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We investigate a finite element formulation of the exponentiated Hencky-logarithmic model whose strain energy function is given by

where µ > 0 is the (infinitesimal) shear modulus, κ > 0 is the (infinitesimal) bulk modulus, k and k are additional dimensionless material parameters, U = √ F T F is the right stretch tensor corresponding to the deformation gradient F , log denotes the principal matrix logarithm on the set of positive definite symmetric matrices, dev n X = X -trX n 1 and X = √ trX T X are the deviatoric part and the Frobenius matrix norm of an n × n-matrix X, respectively, and tr denotes the trace operator.

1 Introduction

The exponentiated Hencky energy

In a series of articles [START_REF] Ghiba | The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity[END_REF][START_REF] Neff | The exponentiated Henckylogarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity[END_REF][START_REF] Neff | The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity[END_REF][START_REF] Neff | The exponentiated Henckylogarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers[END_REF], Neff et al. recently introduced the so-called exponentiated Henckylogarithmic model, a hyperelastic constitutive law induced by the exponentiated Hencky strain energy

W eH (F ) = µ k e k dev n log U 2 + κ 2 k e k[tr(log U )] 2 (1) 
= µ k e k dev n log V 2 + κ 2 k e k[tr(log V )] 2 .
(

) 2 
Here, µ > 0 is the (infinitesimal) shear modulus, κ > 0 is the (infinitesimal) bulk modulus, k and k are additional dimensionless material parameters determining the strain hardening response, U = √ F T F and V = √ F F T are the right and left stretch tensors corresponding to the deformation gradient F , log denotes the principal matrix logarithm on the set of positive definite symmetric matrices, dev n X = X -1 n (trX) 1 and X = √ trX T X are the deviatoric part and the Frobenius matrix norm of an n × n-matrix X, respectively, and tr denotes the trace operator.

The exponentiated Hencky energy is based on the so-called volumetric and isochoric logarithmic strain measures ω iso = dev n log U = dev n log V ,

and ω vol = |tr log U | = |log det U | = |log det V | , (3) 
which have recently been characterized by a unique geometric property [START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF]Theorem 3.7]: on the general linear group GL(n) of invertible matrices, the geodesic distance of the isochoric part F det F 1/n and the volumetric part (det F ) 1/n 1 of the deformation gradient to the special orthogonal group SO(n) are given by

dist geod F (det F ) 1/n , SO(n) = dev n log V = ω iso , dist geod (det F ) 1/n 1, SO(n) = |log det V | = ω vol ,
if GL(n) is considered as a Riemannian manifold endowed with the canonical left-invariant Riemannian metric g, which is given by [START_REF] Martin | Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant riemannian metrics[END_REF] g A (X, Y ) = A -1 X, A -1 Y for A ∈ GL(n) and X, Y ∈ gl(n) = T A GL(n), where X, Y = Y T X is the canonical inner product on the space gl(n) of all real n × n-matrices. This purely geometric observation (which is summarized in Fig. 1) identifies ω iso = dev n log V and ω vol = |log det V | as the "natural" measures of strain in an elastic deformation, which suggests that an idealized elastic strain energy function may be expressed in terms of these quantities alone. 1 A classic example of an energy function depending only on ω iso and ω vol is the quadratic Hencky energy

W H (F ) = µ dev n log U 2 + κ 2 (log det U ) 2 = µ dev n log V 2 + κ
2 (log det V )2 introduced by Heinrich Hencky in 1929 [START_REF] Hencky | Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen[END_REF][START_REF] Hencky | Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern[END_REF][START_REF] Hencky | The elastic behavior of vulcanized rubber[END_REF][START_REF] Neff | The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky[END_REF]. While the elasticity model induced by the Hencky energy is, for many materials, in very good agreement with experimental observations for up to moderate strains [START_REF] Anand | On H. Hencky's approximate strain energy function for moderate deformations[END_REF][START_REF] Neff | The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity[END_REF], it also suffers from a number of major shortcomings. For example, the Hencky energy is not able to accurately model the qualitative behaviour of materials under very large deformations, and since it is neither polyconvex nor quasiconvex or rank-one convex [START_REF] Neff | Mathematische Analyse multiplikativer Viskoplastizität[END_REF], there are no known methods available to ensure the existence of energy minimizers for general boundary value problems.

The exponentiated Hencky energy W eH closely approximates the classical quadratic Hencky energy for small deformations, but provides a more accurate model for larger deformations as well as an improvement with respect to some basic constitutive properties. For example, the induced mapping B → σ(B) of the Finger tensor B = F F T to the Cauchy stress tensor σ is invertible everywhere [START_REF] Jog | Conditions for the onset of elastic and material instabilities in hyperelastic materials[END_REF][START_REF] Mihai | Hyperelastic bodies under homogeneous Cauchy stress induced by nonhomogeneous finite deformations[END_REF][START_REF] Mihai | Hyperelastic bodies under homogeneous Cauchy stress induced by threedimensional non-homogeneous deformations[END_REF][START_REF] Neff | Injectivity of the Cauchystress tensor along rank-one connected lines under strict rank-one convexity condition[END_REF] (and, in particular, det ∂σ ∂B = 0 for all positive definite symmetric B). 2 In the two-dimensional case, the energy W eH is also polyconvex [START_REF] Neff | The exponentiated Henckylogarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers[END_REF]. The three-dimensional exponentiated Hencky energy, on the other hand, is not overall rankone convex, although it is Legendre-Hadamard elliptic in a large neighbourhood of the identity tensor 1. Moreover, in couplings with multiplicative elasto-plasticity, the computation of the elastic trial step always leads to a rank-one convex problem provided the computation is carried out in a (large) neighbourhood of the yield surface [START_REF] Ghiba | An ellipticity domain for the distortional Hencky logarithmic strain energy[END_REF][START_REF] Neff | Loss of ellipticity for noncoaxial plastic deformations in additive logarithmic finite strain plasticity[END_REF]. This is true since the elastic domain in that model is always included in its rank-one convexity domain, at any given plastic deformation. This property is not known to hold for other non-elliptic formulations since, in general, the elastic domain is not connected to the rank-one convexity domain.

Similar to the classical Hencky energy, the exponentiated Hencky energy is also determined by only few material parameters which have distinct physical characterizations: while the bulk modulus and the shear modulus, respectively, determine the volumetric and isochoric stress response in the infinitesimal range, the additional dimensionless parameters k and k determine the strain hardening response for large deformations. This allows for a very simple fitting of parameter values to new materials without requiring extensive experimental measurements. Furthermore, materials with zero lateral contraction can be modelled by the exponentiated Hencky energy as well: if the parameters k, k are chosen such that k = 2 3 k, then the exponentiated Hencky energy can be written as

W eH (F ) = 1 2 k
Fig. 1 An intuitive comparison between the geodesic and Euclidean distance of F to SO(n) and the linearized distance of ∇u = F -1 to the space so(n) of linearized (infinitesimal) rotations.

where ν =3 κ-2 µ 2(3 κ+µ) denotes the Poisson's ratio and E = 9 κ µ 3 κ+µ is the Young's modulus. In the special case ν = 0, no lateral contraction occurs even for finite strain deformations [START_REF] Neff | The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity[END_REF]. This formulation does also not suffer from the deficiencies reported in [START_REF] Ehlers | The simple tension problem at large volumetric strains computed from finite hyperelastic material laws[END_REF] for volumetricisochoric splits under simple tension; indeed, for positive nonlinear Poisson number ν = -(log V ) 22 (log V )11 , longitudinal extension always implies lateral shortening. 3 A number of further salient features of this formulation have been outlined in [START_REF] Neff | The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity[END_REF].

A variant of the exponentiated Hencky energy has previously been applied to so-called tire derived materials, where it was found to be in good agreement with experimental data [START_REF] Montella | The exponentiated Hencky strain energy in modeling tire derived material for moderately large deformations[END_REF]. For the highly nonlinear equation of state (EOS), which relates pressure to purely volumetric deformations, the exponentiated Hencky model performed particularly well. In [START_REF] Schröder | The exponentiated Hencky energy: Anisotropic extension and biomechanical applications[END_REF], the exponentiated Hencky energy has also been formally generalized to the anisotropic setting.

In the following, we consider the finite element implementation of the isotropic exponentiated Henckylogarithmic model [START_REF] Anand | On H. Hencky's approximate strain energy function for moderate deformations[END_REF], by using the spectral decompositions of the different stress and strain tensors. 4 Since we also consider the two-dimensional case, the polyconvexity of the exponentiated Hencky energy allows for a complete well-posedness result in that case: en-ergy minimizers exist, and the solution is contained in the Sobolev space W 1,r (B 0 ) for any 1 ≤ r < ∞.

We study a number of relevant examples to show the performance of our approach, including the challenging application to the eversion of elastic tubes. This problem was referred to by Truesdell 5 [START_REF] Truesdell | Some challenges offered to analysis by rational thermomechanics: three lectures for the international symposium on continuum mechanics and partial differential equations[END_REF] to show peculiar properties of nonlinear elasticity and has been experimentally dealt with by Gent and Rivlin [START_REF] Gent | Experiments on the mechanics of rubber I: eversion of a tube[END_REF]. The eversion-of-tubes problem is calculated with the commercial finite element solftware Abaqus, whereas the other computations were done with our proprietary code and checked against results by Abaqus.

Notation

Throughout the paper, bold face characters refer to vectors, second-and fourth-order tensorial quantities. In particular, 1 denotes the second-order identity tensor with components δ ij (δ ij being the Kronecker delta), and I is the fourth-order unit tensor of components

I ijkl = 1 2 (δ ik δ jl + δ il δ jk ).
The notation ( ) T is used for the transpose operator and the scalar product ' , ' is used for double tensor contraction ':', i.e. for any 5 An everted rubber tube (shown in Fig. 15) was described by Truesdell as follows: "We see that the everted piece is a little longer than the other [identical, non-everted tube]. [...] With the naked eye we can see that the wall of the everted piece is a little thinner than it was originally. If we consider the part of the tube that lies a distance from the ends greater than one-fifth of the diameter, we can say that the everted piece, like the undeformed one, is very nearly a right-circular cylinder. We can idealize what we have seen by saying that an infinitely long, elastic, right-circular cylinder can be turned inside out so as to form another right-circular cylinder, having different radii." second-order tensors A and B, A,B = tr[AB T ] = A ij B ij where, unless specified, summation on repeated indices is always assumed. The notation ⊗ stands for the tensorial product. In components, one has (A ⊗ B) ijkl = A ij B kl , and for any two vectors u and v, (u ⊗ v) ij = u i v j . Finally, the dot notation will always designate material time derivative, i.e. ( ˙ ) ≡ d( )/dt.

Variational formulation and linearized forms

We consider a solid that occupies the reference configuration B 0 with boundary ∂B 0 . A material particle is identified by its position X ∈ B 0 , and we trace its motion by its current position in the spatial configuration B t as x = ϕ(X, t) ∈ B t , where ϕ( , t) denotes the deformation map in a time interval [0, T ]. The deformation gradient is defined as F = ∇ X ϕ where ∇ X ( ) is the material gradient operator with respect to X. In the same way, ∇ x ( ) will designate the spatial gradient operator with respect to x.

The variational formulation of the local form of the mechanical balance equation plays a central role in the numerical solution of boundary-value problems. In its Lagrangian form, it is equivalent to the following weak form:

B0 S 1 , ∇ X (δϕ) dV = G ext (δϕ), (5) 
which must hold for any admissible variation δϕ of deformation. Here, S 1 = ∂W ∂F is the first Piola-Kirchhoff stress tensor, G ext (δϕ) is a short hand notation for the virtual work of external loading assumed to be deformation independent for the sake of simplicity. The left integral term is the internal virtual work. This latter may equivalently be expressed as, see for example [START_REF] Holzapfel | Nonlinear Solid Mechanics. A Continuum Approach for Engineering[END_REF][START_REF] Simo | Computational Inelasticity[END_REF][START_REF] Wriggers | Nonlinear Finite Element Methods[END_REF]

, B0 S 1 , ∇ X (δϕ) dV = B0 τ , ∇ x (δϕ) dV, ( 6 
)
where τ is the Kirchhoff stress tensor that is connected to S 1 by the stress relation τ = S 1 F T . 6 Indeed, one has

S 1 , ∇ X (δϕ) = S 1 F T , ∇ X (δϕ)F -1 ≡ τ , ∇ x (δϕ) , (7) 
6 Note that for isotropic materials, the Kirchhoff stress can be obtained directly from the elastic energy as

τ = ∂W ∂ log V = ∂W ∂V • V ,
a formula first derived by Richter [START_REF] Richter | Das isotrope Elastizitätsgesetz[END_REF], see also [START_REF] Vallée | Lois de comportement élastique isotropes en grandes déformations[END_REF].

where the connection ∇ X ( ) = ∇ x ( )F for first-order tensors has been used as well.

Different numerical strategies can be employed to solve this nonlinear problem. We choose here to use a high fidelity resolution procedure of the Newton-Raphson type. The above problem needs then to be linearized first and below are the relevant points of this procedure which we include in detail for the convenience of the reader.

Linearization of the form (5)

As customary, we denote by u(X) the displacement of the particle X ∈ B 0 such that ϕ(X) = X + u(X). In order to quickly obtain the needed elasticity tangent stiffness tensors, taking the rate form of the expression (7) 1 we have:

Ṡ1 , ∇ X (δϕ) = ∂S 1 ∂F : Ḟ , ∇ X (δϕ) = ∇ X (δϕ), ∂S 1 ∂F : ∇ X v , (8) 
where v = u is the velocity field.

Replacing the velocity v by the linear increment of displacement ∆u, the linearization of the form (5) about a known state u = u (i) at iteration (i) is then given by B0 ∇ X (δϕ), C : ∇ X (∆u) dV = G ext (δϕ)

- B0 S (i) 1 , ∇ X (δϕ) dV , (9) 
where the right hand-side represents the residual of the mechanical balance with the first Piola-Kirchhoff stress tensor evaluated with u (i) . In the integral of the left hand-side, C is the mixed fourth-order tangent modulus with definition

C = ∂S 1 ∂F = ∂ 2 W ∂F 2 , (10) 
that can be useful for numerical implementations based of the first Piola-Kirchhoff stress tensor.

2.2 Linearization of the equivalent form [START_REF] Ehlers | The simple tension problem at large volumetric strains computed from finite hyperelastic material laws[END_REF] Let us again start with the rate form [START_REF] Gent | A new constitutive relation for rubber[END_REF], but this time by invoking the second Piola-Kirchhoff stress tensor S 2 .

Recalling that the first and the second Piola-Kirchhoff stress tensors are related by

S 1 = F S 2 , we then have Ṡ1 , ∇ X (δϕ) = Ḟ S 2 + F Ṡ2 , ∇ X (δϕ) = ∇ x v F S 2 + F Ṡ2 , ∇ X (δϕ) = ∇ x v F S 2 F T + F Ṡ2 F T F -T , ∇ X (δϕ) = ∇ x v τ + £ v τ , ∇ x (δϕ) , (11) 
where, in the second equality we have used the kinematic relation ∇ x v = Ḟ F -1 = L for the spatial velocity gradient and, in the last equality, we have used the connection ∇ x (δϕ) = ∇ X (δϕ)F -1 , the stress relation τ = F S 2 F T , and the Lie derivative

£ v τ = F Ṡ2 F T , (12) 
which is equivalent to the Truesdell rate of the Kirchhoff stress

d dt TR τ = F [ d dt (F -1 τ F -T )]F T = τ -Lτ -τ L T .
The Lie derivative [START_REF] Hencky | Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen[END_REF] can be expressed in terms of the spatial tangent modulus C as

£ v τ = C : D ≡ C : ∇ x v, (13) 
where the replacement of the spatial strain rates D by ∇ x v is justified since C enjoys the symmetry conditions.

Now replacing again the velocity v by the linear increment ∆u, the linearization of the mechanical balance about a known state u (i) at iteration (i) is equivalently given by B0 ∇ x (∆u)τ (i) .∇ x (δϕ)

+ sym ∇ x (δϕ) : C : sym ∇ x (∆u) dV = G ext (δϕ) - B0 τ (i) , ∇ x (δϕ) dV , (14) 
where, on the left hand-side, the integral is composed of the geometric (first term) and the material (second term) contributions to the linearization, while the right hand-side is the residual of the mechanical balance. The form [START_REF] Hencky | The elastic behavior of vulcanized rubber[END_REF] is equivalent to the one based on S 1 in Eq. [START_REF] Gent | Experiments on the mechanics of rubber I: eversion of a tube[END_REF]. Observe further that the form (9) contains one term only in the left hand-side while [START_REF] Hencky | The elastic behavior of vulcanized rubber[END_REF] contains two terms.

In the following, it is the form (14) that will be discretized in view of a finite element implementation. One of the objectives of this paper is to compute C for the exponentiated Hencky model. Nevertheless, the mixed fourth-order tensor C defined in (10) will be deduced as well.

Outlines of the finite element discretization

In a finite element context, the displacement is defined at the nodes, see Fig. 2 for an illustration. The interpolations of the reference geometry and the displacement field are completely standard, see e.g. [START_REF] Hughes | The Finite Element Method[END_REF][START_REF] Wriggers | Nonlinear Finite Element Methods[END_REF][START_REF] Zienkiewicz | The Finite Element Method[END_REF] for the exposition of these ideas. Over a typical element B e they take the form

X e (ζ) = n e node A=1 N A (ζ)X e A , u e (ζ) = n e node A=1 N A (ζ)u e A , (15) 
where X e A ∈ R n and u e A ∈ R n denote, the reference position and the displacement vector, respectively, that are associated with the element node A, n = 2 or 3 is the space dimension, n e node is the node number within the element, and N A (ζ) are the classical isoparametric shape functions. The interpolation over a typical element of the deformation gradient then takes the form

F e (ζ) = n e node A=1 (X e A + u e A ) ⊗ ∇ X [N A ] , with ∇ X [N A ] = J(ζ) -T ∇ ζ [N A ] , (16) 
where ∇ ζ [ ] is the gradient relative to the isoparametric coordinates, and where J(ζ) = ∂X e (ζ)/∂ζ denotes the Jacobian of the isoparametric map ζ → X. The finite element discretization of ( 14) needs the spatial gradients of the shape functions. This is determined via the standard formula

∇ x [N A ] = F -T e ∇ X [N A ] , A = 1, . . . n e node , (17) 
The rest of the finite element implementation is completely standard. The element contributions to the global tangent stiffness matrix associated with the element nodes are written as

K AB e = Be B T [N A ] C B[N B ] dV e + Be ∇ x [N A ].τ ∇ x [N B ] dV e I n , (18) 
for A, B = 1, . . . n e node . In this matrix, I n denotes the n × n identity matrix, and B[N A ] is the discrete spatial symmetric gradient operator.

Tangent moduli

One method to reach the theoretical expression of the spatial tangent modulus C in the linearized form given by Eq. ( 14) is to proceed in two steps:

• Step (i): we first determine the material tangent modulus C that is obtained by time derivative of the second Piola-Kirchhoff stress tensor S 2 , and such that

Ṡ2 = C : 1 2 Ċ , (19) 
• Step (ii) the spatial tangent modulus C is then obtained by push-forward of the above result to the actual configuration as, see Eq. ( 12),

£ v τ = F Ṡ2 F T such that £ v τ = C : D , (20) 
where

D = sym[ Ḟ F -1
] is the spatial strain rate tensor. The useful kinematic relationship Ċ = 2F T DF is to be employed during the derivation.

This method is valid for any hyperelastic model. We will explicit it here for our case.

Strain-energy based on principal logarithmic stretches

Let us consider a general elastic model with a strainenergy function W written as a function of the principal logarithmic stretches:

W ≡ W (log λ 1 , log λ 2 , log λ 3 ) , (21) 
where λ 1 , λ 2 , λ 3 are the principal stretches. The relation with W eH in (1) will become clear later on.

Furthermore, as spectral decompositions will be employed for the numerical implementation, we recall some basic results and notations. The spectral decompositions of the deformation gradient F , the right Cauchy-Green tensor C = F T F , the left Cauchy-Green tensor B = F F T , the right-stretch U , and the left-stretch V are respectively given by

F = 3 i=1 λ i n (i) ⊗ N (i) , C = 3 i=1 λ 2 i N (i) ⊗ N (i) , B = 3 i=1 λ 2 i n (i) ⊗ n (i) , U = 3 i=1 λ i N (i) ⊗ N (i) , V = 3 i=1 λ i n (i) ⊗ n (i) , (22) 
where N (i) and n (i) , i = 1, 2, 3, are the principal vectors in the material and the spatial configurations, respectively. They are related by

F N (i) = λ i n (i) , i = 1, 2, 3. (23) 
Likewise, for the second Piola-Kirchhoff and Kirchhoff stress tensors, we have

S 2 = 3 i=1 S i 2 N (i) ⊗ N (i) , τ = 3 i=1 τ i n (i) ⊗ n (i) , (24) 
where S i 2 and τ i , i = 1, 2, 3, are the respective principal stresses.

Let us further recall the following useful property of the derivative of the principal stretches with respect to the right Cauchy-Green tensor: In the case of different eigenvalues λ 1 = λ 2 = λ 3 , we have the following result deduced from [START_REF] Miehe | Aspects of the formulation and finite element implementation of large strain isotropic elasticity[END_REF] 2 :

∂λ 2 i ∂C = N (i) ⊗ N (i) . ( 25 
)
Proof Total differentiation of C in eq. ( 22) 2 , gives

dC = 3 i=1 2λ i dλ i N (i) ⊗ N (i) +λ 2 i dN (i) ⊗ N (i) + N (i) ⊗ dN (i) .
Now recall that N (i) is a unit vector, so that N (i) .dN (i) = 0. Hence, pre-and post-multiplying dC with N (i) gives

N (i) .dCN (i) = 3 j=1 2λ j dλ j N (i) .N (j) ⊗ N (j) N (i) = 1 iff j = i + 3 j=1 λ 2 j N (i) . dN (j) ⊗ N (j) + N (j) ⊗ dN (j) N (i) = 0 ≡ 2λ i dλ i , which means that N (i) ⊗ N (i) : dC = d(λ 2 i ) ,
and hence the property [START_REF] Montella | The exponentiated Hencky strain energy in modeling tire derived material for moderately large deformations[END_REF].

⊓ ⊔

Useful for the following derivations, we find for the second Piola-Kirchhoff stress tensor in (24)

1 S 2 ≡ 2 ∂W ∂C = 3 i=1 2 ∂W ∂(log λ i ) ∂ log λ i ∂C = 3 i=1 2 ∂W ∂(log λ i ) 1 λ i ∂λ i ∂C = 3 i=1 1 λ 2 i ∂W ∂(log λ i ) 2λ i ∂λ i ∂C = 3 i=1 1 λ 2 i ∂W ∂(log λ i ) := S i 2 N (i) ⊗ N (i) , (26) 
where [START_REF] Montella | The exponentiated Hencky strain energy in modeling tire derived material for moderately large deformations[END_REF] has been used in the derivative employing the chain rule. We then deduce the spectral decomposition of the Kirchhoff stress tensor τ in (24) 2 as

τ ≡ F S 2 F T = 3 i=1 ∂W ∂(log λ i ) := τ i n (i) ⊗ n (i) (27) 
where [START_REF] Mihai | Hyperelastic bodies under homogeneous Cauchy stress induced by nonhomogeneous finite deformations[END_REF] has been used for the push-forward procedure. Observe further the relation between the principal stresses:

τ i = λ 2 i S i 2 , i = 1, 2, 3. (28) 

Material tangent modulus

To calculate the material modulus as defined in Step (i), Eq. ( 19), we need the time derivatives of the spectral decompositions [START_REF] Miehe | Aspects of the formulation and finite element implementation of large strain isotropic elasticity[END_REF] 2 and (24) 1 , both defined in the referential configuration. To do so, we exploit the following observation made in [START_REF] Ogden | Non-linear Elastic Deformations[END_REF]: the time derivative of the eigenvectors of C, and hence of S 2 , can be expressed as

Ṅ (i) = Ω N (i) = 3 i=1,j =i Ωij N (j) ,
where the antisymmetric tensor Ω is the spin of the Lagrangian principal axes, i.e. with components Ωij = -Ωji . Inserting this result into the time derivative of the spectral decomposition of C, Eq. ( 22) 2 , gives

1 2 Ċ = 3 i=1 1 2 d dt λ 2 i N (i) ⊗ N (i) = 3 i=1 d dt 1 2 λ 2 i N (i) ⊗ N (i) + 1 2 λ 2 i Ṅ (i) ⊗ N (i) + N (i) ⊗ Ṅ (i) = 3 i=1 d dt 1 2 λ 2 i N (i) ⊗ N (i) + 3 i=1 3 j=1,j =i 1 2 (λ 2 i -λ 2 j ) Ωij N (i) ⊗ N (j) . (29) 
Similarly for the time derivative of the spectral decomposition of S 2 in (24) 1 , we obtain

Ṡ2 = 3 i=1 3 j=1 1 λ j ∂S i 2 ∂λ j d dt 1 2 λ 2 j N (i) ⊗ N (i) + 3 i=1 3 j=1,j =i S i 2 -S j 2 1 2 (λ 2 i -λ 2 j ) 1 2 (λ 2 i -λ 2 j ) Ωij N (i) ⊗ N (j) . (30) 
Hence, from the relation [START_REF] Jones | The properties of rubber in pure homogeneous strain[END_REF], we identify the material tangent modulus as

4 • ∂ 2 W ∂C 2 = C = 3 i=1 3 j=1 1 λ j ∂ ∂λ j 1 λ 2 i ∂W ∂(log λ i ) N (i) ⊗ N (i) ⊗ N (j) ⊗ N (j) + 3 i=1 3 j=1,j =i S i 2 -S j 2 λ 2 i -λ 2 j N (i) ⊗ N (j) N (i) ⊗ N (j) + N (j) ⊗ N (i) . (31) 

Spatial tangent modulus

Observe first that by use of the chain rule, the factor of the first summation in Eq. ( 31) can be rewritten as

1 λ j ∂ ∂λ j 1 λ 2 i ∂W ∂(log λ i ) = 1 λ 2 i λ 2 j ∂ 2 W ∂(log λ i )∂(log λ j ) -2δ ij ∂W ∂(log λ j ) . (32) 
Now using the push-forward procedure with the help of ( 23), the spatial tangent modulus as defined in Step (ii), Eq. ( 20), is given by

C = 3 i=1 3 j=1 ∂ 2 W ∂(log λ i )∂(log λ j ) -2δ ij τ j n (i) ⊗ n (i) ⊗ n (j) ⊗ n (j) + 3 i=1 3 j=1,j =i τ i λ 2 j -τ j λ 2 i λ 2 i -λ 2 j := χ n (i) ⊗ n (j) n (i) ⊗ n (j) + n (j) ⊗ n (i) . (33) 
It is this expression [START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF] that will be implemented numerically to solve boundary-value problems iteratively, see the discrete form [START_REF] Jog | Conditions for the onset of elastic and material instabilities in hyperelastic materials[END_REF]. It is a function evaluation involving the derivatives of the strain-energy function W with no particular problems when the principal stretches are different, i.e. when λ 1 = λ 2 = λ 3 . However, in the case of equal principal stretches (or very close from the numerical point of view), the factor in the second summation term in [START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF], denoted for convenience by χ, will cause numerical troubles as it involves a division by zero. In this case, special care must be taken and the method we use to circumvent this drawback will be detailed later on in Section 3.4.

Mixed tangent modulus

Notice that the mixed tangent modulus [START_REF] Ghiba | An ellipticity domain for the distortional Hencky logarithmic strain energy[END_REF] can be deduced by the rate form of the constitutive relation

Ṡ1 = C : Ḟ . ( 34 
)
For the first Piola-Kirchhoff stress tensor, we have

S 1 = 3 i=1 S i 1 n (i) ⊗ N (i) , (35) 
where S i 1 , i = 1, 2, 3, are its principal stresses.

Using the following property of the derivative of the three principal stretches with respect to the deformation gradient in the case of different eigenvalues λ 1 = λ 2 = λ 3 , we have from [START_REF] Miehe | Aspects of the formulation and finite element implementation of large strain isotropic elasticity[END_REF] 1 :

∂λ i ∂F = n (i) ⊗ N (i) , (36) 
which, for a strain-energy function written as a function of the principal logarithmic stretches as given by [START_REF] Martin | Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant riemannian metrics[END_REF], results in the following expression for S 1 :

S 1 ≡ ∂W ∂F = 3 i=1 ∂W ∂(log λ i ) ∂ log λ i ∂F = 3 i=1 ∂W ∂(log λ i ) 1 λ i ∂λ i ∂F = 3 i=1 1 λ i ∂W ∂(log λ i ) := S i 1 n (i) ⊗ N (i) . ( 37 
)
We then have the following relations between the principal first Piola-Kirchhoff stresses S i 1 defined in [START_REF] Neff | The exponentiated Henckylogarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers[END_REF], the principal second Piola-Kirchhoff stresses S i 2 , and the principal Kirchhoff stresses τ i :

S i 1 = λ i S i 2 , and 
τ i = λ i S i 1 , i = 1, 2, 3. (38) 
Now using the developments that led to the moduli C and C, we formally obtain for the above mixed tangent modulus

∂ 2 W ∂F 2 = C = 3 i=1 3 j=1 1 λ i λ j ∂ 2 W ∂(log λ i )∂(log λ j ) - 2 λ i δ ij S j 1 n (i) ⊗ N (i) ⊗ n (j) ⊗ N + 3 i=1 3 j=1,j =i S i 1 λ j -S j 1 λ i λ 2 i -λ 2 j n (i) ⊗ N (j) n (i) ⊗ N (j) + n (j) ⊗ N (i) . (39) 

Numerical treatment of the case of equal principal stretches

For the case in which two or even all three eigenvalues λ i are equal, the associated two or three principal stresses are also equal by isotropy. Precisely, focusing on the spatial tangent modulus, Eq. ( 33), the divided difference term denoted by

χ = τ i λ 2 j -τ j λ 2 i λ 2 i -λ 2 j ( 40 
)
gives us 0/0 and must therefore be determined applying l'Hôspital's rule (see e.g. [START_REF] Holzapfel | Nonlinear Solid Mechanics. A Continuum Approach for Engineering[END_REF][START_REF] Ogden | Non-linear Elastic Deformations[END_REF] for similar developments applied to Ogden-type models):

lim λj →λi χ(τ i , τ j , λ i , λ j ) = lim λ 2 j →λ 2 i τ i λ 2 j -τ j λ 2 i λ 2 i -λ 2 j := ∂ ∂(λ 2 i ) τ i λ 2 j -τ j λ 2 i . (41) 
Evaluation of this latter yields

∂ ∂(λ 2 i ) τ i λ 2 j -τ j λ 2 i = λ 2 j ∂τ i ∂(λ 2 i ) -λ 2 i ∂τ j ∂(λ 2 i ) +δ ij τ i -τ j . (42) 
Using the general result of the derivative of a principal Kirchhoff stress τ i with respect to a principal stretch

λ j ∂τ i ∂(λ 2 j ) = 1 2λ 2 j ∂ 2 W ∂(log λ i ) ∂(log λ j )
into [START_REF] Richter | Das isotrope Elastizitätsgesetz[END_REF], and taking into account the fact that δ ij = 0 as the sum is over i = j in the second summation in [START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF], we get the result

χ ≈ 1 2 ∂ 2 W ∂(log λ i ) 2 - ∂ 2 W ∂(log λ i )∂(log λ j ) log λj =log λi - ∂W ∂(log λ j ) log λj =log λi . (43) 
In Summary: for equal eigenvalues, the factor χ in ( 33) is replaced by the expression [START_REF] Röntgen | Über das Verhältniss der Quercontraction zur Längendilatation bei Kautschuk[END_REF], and the expression ( 33) is hence valid for the three cases:

λ 1 = λ 2 = λ 3 = λ 1 , λ 1 = λ 2 = λ 3 and λ 1 = λ 2 = λ 3 .
Notice that from the numerical point of view, equal values means close values to within a prescribed tolerance.

Application to the exponentiated Hencky strain energy

To use the relations developed so far for the tangent moduli, we first have to express the strain-energy function (1) in terms of the principal logarithmic stretches, i.e. in the form [START_REF] Martin | Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant riemannian metrics[END_REF]. Observe that

dev 3 log U = 3 i=1 log λ i - 1 3 log(det U ) N (i) ⊗ N (i) = 3 i=1 log det U ) -1/3 λ i N (i) ⊗ N (i) . ( 44 
)
Introducing for convenience the so-called modified principal stretches

λ i = (det U ) -1/n λ i = λ i n √ λ 1 λ 2 λ 3 , i = 1, . . . , n (45) 
the scalar product in the first term of W eH in (1) is simply

dev n log U , dev n log U = n i=1 (log λ i ) 2 . ( 46 
)
In the second term of W eH in (1), we have

log det U = tr(log U ) = n i=1 log λ i . (47) 
Then, in terms of the principal logarithmic stretches, the exponentiated Hencky strain-energy function (1) can equivalently be written as

W eH (log λ 1 , log λ 2 , log λ 3 ) = µ k e k n i=1 (log λi) 2 + κ 2 k e k n i=1 log λi 2 . ( 48 
)
During the computation, we need to calculate the principal Kirchhoff stresses so as to reconstitute the Kirchhoff stress tensor, see Eq. [START_REF] Nedjar | An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects[END_REF]. They are also needed for the computation of the tangent moduli. For the model at hand we have τ = ∂ log V W eH (log V ), and hence

τ i = ∂W eH ∂(log λ i ) = 2µ e k 3 j=1 (log λj ) 2 log λ i +κ e k 3 j=1 log λj 2 3 j=1 log λ j . (49) 
The second derivatives used for the tangent modulus C, Eq. [START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF], are needed as well as for the treatment of the degenerate case of equal eigenvalues, Eq. [START_REF] Röntgen | Über das Verhältniss der Quercontraction zur Längendilatation bei Kautschuk[END_REF]. After a straightforward computation and collecting terms, we obtain for the model (48):

∂ 2 W eH ∂(log λ i )∂(log λ j ) = 2µ e k 3 l=1 (log λ l ) 2 2k log λ i log λ j + δ ij - 1 3 + κ e k 3 l=1 log λ l 2 2 k 3 l=1 log λ l 2 + 1 . (50) 
Now for the treatment of the case of equal eigenvalues, the factor χ from (43) we use numerically is then simply given by

χ ≈ µ e k 3 l=1 (log λ l ) 2 -τ i = µ e k 3 l=1 (log λ l ) 2 1 -2 log λ i -κ e k 3 l=1 log λ l 2 3 j=1 log λ j , (51) 
where the results ( 49) and ( 50) have been used.

In the finite element context, the above quantities are computed at the integration points level. For the sake of clarity, the steps involved in this local procedure are summarized in Table 1. Notice that for the spatial configuration we use, we only need the computation of the set of principal vectors n (i) , i = 1, 2, 3 together with the corresponding set of principal stretches λ i , i = 1, 2, 3. We perform for this a spectral decomposition of the left Cauchy-Green tensor, Eq. ( 22) 3 , by using the classical Jacobi method that gives both sets at the same time.

Remark 1 Focusing on the expression [START_REF] Valanis | The strain-energy function of a hyperelastic material in terms of the extension ratios[END_REF], by taking k = 0 and k = 0 we obtain,

τ i = 2µ log λ i + κ 3 j=1 log λ j , (52) 
which are the principal Kirchhoff stresses of the quadratic Hencky model [START_REF] Hencky | Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen[END_REF][START_REF] Hencky | The elastic behavior of vulcanized rubber[END_REF]:

W H = µ dev n log U 2 + κ 2 [tr(log U )] 2 = µ n i=1 (log λ i ) 2 + κ 2 n i=1 log λ i 2 . (53) 
This nowadays classical model has indeed been extensively studied in the literature, see e.g. [START_REF] Anand | On H. Hencky's approximate strain energy function for moderate deformations[END_REF][START_REF] Plešek | Formulation, validation and numerical procedures for Hencky's elasticity model[END_REF][START_REF] Simo | Numerical analysis and simulation of plasticity[END_REF] in finite strain elasticity. Among others, it is also amenable for an easy extension to include other phenomena such as finite strain elastoplasticity [START_REF] Armero | Elastoplastic and viscoplastic deformations in solids and structures[END_REF][START_REF] Simo | Numerical analysis and simulation of plasticity[END_REF], finite isotropic [START_REF] Nedjar | Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions[END_REF][START_REF] Reese | A theory of finite viscoelasticity and numerical aspects[END_REF] and anisotropic [START_REF] Nedjar | An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects[END_REF] viscoelasticity, and growth in biomechanics [START_REF] Nedjar | On a continuum thermodynamics formulation and computational aspects of finite growth in soft tissues[END_REF] to mention but a few. Its second derivatives are easily shown to reduce to

∂ 2 W H ∂(log λ i )∂(log λ j ) = 2µ δ ij - 1 3 + κ , (54) 
and for equal principal stretches, λ i ≈ λ j , we find from ( 52) and ( 54) into (43):

χ ≈ µ 1 -2 log λ i -κ n l=1 log λ l = µ -τ i . ( 55 
)

The planar version of the exponentiated Hencky model

We consider in this section the planar version of the above exponentiated Hencky model, see [START_REF] Ghiba | The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity[END_REF][START_REF] Neff | The exponentiated Henckylogarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers[END_REF]. In this case n = 2 and the strain energy function is explicited as

W eH (log λ 1 , log λ 2 ) = µ k e k (log λ1) 2 +(log λ2) 2 + κ 2 k e k log λ1+log λ2 2 , (56) 
where

λ i = (det U ) -1/2 λ i , i = 1, 2.
Here we suppose the plane x 1 -x 2 spanned by the basis {e 1 , e 2 }. Note that the planar exponentiated Hencky energy is not the three-dimensional Hencky energy evaluated at planar strain. 7The principal Kirchhoff stresses are given by

τ i = ∂W eH ∂(log λ i ) = 2µ e k (log λ1) 2 +(log λ2) 2 log λ i + κ e k log λ1+log λ2 2 log λ 1 + log λ 2 . (57) 
and the second derivatives of the strain energy (56) are deduced as

∂ 2 W eH ∂(log λ i )∂(log λ j ) = 2µ e k (log λ1) 2 +(log λ2) 2 2k log λ i log λ j + δ ij - 1 2 
+ κ e k log λ1+log λ2

2 2 k log λ 1 + log λ 2 2 + 1 . (58) 
Now for the treatment of the case of equal eigenvalues, λ 1 ≈ λ 2 , the factor χ from (43) we use numerically is simply given by

χ ≈ µ e k (log λ1) 2 +(log λ2) 2 -τ i = µ e k (log λ1) 2 +(log λ2) 2 1 -2 log λ i -κ e k log λ1+log λ2 2 log λ 1 + log λ 2 , (59) 
where the results (57) and (58) have been used.

Table 1 Local computation of the contributions to the tangent stiffness and residual.

Given the updated displacements u (l) at iteration (l),

1. Compute the new updated deformation gradient F and, hence, the corresponding left Cauchy-Green tensor B = F F T = V 2

Spectral decomposition of B:

Use the Jacobi method to find the principal stretches λ i together with the principal directions n (i) , i = 1, 2, 3

3. With the logarithmic stretches, compute the principal Kirchhoff stresses τ i with the help of ( 49) and reconstitute the stress tensor as

τ = 3 i=1 τ i n (i) ⊗ n (i)
4. Compute the second derivatives with the help of ( 50) together with the divided difference terms χ whose expression is given by

χ = τ i λ 2 j -τ j λ 2 i λ 2 i -λ 2 j if λ i = λ j ,
or by the limiting value (51) if λ i = λ j , for i, j = 1, 2, 3 and i = j.

5.

Reconstitute the spatial tangent modulus as

C = 3 i=1 3 j=1 ∂ 2 W eH ∂(log λ i )∂(log λ j ) -2δ ij τ j n (i) ⊗ n (i) ⊗ n (j) ⊗ n (j) + 3 i=1 3 j=1,j =i χ n (i) ⊗ n (j) n (i) ⊗ n (j) + n (j) ⊗ n (i)
6 Finite element simulations

In this section, some illustrative finite element simulations are performed to highlight the applicability and efficiency of the numerical method developed in the above through two-and three-dimensional problems.

For the purpose of comparison, some computations are also made with the classical quadratic Hencky model W H of Eq. ( 53), a compressible neo-Hookean model given by, see for example [START_REF] Nedjar | A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems[END_REF],

W nHK = 1 2 µ F (det F ) 1/3 2 -3 + 3 8 κ (det F ) 4/3 + 2 (det F ) 2/3 -3 , ( 60 
)
where we recall that det U = det F , and a compressible version of the Gent model, see for example [START_REF] Gent | A new constitutive relation for rubber[END_REF], whose strain-energy function is here chosen as

W G = - J m 2 µ log 1 - F (det F ) 1/3 2 -3 J m + 3 8 κ (det F ) 4/3 + 2 (det F ) 2/3 -3 , (61) 
where the non-dimensional constant J m denotes the limiting extensibility parameter of the molecular network. This term introduces a singularity when J m +3, which provides an accurate representation of the stiffening of rubber near ultimate (elastic) elongation.

F (det F ) 1/3 2 = 1 2 3 4 eH W det F
Observe that for these two latter models, the strainenergy function is also additively split into a volumepreserving part that depends on the modified deformation gradient (det F -1/3 )F , as originally proposed by Richter [START_REF] Richter | Das isotrope Elastizitätsgesetz[END_REF], see also Flory [START_REF] Flory | Thermodynamic relations for high elastic materials[END_REF], and a volumetric part that depends solely on the Jacobian determinant of the deformation gradient. Moreover, the same volumetricenergy function has been used for both of the expressions W nHK and W G . In Fig. 3, we compare this latter with the one of the exponentiated Hencky model. Furthermore, details about the properties of the model W nHK in (60) can be found in [START_REF] Nedjar | On constitutive models of finite elasticity with possible zero apparent Poisson's ratio[END_REF].

Simple traction/compression tests

We consider a (20 × 20 × 20) mm 3 cubic sample. In this first series of computations, simple traction and compression simulations are performed. As the loading is uniform, it is sufficient to use a coarse mesh, here for illustration with 64 cubic elements using linear interpolation, i.e. a total of 125 nodes with 375 degrees of freedom. Now to make matters as concrete as possible, the elastic properties we use for the four models are summarized in Table 2 where the same infinitesimal compressibility parameter κ is assumed. Indeed, in the limiting case of linear elasticity, one has for the infinitesimal Poisson's ratio ν,

ν = 3 κ -2 µ 6 κ + 2 µ , (62) 
so that with a ratio κ/µ = 4.7 as in Table 2, we have ν ≈ 0.4 in all of the four cases.

Fig. 4 shows the results with the four models. For the computations, a constant increment of vertical displacement ∆w imp = 1 mm has been used. The compression has been computed until w imp = -15 mm, so until a contraction λ 3 = 0.25, while the traction has been computed until w imp = 70 mm, so a stretch in extension of λ 3 = 4.5 ≡ 450%. The ordinate axis in Fig. 4 corresponds to the component of nominal stress in the loading direction e 3 which is principal in the present case. The stress is here adimensionalized with the shear modulus, i.e. S 3 1 /µ. One can observe the characteristic stiffening exhibited by the exponentiated Hencky model for large stretches in tension as stated, for instance in [START_REF] Neff | The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity[END_REF], and similarly so for the Gent model. We also retrieve the well-known non-stiffening characteristics of both the classical quadratic Hencky and neo-Hookean models in tension. For illustrative purposes, deformed shapes of the sample obtained with the exponentiated Hencky model are also plotted at scale 1 in Fig. 4.

At last, notice that the lateral (principal) stretches are permanently equal in this example. The computation of the factor χ then systematically uses the limiting value given by Eq. ( 51) for "i = 1, j = 2", and "i = 2, j = 1" as we have λ 1 = λ 2 , see Step 4 of Table 1.

Footing example with complex loading

This second example is the one of a non uniform loading. It corresponds to the footing example where the above sample is this time subject to a compressive loading on one-half of the top edge while the lateral edges are fixed in their respective normal directions. Here we use a finer mesh with 4096 linear cubic elements, i.e. with 4913 nodes and 14739 degrees of freedom.

For the material parameters, we still use the ones of compressible hyperelasticity given in Table 2 with, this time, µ = 1 MPa that corresponds to a soft matter with a Young's modulus E = 2.8 MPa when a Poisson's ratio ν = 0.4 is used for the limiting case of linear elasticity. Fig. 5 shows the results of the computations with the four models. The loading increment on the partial top face was always taken constant with value ∆w imp = -1 mm. A maximum of 5 iterations were needed for very distorted deformed shapes with the exponentiated Hencky model, i.e. to within the prescribed tolerance by testing the residual of the balance equation. Notice however that the computations with the alternative models W H , W nHK and W G have stopped earlier due to unexpected numerical difficulties, at w imp ≈ 7 mm, while the W eH model stops later. As an illustration, the deformed finite element mesh obtained with this latter at w imp = -8 mm has been superimposed in Fig. 5.

In Fig. 6, we show the deformed configurations together with the vertical displacement fields computed with the four models at prescribed displacement w imp = -6 mm and, in Fig. 7, we show the same result at w imp = -12 mm for only the exponentiated Hencky model. In particular, observe for this loading the very distorted shape of the sample that proves that the numerical implementation of the exponentiated Henckylogarithmic model is robust.

Buckling of an arc

In this example, the computation is performed by using the planar 2D-exponentiated Hencky version of the model recalled in Section 5. We consider an arc which spans a width related to an angle of α = 60 • . The inner radius of the arc is R i = 100 mm and its thickness is t = 4 mm. The arc is clamped at both sides. To show the behavior of the finite element implementation, three 

Model

Material parameters exponentiated Hencky W eH , Eq. ( 1) or ( 48 mesh refinements with quadrilateral linear elements are used with growing densities, see Fig. 8: -mesh 1: three elements used in the thickness direction, and a total of 90 elements corresponding to 248 degrees of freedom. -mesh 2: 10 elements in the thickness direction, and a total of 900 elements corresponding to 2002 degrees of freedom. -mesh 3: 20 elements in the thickness direction, and a total of 3600 elements corresponding to 7602 degrees of freedom.

The material parameters we use are those of Table 2 with µ = 1 MPa.

The bending load consists on prescribing an increasing vertical displacement v imp of the point-load, i.e. the middle node of the upper edge. For each computation, the same increment ∆v imp = 0.25 mm has been used downwards. The three resulting curves are depicted in Fig. 9 as reactive forces versus imposed displacements.

One can observe the good convergence properties with mesh refinement. The two denser meshes show mesh 1: 90 elements mesh 2: 900 elements mesh 3: 3600 elements close responses while mesh 1 gives a higher peak-load. For illustrative purposes, the deformed mesh 1 at the buckling load and the deformed mesh 3 in a post-buckling configuration are shown in Fig. 9.

Cook's membrane problem

The numerical implementation is tested in this example with the so-called Cook's membrane benchmark problem, which is a classical bending dominated test introduced here to assess element performances with respect to volumetric locking for pertinent simulations, see e.g. [START_REF] Miehe | Aspects of the formulation and finite element implementation of large strain isotropic elasticity[END_REF]. This test consists in a tapered plate clamped on the left side and a uniformly distributed load F is applied on the right free side, see the illustration of the geometry and boundary conditions in Fig. 10. The properties 

where the first one corresponds to a compressible hyperelastic model with Poisson's ratio ν ≈ 0.4 in the limiting case of linear elasticity, e.g. see Eq. (58), while the second one corresponds to quasi-incompressibility with ν ≈ 0.49.

In all the computations, the distributed load F has been applied in ten equal increments ∆F = 20 kN/m. Fig. 10 shows the results of the convergence of the vertical displacement of the node A located at the middle of the right edge. One can observe the good convergence properties of the present implementation in the sense of mesh refinement, even with linear isoparametric elements. For illustrative purposes, Fig. 11 shows the deformed configurations together with the vertical displacement fields for both the compressible and quasiincompressible material behaviour.

Planar footing example

In this example, we come back to the footing example of Section 6.2, this time within a purely planar analysis. We consider a 20 × 20 mm 2 square sample by using two mesh refinements, see Fig. 12 for the geometry and boundary conditions:

• mesh 1: a coarse mesh with 10 × 10 quadrilateral linear elements. • mesh 2: a finer mesh with 30×30 quadrilateral linear elements.

The material parameters we use are those of the compressible Cook's membrane that we recall here:

µ = 1 MPa, κ = 4.7 MPa, k = 2, k = 3 .
(65) Fig. 13 shows the results of the two computations. For both meshes, the loading increment on the partial top face was always taken constant with a prescribed value ∆v imp = -0.5 mm. A maximum of 5 iterations were needed for very distorted shapes. As an illustration, the deformed finite element meshes obtained with the two computations at prescribed displacement v imp = -12 mm are shown in Fig. 14. 

Eversion of a tube

The so-called eversion of rubber tubes has been discussed as early as 1952 [START_REF] Gent | Experiments on the mechanics of rubber I: eversion of a tube[END_REF], when Gent and Rivlin investigated rubber tubes which are turned inside out experimentally and compared the findings with theoretical results in the large strain regime for incompressibility and isotropy. They obtained quite good agreements for ∂W MR /∂I 1 and ∂W MR /∂I 2 dependencies based on the Mooney-Rivlin type stored-energy function,

W MR = c 1 (I 1 -3) + c 2 (I 2 -3) ,
where I 1 , I 2 are the first two deformation invariants. For Truesdell, the eversion of tubes was one of the most intriguing problems of nonlinear elasticity [START_REF] Truesdell | Some challenges offered to analysis by rational thermomechanics: three lectures for the international symposium on continuum mechanics and partial differential equations[END_REF], cf. footnote 5. Many theoretical works can be found which try to provide analytic formulas. However, none of these approaches correctly describe the bulging at the upper and lower mantle. Indeed, in order to make the problem somehow tractable, the pointwise stress free condition at the upper and lower mantle is relaxed into a zero resultant stress condition. Closed form representations of the true eversion problem for unconstrained materials only exists for very unusual strain energies [START_REF] Chen | Existence of exact solutions for the eversion of elastic cylinders[END_REF], which are, however, not useful to us. 8

8 The compressible hyperelastic models considered in [START_REF] Chen | Existence of exact solutions for the eversion of elastic cylinders[END_REF] require the elastic energy potential W to be of the Valanis-Recently, the eversion problem has been considered by Liang et al. [START_REF] Liang | Creasing of an everted elastomer tube[END_REF], who used equivalent experimental settings and provided descriptive photographs of inverted rubber tubes, see Fig. 15.

Landel form [START_REF] Valanis | The strain-energy function of a hyperelastic material in terms of the extension ratios[END_REF] W

(F ) = 3 i=1 w(λ i ) , (66) 
with a function w : [0, ∞) → R. In the past, energy functions of this type have been successfully applied in the incompressible case [START_REF] Valanis | The strain-energy function of a hyperelastic material in terms of the extension ratios[END_REF][START_REF] Jones | The properties of rubber in pure homogeneous strain[END_REF], where they are in good agreement with experimental results. However, in the compressible case, an energy function of the form (66) without an additional volumetric energy term always implies zero lateral contraction for uniaxial stresses.

Boumediene Nedjar et al. Since the everted configuration satisfies equilibrium in the sense that div

X S 1 (∇ X ϕ(X)) = 0 , in B 0 , and S 1 (∇ X ϕ(Y )) N (X) = 0 , on ∂B 0 ,
where N is the unit normal on the reference boundary ∂B 0 , the eversion is a classic example of non-uniqueness of solutions to the traction problem in nonlinear elasticity [START_REF] Wegner | Elements of Continuum Mechanics and Thermodynamics[END_REF].

For the eversion problem, we will only consider an incompressible material response.

Implementation

The implementation within the FE system Abaqus is realized by the umat user-subroutine in order to obtain the Cauchy stress tensor σ = τ / det F as given in [START_REF] Holzapfel | Nonlinear Solid Mechanics. A Continuum Approach for Engineering[END_REF].

The representation of the spatial tangent operator C in ( 33) is modified as discussed in [START_REF] Wriggers | Nonlinear Finite Element Methods[END_REF] or more recently in [START_REF] Ji | On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis[END_REF]. In that case, the bracketed term in (33) can be written as

= λ 2 i λ j ∂S i 2 ∂λ j , (67) 
i.e. as a function of the second Piola-Kirchhoff stress tensor S 2 in the principal axis with i, j = 1, 2, 3.

Fig. 15 Top: Photo of an everted tube [START_REF] Liang | Creasing of an everted elastomer tube[END_REF]. Bottom: Photo of rubber tubing before and after eversion [START_REF] Truesdell | Some challenges offered to analysis by rational thermomechanics: three lectures for the international symposium on continuum mechanics and partial differential equations[END_REF].

Afterwards, the resulting modulus C is modified in each ijkl-term (with i, j, k, l = 1, 2, 3) by

C Abaqus ijkl = C ijkl + 1 2 (τ ik δ jl + τ jk δ il + τ il δ jk + τ jl δ ik ) , (68) 
in order to represent the Jaumann derivatives as expected by the Abaqus environment for consistent linearization therein; here, again, δ ab indicates the Kronecker symbol for a, b = 1, 2, 3. Note that the Abaqus implementation is fully hyperelastic with the correct linearization only in the incompressible case (in which the Cauchy stress σ coincides with the Kirchhoff stress τ ). In the compressible case, the occurring error in the linearization can be overcome by modifying formula (68), see [START_REF] Bažant | Objective stress rates in finite strain of inelastic solid and their energy consistency[END_REF][START_REF] Bažant | Work conjugacy error in commercial finite-element codes: its magnitude and how to compensate for it[END_REF][START_REF] Ji | On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis[END_REF]]. 9

Parameter fitting

In order to realize a suitable parameter fit, we formulate (37) as

S i 1 = 2µ exp k{log 2 λ 1 + log 2 λ 2 + log 2 λ 3 } log λ i λ i , (69) 
in principal axis for (ideal) incompressibility with det F = λ 1 λ 2 λ 3 = J ≡ 1 and λ i = J -1/3 λ i = λ i .

By (69), the stress state is determined except for the hydrostatic pressure p, so the principal first Piola-Kirchhoff stresses are given by

S i 1 = - 1 λ i p + S i 1 , (70) 
for i = 1, 2, 3.

For uniaxial test data with deformation state

F = diag λ 1 , 1 √ λ1 , 1 √ λ1
from the uniaxial stretch λ 1 and the stress boundary conditions S 2 1 = S 3 1 ≡ 0 in perpendicular direction, we obtain

S 1 1 = 3µ exp 3 2 k log 2 λ 1 log λ 1 λ 1 , (71 
) 9 In the (unmodified) compressible case, the Abaqus updated Lagrangian implementation is not energy consistent, since the used Jaumann-rate of the Cauchy stress

△ σ = σ + σ • W -W • σ with W = skew(L) = 1 2 (L -L T )
is not energy consistent with the Cauchy stress. The principle of virtual work must be implemented correctly for any choice of stress and objective stress-rate. For a silicone rubber as given in Fig. 16, we obtain by a simple least square fit the free model parameters µ = G = 0.612 MPa and k = 1.173. In comparison, the equivalent uniaxial stress-stretch result for a neo-Hooke model using the above calibrated µ = G is given, e.g. see Table 3.

Simulation and results

We realize the numerical simulation of model experiments within the Finite Element Method as depicted in Fig. 17. Here, tubes with different inner radius r are everted inside-out. The resulting deformation state with focus on the inner and the outer radius and on the axial length at the end of the process is observed for hyperelastic, time-independent material behaviour in the model. The eversion of the modeled tubes is realized by a given displacement of the double (axial) tube length at the outer circle signed in Fig. 17 in axial z-direction, whereas the nodes on the inner circle are fixed. Due to symmetry, just a quarter of the tube is modeled -with symmetry conditions at both cutting planes at x ≡ 0 and y ≡ 0.

As a result, four different deformation states at 20%, 50%, 75% and 100% of eversion are shown in Fig. 18; here, the shaded contours represent the maximal principal logarithmic strain within the bulk. Fig. 19 shows the fully everted state at 200%. In order to compare different material models, we show in Fig. 20 the (global) reaction force everting the tube models: All three models (neo-Hooke, Mooney-Rivlin and exponentiated Hencky) are applied with comparable infinitesimal shear modulus (µ = G = 0.612 MPa) as mentioned in Sect. 7.2, previously. Fig. 20 shows the overall (axial) reaction force vs. the ratio of eversion of the tube models. The applied models result in a typical course of compressing the tube in axial direction to more than half of axial deformation, and then turning the sign into a tension characteristics. Here, the exponentiated Hencky model shows this characteristics much earlier than the Mooney-Rivlin model, whereas the neo-Hooke-type model seems to run through an instability point in that configuration of r = 4.5 mm and R = 6.0 mm. Further investigations might include varying the inner and the outer radius using different material models with comparable material parameters.

Conclusion and perspectives

In this paper, the variational setting of nonlinear elasticity based on the exponentiated Hencky model in finite strain elasticity has been investigated for an appropriate discretization in terms of the finite element method. The key approach in the design of an integration algorithm was a systematic use of the spectral decomposition of the stress and strain quantities. Among 75% deformed 100% deformed 50% deformed 20% deformed others, the common difficulties related to equal eigenvalues have been circumvented by use of the limits applying l'Hôspital rule. We have presented complete details of the final expressions for an easy implementation within the context of the finite element method and, as shown, the set of numerical simulations has highlighted some pertinent features that demonstrate the efficiency and robustness of the proposed numerical formulation for threedimensional problems as well as for the particular planar exponentiated Hencky model. Finally, we have used the Abaqus-FEM-procedure to simulate the eversion of an incompressible elastic tube, further demonstrating the overall usefulness of the three-dimensional exponentiated Hencky model. In the near future, we will adapt the Abaqus framework to compressible nonlin-ear responses, which requires changes to the stiffness tensor as described by Bažant [START_REF] Bažant | Objective stress rates in finite strain of inelastic solid and their energy consistency[END_REF][START_REF] Bažant | Work conjugacy error in commercial finite-element codes: its magnitude and how to compensate for it[END_REF][START_REF] Ji | On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis[END_REF].
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 2 Fig. 2 Typical finite element with nodal dof s.
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 322 Fig. 3 The volumetric part W vol eH = κ 2 k e k[det F ] 2 of the exponentiated Hencky energy compared to the volumetric part W vol G = 3 8 κ (det F ) 4/3 + 2 (det F ) 2/3 -3 of the Gent and neo-Hookean energies.

Fig. 4

 4 Fig.4Stress-strain curves with the four models under simple traction/compression. An illustration of deformed configurations obtained with the exponentiated Hencky model.

Fig. 5 14 BoumedieneFig. 6

 5146 Fig. 5 Footing example. Resultant curves for the four models. Deformed configuration obtained with the exponentiated Hencky model at prescribed displacement w imp = -8 mm.

Fig. 7

 7 Fig. 7 Deformed configuration and vertical displacement field at w imp = -12 mm with the exponentiated Hencky model.

Fig. 8

 8 Fig. 8 Buckling of a clamped arc. Finite element discretizations used with the planar 2D-exponentiated Hencky model.

Fig. 9

 9 Fig.9Load/displacement curves of the arc with deformed configurations with the different mesh refinements.

50 Fig. 10

 5010 Fig. 10 Cook's membrane: Problem geometry, boundary and loading conditions. Convergence behaviour for the compressible (κ/µ = 4.7) and quasi-incompressible (κ/µ = 50) polyconvex 2D-exponentiated Hencky model.

Fig. 11

 11 Fig. 11 Cook's membrane for 40 × 40 mesh. Deformed configurations and vertical displacement fields: (a) with κ/µ = 4.7, and (b) with κ/µ = 50.

Fig. 12

 12 Fig.12Planar footing example. Finite element meshes, boundary conditions and loading configuration.

Fig. 13

 13 Fig.[START_REF] Hencky | Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern[END_REF] Resultant curves with the two meshes. Deformed configuration obtained with mesh 2 at prescribed displacement v imp = -10 mm.

vmesh 2 Fig. 14

 214 Fig. 14 Deformed configurations and vertical displacement fields for the 2D-exponentiated Hencky model at v imp = -12 mm for the two meshes.

Fig. 16

 16 Fig. 16 Uniaxial parameter fit for the exponentiated Hencky model; in comparison resulting neo-Hooke model and Mooney-Rivlin model with c 1 = 5G/11 and c 2 = 5G/110, so that c 2 = c 1 /10 and G = 2(c 1 + c 2 ).

  MPa 1.173 10 mm 4.5 mm 6.0 mm after some calculations from (69).

Fig. 17

 17 Fig.17Left: Model of an elastomeric tube to be everted; variation of inner radius r. Right: Cross section of the fully everted elastic tube; note that apart from the flaring ends, the everted configuration still closely resembles a circular cylinder (exponentiated Hencky model).

  Fig.17Left: Model of an elastomeric tube to be everted; variation of inner radius r. Right: Cross section of the fully everted elastic tube; note that apart from the flaring ends, the everted configuration still closely resembles a circular cylinder (exponentiated Hencky model).

Fig. 18

 18 Fig. 18 Eversion of an elastic tube: states of deformation. The maximum principal logarithmic strains occur at the places marked in red (exponentiated Hencky model).

Fig. 19

 19 Fig.19The fully everted elastic tube, with maximum occurring principal stretches in the order of about 200% (exponentiated Hencky model).

Fig. 20

 20 Fig. 20 Global reaction force to evert the tubes. (Blue) triangles -neo-Hooke; (red) squares -Mooney-Rivlin; (green) dots -exponentiated Hencky model

  

Table 2

 2 Material parameters for the four models.

Table 3

 3 Geometry and material parameters.

Note that, although every objective and isotropic energy function can be expressed in terms of the (material) logarithmic strain tensor log U (or the spatial strain tensor log V ), not every such energy can be expressed in terms of the logarithmic strain measures alone[START_REF] Neff | Geometry of logarithmic strain measures in solid mechanics[END_REF].

The invertibility of the mapping B → σ(B) also holds for the volumetric-isochorically decoupled representation of the neo-Hooke and Mooney-Rivlin energies, which are in use for slightly compressible materials like rubber.

The first use of the definition ν = -(log V )[START_REF] Miehe | Aspects of the formulation and finite element implementation of large strain isotropic elasticity[END_REF] (log V ) 11 is due to the famous German scientist W. C. Röntgen[START_REF] Röntgen | Über das Verhältniss der Quercontraction zur Längendilatation bei Kautschuk[END_REF].

Truesdell remarks on the logarithmic strain that "[b]ecause of the difficulty of calculating the off-diagonal components of [log B] in terms of the displacement gradient, Hencky's theory is hard to use except in trivial cases."[47, p. 202, (49.4)] 

The restriction of the three-dimensional exponentiated Hencky energy to planar strain is not polyconvex, while (56) is. The difference stems from the definition of the twodimensional isochoric stretches λ i = (det U ) -1/2 λ i .