointed stable maps to X of degree d, [Mo (X, d)]""" is the virtual fundamental

class, ev; is the evaluation map at the i-th marked point
ev; : Mo (X,d) — IX

and 9; = c¢1(L;) where L; is the line bundle over Mg (X, d) whose fiber at a stable map is the
cotagent space of the coarse curve at the :-th marked point. The correlator (ozli//fl, e ,Otﬂ/}lkl )0,1,d
is non-zero only if d € Effy C Hy(X;Z), where Effy is the semigroup generated by effective stable
maps.

We choose a homogeneous basis T, ..., T, of H} ,(X), where Ty = 1 € HY(X,C), T1,..., T, €
H?(X)and T; € Di.z0.2 HE(X) @ ®UGT’ H*( ). We denote by T, ..., T# the basis of H*(X)
which is dual with respect to the orbifold Poincaré pairing.

Let o, 8,7 € H;,,(X,C) and write 7 = 7/ + & where § € H*(X,C) and 7/ € @, HE(X) @
Do H*(X,). We define the the big orbifold quantum product o, as the formal family of
commutative and associative products on H} , (X) @ C[Effx]:

Qo= Z Z ﬁ<a7777—7"'77—7Tk>0,l+3,diQd
———

d€Effx 1,k>0

l—times
ed(d)
Z Z 7777-/7'"7T/aTk>0,l+3,diQd
dE€Effx 1,k>0 : m

where the last equality follows from the divisor axiom. The Novikov ring Eff y was introduced to
split the contribution of the different d € Effy. However, we will make the following assumption:

Assumption 5.1. The orbifold quantum product o, is convergent over an open subset U C
Hiy(X):

U= {r € Hy,(X) | R(8(d)) < —M,¥d € Effx \ {0}, ||| < e~}
for some M > 0 (here || - || is the standard hermitan norm on H} ,(X)).
Using this assumption, we can set Q = 1. We will denote this product on H , (X, C) parametrized
by 7 € U by (H*(X,C),o0,).
Let to,...,t, be the coordinates on H} ,(X) determined by the homogeneous basis.

Definition 5.2. The Givental_ connection is the tuple (F*9, V"V P) which consists of the trivial
holomorphic vector bundle F**9 := H*(X,C) x (U x PL), the connection V&%
0 1

Vo, = — — =-T}o
O, 8tk > T

o 1
V.o, =24 + ;E or +4

2 az
where p: HY ,(X,C) — H} ,(X,C) is the grading operator given by u(Ty) = deg(Tx)/2 and the

holomorphic Euler vector field E is given by

(TX) +Z( deg )tka

and the pairing
P:F @ F" — Opiyy(—d,d),
(a,b) = 2%(a(2), b(=2))ors

where 1(z,t) = (—z,t) and (—, —)orp s the Orbifold Poincaré pairing.
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Notice that the connection V&% is flat (cf. . [Iri09, § 2.2]) and the pairing P is non-degenerate,
(—1)%-symmetric and V&-flat.

Let H?$'(X) D H?*(X) be a minimal homogeneous subspace which generates HY,(X) with
respect to the orbifold cup-product. We write H?%'(X) = H*(X) @ H! ,(X).

Definition 5.3. (1) Let a,y € H:,(X) and 7 € H?7'(X)NU. Define the semi-small

orb orb
quantum product as the restricton of the quantum product to parameter space HI%'(X):

3(d)

e

oy = <Oé,’}/,7'/,. .. 7T/aTk>0,l+3,diQd
> 2T gL

A€ Effx 1,620 l—times

fort=6+1 € H*(X) @ H. ,(X).
(2) The semi-small Givental connection (F*5, V& P) is the restriction of the Givental con-

nection to (H?(X)NU) x PL.

orb

Let L — X be a orbifold line bundle corresponding to ¢ € Pic(X). For any point (z,g) € &, C
ZX the stabilizer g acts on the fiber L, by a rational number. This number depends only on the
sector v, hence we denote the number by f,(§) and call it the age of L¢ along &,,.

Iritani defined an action of Pic(X) on (F%9, V& P) and showed that it is equivariant with
respect to this action:

Proposition 5.4. For each & € Pic(X) there is an isomorphism of G

orp (X, C) X (U x C) — Hg, (X, C) x (U x C),
(o, 7,2) = (dG(§), G(&)T, 2)

which preserves the connection V& and the pairing P, where G(£),dG(&) : H},
H} (X) are defined by

G(E&)(ro+ . 7)) = (10— 2mige) + Y 2"ifoOr,

(X) —

veT’ veT’
dG (&) (T + Z Ty) = To + Z 62”if’”(5)7u
veT”’ veT”’

where T, € H*(X,) and & is the image of & in H*(X,Q).

It follows from the Proposition above that the Givental connection is invariant under the action
of Pic(X), however, as observed in [DM13], the functions tg,x1 = e, ...x = €t trp1,...,1s
are not coordinates on H (X, C)/Pic(X). Therefore we mod out only a subgroup namely the

subgroup Pic(X) of line bundles with zero age , i.e. f,(£) =0. The set U is invariant under the
action of Pic(X).

Let V' be the quotient of U by the action of Pic(X) and denote by m : U — V the natural
projection. Set y; = e’ for i =1,...,r, then to, X1,..., Xr» tra1,...,ts are coordinates for V.

Lemma 5.5.

(1) There is a trTLEP(d)-structure (G¥9, VS P) on'V such that 7*(G¥9, V"9, P) = (Fti9 V9 P).
et Voen, := m n . ere 18 a tr -structure , '”, on Vien
2) Set V, HIT(X)NU). There i TLEP(d gss, vaiv p Vg

such that 7*(G**, VY P) = (F**, V9" P) and (G*, V%", P) = (G", V" P)y, ..
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Proof. The statements are a direct consequence of Proposition 4.4. The connection of (G*9, V%% P)
is given by

o 1
Vo, == — —Tkox,
8tk atk P ko
0 1 )
(5.6) Vo, = Xja—xj — ;Tj O for j7=1,...,7,
o 1
Ve, =20—+ -—Eo,+p
0, =z
fork € V. g
Let Ty, ..., T, be a homogeneous basis of H* ,(X) as above. We assume that 1 =T, € H*(X,Z),

Ti,..., T, € H*(X) and T,11,...,T, is a basis of Drro2 H*(X) ® @, e H* (X)) Addition-
ally we assume that T7,..., T} is a Z-basis of Pic(X) C H?(X,Z) and lies in the Kihler cone
K C H?(X).

The choice of the basis Tp, ..., T}, gives rise to an embedding j : H*(X,C)/Pic(X) < C". Let
V! resp. V' be the closure of image of j X id.

gen

Proposition 5.7. There exist extensions (?bi‘q, VG P) resp. (G,V? P) of (GV9,VCG, P)
resp. (G*%, VS P) to a log-trTLEP(n)-structure on V' resp. Vien- Moreover, there is a struc-
ture of a logarithmic Frobenius manifold on V'.

Proof. The first statement follows from the form of the connection 5.6. The second statement
follows from [Rei09, Proposition 1.10 and Proposition 1.11], where the vector £ in loc. cit.
corresponds to Ty = 1 here. O

We now recall the fundamental solution of the Givental connection. Define

L ) 1 e T 5(d) ok
T,Z)Oz =€ (0% Z l'<7z—|—¢ 3T yeeey Ty k>0,l+2,de

deEEffx\{0}
1>0,0<k<s

where 7 = § + 7/. The following proposition summarizes the properties of the fundamental
solution.

Proposition 5.8 (|Iri09, Proposition 2.4|).
(1) L(r,2) satisfies the following differential equations:

Vo, L(r,2)a=0, Vo, L(r,2)a = L(r,2)(sa ~ La)

tk
where o € HY (X)), p:=c1(TX) € H*(X) and p is the grading operator from Definition
5.2. If we put z7#2zP := exp(—plog z) exp(plog z), then
Vo, L(1,2)z7"2a =0, V.o L(1,2)z" "2 a=0.
(2) L(t,2) is convergent and invertible on U x C*.
(3> (L 7, _Z)aa L(T7 Z)B)ON) = (Oé, /B)OT{) }
(4) dG(&)L(G(6)7 7, 2)a = L(T, 2)e?™0e?™ife (O for a € H*(X,). In particular
dG(§)L(G(§) 7' 2)a = L(r, 2)a
for § € Pic(X).
(5) Define L(1,z) := L(7,2)z""2°, then
Vatki(T, 2)a=0, V.o L(t,2)a=0.
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Since L and therefore also L is invertible, then the sections s; := L(T}) are a basis of flat sections.
The J-function of X is given by L(7, 2) ™'1 = L(7, 2) " 'Ty. Weset J := Y7 J;T; == > i_o(8i:T0)orsTi =
L(7,2)71(Ty) and get the formula
(59) 1= TO = ijsz on (Cz x U.
i=0

6. MIRROR CORRESPONDENCE

Let X be projective, toric orbifold. In order to state the mirror theorem for toric orbifolds we
have to introduce the I-function. In this section, we will use the assumption that p € K¢ which is
a bit stronger that weak Fano (see discussion in the beginning of §2.4). We recall this assumption
in all statements when needed.

Definition 6.1. The I-function of a toric orbifold X is defined by

Iy, 2) = S o omxa/= § IL-pp,aPi + (Di,d) —v)2)

0 p— ]‘U(d) .
deK HV:O(D7+(<D’L7d> 7”)2)

We collect a few facts about the I-function.
Lemma 6.2. We have:

(1) e Zgii e logxa/zI(X7 Z) € H:rb(X)[Z7 Z_l] [[Xh cee X7’+e]]'

(2) The function e >iLi e log X“'/ZI(X, 2) 18 a convergent power Series in X1, - - -, Xr+e 4 and

only if p € K¢. In this case, the I-function has the asymptotics
TX _
I(x,2) =1+ (;) +o(z71).

The function T, which take values in HOST%(X), is a local embedding and is called the
mirror map.
(3) Set I:=1Iz"Pz" then

E(I)=0 and OX(I)=0 for leL.

Proof. The first point follows directly from the definition of the I-function. The second point is
[Iri09, Lemma 4.2]. The third point follows from [J, = I, Xlﬂl;"’l-*"l . DLX (cf. Lemma 4.13) and
the [Iri09, lemma 4.19] (Note that Iritani proves this for the equivariant I-function. In order to

to get the statement one simply has to consider the equivariant limit A — 0). O

There is the following theorem which compares the I-function from above and the .J-function
which has been introduced in Section 5.

Theorem 6.3. [CCIT15a, Theorem 31, Remark 33| Let p € K¢, then the I-function and the
J-function coincide up to a coordinate change given by the mirror map T ,i.e.

——lo ,X .
We can now identify the two log-trTLEP(d)-structures (o QMAg ,V,P) and (G**, V& P).

Proposition 6.4. Let X such that p € K¢. There exists an analytic neighborhood Wx of 0 in
Vx such that there is an isomorphism
~log ¥ . * 78S
0:(0QMy )prxwy — (idp1 X T) gupngX
of log-trTLEP(d)-structures on Wy.
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Proof. As a first step we define a morphism of holomorphic vector bundles with meromorphic
connections

75 (MBS s V) = (ide. x 1) (G sawys V)
1—=1="1;.

We set (X := (idc, x 7). Df and E := (idc, x 7),E. In order to show that the morphism above
is well- deﬁned, the following equations have to hold:

EL)( (X17 <oy Xrter 2 szfa v?}éf ?ZG(;: RN VG“) )(1) =0 for all é S L,
(65)  E(X1,-- s Xrter 2, fxu% Ve VG va ) =o.

We are using the presentation 1 = Zle J;s; of the section 1 on (C’z‘ x Wy . Since the s; are flat
sections the equations above are equivalent to

Df(xl, ooy Xrdes 20 2X10x 5 ooy 2Xr Oy, s 20y, 41y -+, 20y, ) ((ide, X T)*jl) =0,
E(Xl, o Xrges 25 ZX10xy s - 5 2Xr Oy, s 205, sy - -5 20y, ) ((idc, X T)*jz) = 0.

But this follows from Theorem 6.3 and Lemma 6.2. Since the equations (6.5) hold on C; x Wy
they hold on C, x Wy by continuity. In order to show that they are isomorphic it is enough to
prove this on the germs at 0 (since we are allowed to shrink Wy if necessary). By Nakayama’s
lemma it is even enough to show this on the fiber over 0. But this is clear since both fibers are
isomorphic to H ,(X) and the action of @f;g and VG“’ resp. z2x0y, resp. 20y, fori=1,...,r
and j = r+1,...,r+e generate the fibers at 0. Tt remamsj to show that this isomorphism extends
to an isomorphism of log-trTLEP(d)-structures.
Denote by D C Wy the normal-crossing divisor given by x1 - ... x» = 0. We will show that
the extensions to {z = oo} x P.\ {0} x D coincide under the isomorphism . First notice
that ~ gives an identification of local systems ((FQM'S? X)|C*><WX)V ~ ((idgs % r)*gﬁg; XWX)v
The extension is then encoded by the Z"+!-filtrations (F., P,) resp. (F., P,). Since we already
know that the extension over C; x D coincide we conclude that P, = ]5.. Hence it is enough
to show F = ]:",’ Arguing as in Proposition 4.41 it is enough to show that the extensions over
P! x {x = 0} coincide. But this is clearly the case since the subspace Fy which generates the
extension of £y is identified under v with the subspace generated by T, ..., T}, which in turn
generates the extension of glsgzx {x=0}"

a

Using the proposition above we can now deduce an isomorphism of logarithmic Frobenius man-
ifolds.

Theorem 6.6. Let X a toric DM stack such that p € K. There is a unique germ Mir :
(Wa x CH=+e) 0) — (V,0) which identifies the logarithmic Frobenius manifold coming from
the big orbifold quantum cohomology (cf. Proposition 5.7 to the one coming from the Landau-
Ginzburg model (cf. Theorem 4.45). Its restriction to Wx corresponds to the isomorphism 0 of
log-trTLEP(d)-structures.

Proof. This follows from Proposition 6.4 and the uniqueness statement in Theorem 4.44. ]

7. CREPANT RESOLUTIONS AND GLOBAL {t*-GEOMETRY

In this section we will first recall the notion of a (pure and polarized) variation of TERP-

structures. If a TERP-structure is pure and polarized it gives rise to tt*-geometry on the un-

derlying space. We will show that the quantum D-module of a toric orbifold X underlies such a
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variation of pure and polarized TERP-structures. Our main result is that if X admits a crepant
resolution Z than the pure and polarized TERP-structures glue which gives global tt*-geometry.

7.1. Log-TERP structures.

Definition 7.1 ([Her03, Definition 2.12], [HS10, Definition 2.1]). Let M be a complex manifold
and d € Z. A wvariation of TERP-structures on M of weight d consists of the following set of
data

(1) A holomorphic vector bundle H on C, x M

(2) A R-local system L on C% x M, together with an isomorphism

an an
L Or Oty x pt — H{Ce

such that the induced connection extends to a meromorphic connection V on ‘H such that
V has a pole of Poincaré rank 1 along {0} x M.

(3) A polarization P : L @ 1*L — iRy pq, which is (=1)¢ symmetric and which induces
a non-degenerate pairing ’

P:H@c,xmt™™H — ZdOcczxM

where non-degenerate means that the induced symmetric pairing [z ~9P) : H/zH@H/zH —
O is non-degenerate.

Definition 7.2. Let M be a complex manifold, D a simple normal crossing divisor and n €
Z. A log-TERP-structures is a holomorphic vector bundle H on C, x M, a R-local system
L on C5 x (M \ D) which induces an integrable connection V so that Vg (H) C H and
V.x(H) C H for any holomorphic vector field X on M which is logarithmic along D and a
pairing P : L® 'L — idK(czxM which induces a pairing P : H @ *H — 2%O0c_xn such
that (H,V, P,d) is a log-TEP(d)-structure and (H, L, P,d)|c_xm\p) 5 a variation of TERP-
structures.

We now state the definition of a pure and polarized variation of TERP-structures.

Definition 7.3. Let (H, L, P,d) be a variation of TERP-structures on M. Let M be the complex
manifold with the conjugate complex structure and v : P x M — P! x M be the involution
(z,2) = (271, 2). Consider v*H which is a holomorphic vector bundle on (P! \ {0}) x M . Let
OpCYY be the subsheaf of Cpl', 4 consisting of functions which are annihilated by O=. Define a
locally free Op1C{y-module H by glueing H and v*H via the following identification on C: x M:
Let x € M and z € C; and define

Cc: H\(z,:c) — (’V*H)\(z,z) y
a + V-parallel transport of 2=% - a.

Then c is an anti-linear involution and identifies Hcxxpm with V*H\C*xﬁ' The involution c
restricts to complex conjugation (with respect to L) in the fibres over S* x M.

(1) (H,L, P,d) is called pure iff H o= p*pH, where p: P x M — M.
(2) Let (H,L,P,d) be pure, then
h :p*?’:[ ®can p*’f:l — CXY
(5,t) = 279P(s,c(t))
is a hermitian form on p,H. We call (H, L, P,d) a pure and polarized TERP-structure

if this form is positive definite.
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A log-TERP-structure is called pure resp. pure and polarized if its underlying variation of TERP-
structures is pure resp. pure and polarized.

Theorem 7.4. The restriction of the quantum D-module G of a toric orbifold to C, x Wy \ Dy
underlies a variation of pure and polarized TERP-structures of weight d.

Proof. The proof carries over almost word for word from the manifold case in [RS15, theorem
5.3]. So we just give a sketch of the proof and refer the reader to loc. cit. for details. Using

—log,X

the mirror isomorphism 6 : (0QMy~ )prxwa = (idp1 X 7)*GF1 .y, it is enough to show that
09QM 4 underlies a variation of pure and polarized TERP-structures. Notice that the underlying
D-module ° QM 4 is isomorphic to FLl/\OACSY HOW, Oy « Mg, by the description (4.7) and Proposition
4.9 (2). The Riemann-Hilbert correspondence gives DR(H'W, Oy a3,) ~ p’HORW*QYXMSY.
Therefore DR(HW Oy xms,) carries a real structure p’HORW*EYXMoX. It follows from [Sab97,

Theorem 2.2] that the local system of flat sections of (° QM 4, V) is equipped with a real structure.
That °QM 4 is pure and polarized follows from [Sab08, Theorem 4.10]. a

The proof of the theorem above shows that variation of pure and polarized TERP-structures
exists on a Zariski open subset of the complexified Kéhler moduli space M y. In the remaining
part of the paper we glue the complexified Kéhler moduli space of a toric Deligne-Mumford stack
X to the complexified Kéhler moduli space of a crepant resolution and show that the correspond-
ing variation of TERP-structures also glue on the common domain of definition. This gives the
global tt* geometry.

7.2. Construction of the global Kéhler moduli spaces. Let X be a simplical, numerical-
effective toric variety with fan ¥x. Let ai,...,a,, € N be the primitive generators of the
ray pi,...,pPm. The canonical stacky fan ¥ = (N,YXx,a) is given by a(e;) = a; for i =
1,...,m. We denote the corresponding Deligne-Mumford stack by X. Assume that there exists
a crepant toric resolution m : Z — X of X. We denote by ¥z the corresponding fan. The
rays of ¥ are denoted by p1,..., pm,Pm+1s-- -, Pmte and the primitive integral generators by
A1y -y Qmy Gty - -« Gmte (notice that the first m primitive generators are the same as the
primitive generators of X since Z is a resolution of X). The following lemma is well-known, but
the authors could not find a suitable reference.

Lemma 7.5. We have the following equivalence
w:Z — X s crepant = Amg1s -y Gmpe € dconv(ag, ..., am)
where conv(ay, ..., ay) is the convex hull of ay, ..., ap,.

Proof. Notice that the fan of Z is a subdivision of the fan of X. Recall that the canonical divisor
of X and Z are

Kz=Di+ -+ Dpye, Kx=Di+ - +Dp.

Denote by ¢k, (resp. ¥k,) the piece-wise linear function Ng — Q corresponding to the Q-
Cartier divisor Kx (resp. Kz). As both fans are simplicial, these piece-linear functions are
determined by their values on the primitive generators of the rays. We can interpret the function
VK, as a piece-wise linear in the fan of Z which is exactly ¢z- k. Then we have
’(/JKX (az) = ’lﬂw*KX (az) =1forie {1, Ce ,m},
Vi, (a;)=1forie{l,... m+e}.
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The morphism 7 is crepant if and only if these piece-wise linear functions are equal i.e., (K x)(a;) =
1forie {m+1,...,m+e}. Notice that a point p € N is in dconv(ay,...,a,) means exactly
that ¢k, (p) = 1 which finishes the proof.

g

The crepantness of m puts several restrictions on X.

Lemma 7.6. Assume that 7 : Z — X is a crepant resolution, then
(1) X is an SL-orbifold.
(2) Gen(Xx) = {am+1s--+sQmipe}-

Proof.

(1) Let ¢ € N be arbitrary and let o(c) be the unique minimal cone of ¥ x containing c. As
above we can write uniquely

m
Cc = E RiQ;j.
i=1

a;€o(c)

The claim is equivalent to the fact that deg(c) := >, c ki € N. Since ¥z is a
subdivision of ¥ x, hence also complete, we can find a unique minimal cone o/(c) € Xz
containing ¢ and with ¢’(¢) C o(c¢). Because Xz is regular we can uniquely write

m-+te
Cc = E Kijaj
j=1
aj€o’(c)
with % € N. Hence we have
m-+te m-+te m
c= E Kjaj = E K g Kij @
j=1 j=1 i=1
aj €o’(c) (LjEO'/(C) a;€o(aj)

Because the o(c) was chosen to be minimal and because of the lemma above, this gives

m-+te m m-—+te
_ / . _ / .
deg(c) = E K E Kij | = E k; 1 €N.
j=1 i=1 j=1
aj€a’(c) a;€a(aj) aj€a’(c)

(2) Let 0 be a cone of Xx. First notice that the degree deg(c) of an element ¢ is additive
inside a fixed cone, i.e. for ¢,¢’ € o we have deg(c+¢’) = deg(c) +deg(c’). Because of the
first point this shows that {amy1,-..,amte} C Gen(Xx), since their degree is minimal.
Now assume that ¢ € Gen(Xx). Because Xz is a regular fan, there exists a cone o’ € X
such that ¢ = 3, . r;ja; with k; € N. Since ¢ € Gen(Xx), we conclude that ¢ = a;,
for some ig € {m +1,...,m +e}.

O
We get the following statement from deg(a;) =1fori=m+1,...,m+e.
Corollary 7.7. The orbifold cohomology H

x o(X) is H2 , -generated.
Consider the sequence

(7.8) 0—L-—2Z""*— N-—0.
46



Log degenerations of LG models for toric orbifolds and tt* geometry

Since Z is smooth, we get the exact sequence

0 — N* — (Z"°)* ~ PL(Yz) — L* ~ Pic(Z) — 0
when we apply Hom(—,Z) to sequence (7.8).
We get the following commutative diagram with exact rows:

0 —— N*—— PL(¥x) — Pic(X) ——=0

@ -

The image of the Kéhler cone K x under the embedding Pic(X)®Q N Pic®(X)®Q ~ Pic(Z2)2Q
is a face of the Kéhler cone Kz by [OP91, Theorem 2.5]. We need the following lemma

Lemma 7.9. The images of D; € (Z™¢)* =~ PL(Xy) for j € {m+1,...,m+ e} do not lie in
Kz.

Proof. The element D; seen as a piece-wise linear function on the fan ¥z satisfies D;(a;) = ;5.

‘We have
m
a; = E R;Q;
=1

a,;Ea(aJ)
where o(a;) is the minimal cone in Xx containing a;. Therefore 1 = Dj(a;) = D;(3_,, co(a,) Kii) >
> asco(ay) FiDj(ai) = 0 which shows that D; ¢ CPL(Xz) for i € {m+1,...,m + e}. Since we

J

have N* C CPL(Xyz) we see that [D;] & Kz. O

The lemma above shows that we get two r + e dimensional cones in Pic(Z) ® Q, namely Kz and
K% which intersect along the face Kx. Now consider the lattice Pic®(X) inside Pic(Z) ® Q.

Proposition 7.10. We will choose two different Z-bases for Pic®(X).

(1) The first one is p1,...,Prre with the property that
® pi,...,pr 1S a Z-basis of the image of 0,
® pryi = [Dmyi] forie{1,... e}

(2) The second basis q1, - .., qr+e i chosen such that
e p,=gq; forie{l,...,r},
o g; liesin Kz forie{l,...,r+e}.

(3) px = pz lies in the Cone(ps,...,pr)

Proof of Proposition 7.10. (1) This is a direct consequence of Proposition 4.6.
(2) This follows from the same arguments of Proposition 4.6.
(3) This follows from Proposition 4.6, the fact that px = 0(px) (see the proof of Lemma 2.22)
and py = px.
O

Denote the cones generated by pi1,...,Prte r€SP. q1,...,qrtre by Cx resp. Cz. They are both
smooth.
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Definition 7.11. (1) The global Kihler moduli space M is the toric variety corresponding
to the fan with respect to the lattice Pic®(X) generated by the cones Cx and Cz together
with its faces. Each cone corresponds to an affine chart which we denote by My resp.
Mz and their dense tori by My resp. Mz (notice that we identify the images of My
and My under the embeddings My — M < Mz.).

(2) The non-degenerate locus M° of M is defined by M5 = M% (cf. the definition given
in (4.10) ).

Remark 7.12. Since both Cx and Cz are cones which are spargad by a Z-bases (ci Proposi-
tion 7.10), the variety M is smooth and is covered by two charts My ~ C"¢ resp. Mz ~ C"+¢
corresponding to the cones Cx resp. Cz (See Figure above).

Pic(Z) ~ L~
O Pict(X)
Extended Kéhler cone of X
Kéhler cone of Z

O] . O] . ® . ®

F1GURE 1. The global Kahler moduli space, denoted M.

If we apply the results of Section 4 to the toric orbifold X resp. toric manifold Z we get the
following isomorphisms of variations of (pure and polarized) T'E R P-structures from Proposition
6.4 and Theorem 7.4:

o, log,Z . * (7SS
(OQMAg )lCzX(WZ\DZ) — (idc, x 77) gZ|(Cz><(WZ\DZ)7
o log,X . * 7SS
(@M ) jc. x(Wa\Dx) — (ide, X Ta)"GF . w(Wa\ D)
where W; C Uz C MY resp. Wy C Uy C M%' are analytic neighborhoods of pz resp. px.
OOQMIX!LX
Theorem 7.13. (1) There exists a pure and polarized log-TERP-structure OOQMfZg on a
Zariski open neighborhood U of the global Kdhler moduli space M which contains the
large volume limits pz,px.

(2) There exist analytic neighborhoods Wz, Wax C M"" of the large volume limits pz, px
such that

(§QME)icoww, — (ide, X 72)"Gic s
(CQME)jc.xwy — (ide. X T2)*Gic_xwa
as log-TERP-structures of weight d.

Proof. (1) For the first statement we remark that on the chart My resp. Mz of M there
exists Zariski open neighborhoods Uy resp. Uy of the large volume limits py resp. pyz
and log-TEP(d)-structures OOQMfZg’X resp. OOQMZXQ’Z (cf. Theorem 4.17, Corollary
4.30 and Proposition 4.35). Set W := Ux NUz. The restriction of these structures

to WN My = W N My give the same TEP(d)-structure (§QMa)|c. x(wnmy)- This
48



Log degenerations of LG models for toric orbifolds and tt* geometry

follows from the fact that QM 4 only depends on the matrix A whose columns were
given by the images a(e1),...,a(e,) which by construction are the same for the toric
Deligne-Mumford stack X and the smooth toric variety Z (in contrast to the log-TEP(d)-
structures OOQMIXQ * resp. OOQMTJ 7 which depend on the (stacky) fan).

However, the log-TEP(d)-structures OOQMfZg * and OOQ./\/leg Z even agree on W since
the extension along W\ My = W\ Mz are the canonical Deligne extensions as remarked
in the proof of Proposition 4.41. Hence we can glue these log-TEP(d)-structures along W
to get a log-TEP(d) structures 0°QMf§g onU := Uy UUz. From the proof of Theorem 7.4
follows that OOQMZ'Q restricted to U N My =U N My is a pure and polarized variation
of TERP-strucures. This shows the claim.

(2) This follows from Proposition 6.4 and Theorem 7.4 considering the fact that OOQMng
restricts to QOQMfZg’X resp. OOQMZ’Q’Z on Uy resp. Uz.
O

8. THE CREPANT RESOLUTION Fy — P(1,1,2)

In this section, we explain the construction done in the previous sections for the crepant resolu-
tion F» — IP(1,1,2). Consider the following fans

o o o oS

Fan Y x of P(1,1,2) Fan ¥z of Fy

The generators of the fan X x are given by a; := (1,0),as := (0,1),a3 := (—1, —2), the generator
of the extended ray is a4 := (0, —1). The short exact sequence (2.7) is given by

1 0
(? 5) (655 7%)
0 -1 4 010 1
0—>N-~z2—— 2 @t 7D~ Lo ~72

where we have chosen [D1], [Ds] as a basis for L*. The image of © : PL(Xx) — @?:1 Z.D; is
given by ©(PL(Xx)) = {aDy +bDs+cD3+dDs | d = 2a+ 3c}. The lattice PL(X°) is given by
{aD1+bDs + ¢Ds +dD, € @?:1 ZD; | 2a+ c € Z} and Pic*(X) is generated by 2[D1], [Ds]
or equivalently by [Ds], [Dy].

© 0 © J ® J ®
L*

[D4] [D2]

© . . @ - ® O Pict(X)
\0:[5’:]’ (Ds] Extended Kihler cone of P(1,1,2)
® . ® . ®

Kahler cone of Fy

O] . O] . O] . ®
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The global moduli space M is the gluing of the two grey cones inside Pic®(X). It is the total
space of Op1 (1), the two chart Mp(; 12y and Mg, correspond to the trivializations of this bundle
over C and P!\ {0}, respectively. The two Z-bases of Pic®(X) discussed after Lemma 7.6 are

(1) p1 = [D2] and ps = [D4]
(2) @1 =p1 and go = 2[Ds]

For a basis of Pic®(X) we choose p; = [Ds] and py = [D4] inside the extended Kéhler cone of
P(1,1,2) . Therefore we have

1 1 1 1

[Di] = SP1— 5P [Ds] = p1 D = §ZX18X1 - §ZX23X2 Dy = zx10x, ,
1 1 1 1

[Ds] = oP1— P2 [Da] = p2 I3 = 52x10 — 52x20; Ta =20y,

From Proposition 4.9 we get the following operators defining QM=% where x; and y2 are coor-
dinates with respect to the basis p1, po:

E=z%0, + 22x10y, ,
D‘()(()71,0,1) =xX1— 2291 = x1— ZX18X128)<2 s

1
Ot = 78 = 2125 = (20,) — 7 (2210, — 2x20)"

1
Of 111y = X1%4 — 21D D3 = x1(20y,) — 7 (X100 — 2X20y, ) 2x10y, -

We now compute the operators for QM%. For a basis of Pic®(X) C Pic(Z) inside the Kihler
cone of Fy we choose: ¢1 = [Ds] and ¢o = 2[D1] and get

1 1
[D1] = 912 [D2] = q1 D, = 527728712 Dy = zm 0y, ,
1 1
[Ds] = 542 [Da]=q1 — @2 Ds = 527723712 Dy = 210y, — 2120y, .

We get the following operators where 71 and 79 are coordinates corresponding to the basis g1, ¢a:

E = 2282 + 227718771 s
|:l(ZO,l,O,l) =m —DyDy=m — (27718771)(27718771 - 27728772) )

1
08 01,2y = 1Da(Da — 2) — D1D3 = 03 (2m0y, — 2m20,,) (210, — 2120y, — 2) — Z(”ham)z’

08 11, -1) = mmDa — D1DaD3 = mns (2my, — 21720,,) — %(27713771)(27723772)2~

We want to solve the Birkhoff problem in a family (cf. [Sab07, Chapter VI.2|) for QM=% and
OM?% and compare the solutions. Namely, we will explicitly solve the Birkhoff problem in
the coordinate x1,x2 (corresponding to the base (p1,p2) i.e., to the extended Kéahler cone of
P(1,1,2)), then we will do the same with the coordinate 1y, 72 (corresponding to the base (¢1, ¢2)
i.e., the Kahler cone of Fy). Finally, as expected by Theorem 7.13, we can glue these two bases
using the change of variable given by the Figure above.

First consider the following basis of QM% that is with the base p1, po with coordinates x1, xo:

1, (2X18X1)» Zaxw (ZX16X1)2 .
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The connection is then given by

00 x1 0 000 x1x2

d-i-l 100 2x1X2 %4— 000 O @
2000 xa(4—=x3) | xu 000 O Y1
010 0 000 O
0 x1 724X_17XX§ 0 00 0 x1
1100 0 X1 00 0 O
2 lio 0 o |Petloop, 0 %
00 43xg 0 00 0 O
0 0 —2x; 0 000 —2x1x2
. -2 0 0 —4x1X2 %—F 010 O dz
00 0 -2x(4—x3) |22 001 0 z
0 -2 0 0 000 2

Notice that this basis does not solve the Birkhoff problem in family since the basis is not flat
with respect to the residue connection at z = oo because

dxa
X1
e the matrix in front of ‘i—z is not constant.

e the matrices in front of and dys are not vanishing,

Consider now the basis

1 7
(81) 1, (ZX18X1)7 5 4 - X%(26X2)ﬂ (ZX18X1)2 — X1X2-

With respect to this basis the connection is given by

0 X1 —X1X2 0
0 x1x2 3X1V4 — X3 0 2V4A=x3
- - - —_ X1X2 2
2|0 0 0 20vi-d|x | yag 0 0 Tun
0 1 0 0 0 0 1 0
24/4—x3
0 —2xix2 —x1vV4 - X3 0 0000
n -2 0 0 —2x1X2 dz n 0100 | dz
0 0 0 —4dx1/4—x3 | 22 0010 ]| 2

0 -2 0 0 0002

and therefore solves the Birkhoff problem in a family. Notice that one can read of a differential
equation for the mirror map from the connection matrices above. It is given by

Mir~"(x1,x2) = (x1,6(x2))

VASXE  Phat s

: Ok __
with s = 5

x2v/4 — X3

4

k(x2) = + arcsin(%) .

A similar computation shows that the basis

(8.2) 1, (zm0y,), (1—/1—4n3) - (zm8y,) + /1 — 403 - (2m20y,), (2m10p,)> —m

provides a solution for the Birkhoff problem in a family for QMZ%.
The gluing of the Kéhler cones given in Figure 8 encodes the following change of coordinates

X1 =2, X2 =15
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Computing carefully the change of coordinates and the change of basis from (8.1) to (8.2) shows
that the two solutions of the Birkhoff problem are the same which means that the extensions at
infinity are the same. One should mention that in [CIT09], Corti-Iritani-Tseng prove a similar
statement but as we are working on a global D-module, which is defined globally on the B-side, we
do not need an analytic continuation argument. In general it is not the case that the extensions
at oo are the same. However Iritani [Iril0, Theorem 3.22] worked out a sufficient condition,
called Hard Lefschetz condition, for the extensions to be the same. Since this condition is met
here, our computation is in agreement with this theorem.
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