
HAL Id: hal-01653084
https://hal.science/hal-01653084

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consensus value estimates in time-varying and directed
networks

Samuel Martin, Irinel-Constantin Morarescu, Dragan Nesic

To cite this version:
Samuel Martin, Irinel-Constantin Morarescu, Dragan Nesic. Consensus value estimates in time-varying
and directed networks. 56th IEEE Conference on Decision and Control, CDC 2017, Dec 2017, Mel-
bourne, Australia. �hal-01653084�

https://hal.science/hal-01653084
https://hal.archives-ouvertes.fr


Consensus value estimates in time-varying and directed networks

Samuel Martin∗, Irinel-Constantin Morărescu∗, Dragan Nešić#

Abstract— The paper provides consensus value estimates in
multi-agent systems with directed and time-varying interac-
tion networks. First, we prove general results regarding the
asymptotic consensus value which is obtained as a convex
combination of the initial states. It is shown that the cut-
balance assumption guarantees a strictly positive lower bound
on the convex combination components. This means that each
agent plays a non vanishing role in the asymptotic consensus
value. Second, we analyze the case where interaction weights
vary uniformly over time. Finally, we study the effect of time-
vanishing perturbations on the systems with uniform variation
of the interaction weights. We show that the convex combination
components vary smoothly with the perturbation under smooth
and sufficiently fast vanishing perturbations. Moreover, we
show that in this case, these components reach a limit when
time goes to infinity. We also provide an example where this
limit does not exist when the perturbation does not respect the
fast vanishing assumption although the system itself converges
to a consensus. Some numerical examples illustrate our results.

I. INTRODUCTION

Analysis and control of multi-agent systems have attracted
a lot of attention during the last decade. Due to decentralized
behavior and control of subsystems (agents), the multi-agent
framework has applications in a wide variety of domains such
as robotic teams, energy and telecommunication networks,
opinion dynamics in social networks, analysis of biological
networks, etc. The coherent behavior of the agents in such
systems is often described in terms of consensus, i.e., the
agents have to reach agreement in some variables of interest.

Consensus and synchronization problems have been stud-
ied in different contexts : linear or nonlinear agent dynamics
[1], [2], [3], fixed or time-varying interconnection topolo-
gies [4], [5], fixed or time-varying weights of the agents
influence [6], [7], directed or undirected and synchronous or
asynchronous information exchange [8], [9], [10].

Beside the guarantees of reaching consensus, an important
related issue is the estimation of the asymptotic consensus
value in terms of initial condition and interaction network.
For linear dynamics, as it will be made explicit in the
sequel, the asymptotic consensus value is always a convex
combination of the initial state, and the components of
the convex combination depend on the interaction network
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over time. The characterization of the asymptotic consensus
value has been solved for some special cases: when the
interaction network is balanced, i.e., the adjacency matrix
is doubly stochastic, the consensus is always the average
of the initial states [4]. For directed but fixed interactions,
the convex combination of initial states corresponds to the
left normalized eigenvector of the Laplacian matrix (see
for instance [4]). The consensus value for some particular
linear impulsive systems was characterized in [11]. However,
characterizing the asymptotic consensus value in the general
case of directed time-varying interaction network is a hard
problem.

The paper presents several contributions on consensus of
multi-agent systems with linear continuous-time dynamics
under directed and time-varying interaction weights. On the
one hand it provides a characterization and an estimation
of the asymptotic consensus value. It is shown that the
asymptotic consensus value is a convex combination of the
current state and this convex combination can be expressed in
terms of the fundamental (state transition) matrix. Moreover,
it is proven that when the interaction network satisfies the
cut-balance property, the components of the convex com-
bination are non-trivially lower bounded. In other words,
each single agent is responsible for part of the asymp-
totic consensus value. On the other hand, it considers the
problem of approximation of consensus value for perturbed
dynamics. First, we show that in the special case where the
interaction weights vary uniformly throughout the network
the asymptotic consensus value can be easily determined.
Next, we focus on the approximation of the consensus value
of perturbed dynamics. Precisely, we consider the case of
uniform variation of the interaction in presence of an additive
perturbation of magnitude characterized by a parameter ε.
We show that the convex combination components vary
smoothly with the parameter ε when the perturbations are
smooth and vanish sufficiently fast in time. Moreover, we
show that in this case, the convex combination components
reach a limit when time goes to infinity. This is a non trivial
result since we also provide an example where this limit
does not exist when the perturbation does not respect the fast
vanishing assumption although the system itself converges to
a consensus.

Notation. The following notation will be used throughout
the paper. The sets of non-negative integers, real and non-
negative real numbers are denoted by N, R and R+, respec-
tively. For a vector v and a matrix A we denote by ‖v‖∞ and
‖A‖∞ their infinity norms. We denote by L1 the space of
integrable function on R+. For a matrix-valued function of
time M in L1, we denote |||M ||| =

∫ +∞
t0
‖M(s)‖∞ds where



t0 is a fixed initial time. The transpose of a matrix A is
denoted by A>. By Ik we denote the k× k identity matrix.
1k and 0k are the column vectors of size k having all the
components equal 1 and 0, respectively. Vector ei denotes
the i-th canonical vector in Rn, i.e., the vector of all zeros
but one 1 for its i-th coefficient, for some given i ∈ N .

A non trivial subset S of a set C, denoted as S @ C, is a
non-empty set with S ( C. A directed path of length p in a
given directed graph G = (N , E) is a union of directed edges⋃p
k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}. The

node j is connected to node i in a directed graph G = (N , E)
if there exists at least one directed path in G from i to j.

II. PRELIMINARIES

A. Model statement

Let N , {1, . . . , n} be a set of n ≥ 2 agents. By abuse
of notation we denote both an agent and its index by the
same symbol i ∈ N . Each agent is characterized by a scalar
state xi ∈ R,∀i ∈ N that evolves according to the following
consensus system

ẋi(t, ε, t0) =
∑n
j=1 aij(t, ε)(xj(t, ε, t0)− xi(t, ε, t0)),

xi(t0, ε, t0) = xi,0,
(1)

where, ε ∈ I with I ⊂ R+ a fixed interval. Interval I
may or may not include 0. We assume that interval I has
a finite suppremum ε∗. The functions aij : R+ × I → R+

are twice continuously differentiable and uniformly upper-
bounded functions in both variables, representing the inter-
action weights. We denote the supremum, for ε ∈ I , as

ā(ε) = sup
i,j∈N ,t≥0

aij(t, ε). (2)

Let x(t, ε, t0) = (x1(t, ε, t0), . . . , xn(t, ε, t0))> ∈ Rn be the
overall state of the network collecting the states of all the
agents. Existence, uniqueness and smoothness of the solution
x is given in the following lemma.

Lemma 1: Let the initial time t0 and initial condition
x(t0, ε, t0) = x0, independent of ε, be given. Under the
smoothness and boundedness assumptions on aij(t, ε), for
any fixed ε there exists a unique function x(·, ε, t0) :
[t0,∞)→ Rn whose components satisfy equation (1) for all
t ∈ [t0,∞). Moreover, this function is bounded and twice
continuously differentiable with regards to both t and ε and
its first and second partial derivatives are continuous for all
t ≥ t0 and ε ∈ I .

Proof: The existence and uniqueness hold true even for
more general classes of weight functions and can be found
in [12]. The fact that it is bounded was proven in [6]. The
smoothness result with regards to time t and parameter ε
comes from Theorem p285 in [13].

We call the solution of system (9) the trajectory of the
overall system and we denote it by x(·, ε, t0) to point out
its dependence on the parameters ε and t0. We say the
trajectory asymptotically reaches a consensus when there
exists a common agreement value α(t0, ε) ∈ R such that

lim
t→+∞

xi(t, ε, t0) = α(t0, ε), ∀i ∈ N . (3)

When convergence to consensus occurs, we denote

x∗(t0, ε) = lim
t→+∞

x(t, ε, t0) = α(t0, ε)1n.

In the sequel, we are interested in estimating both the
consensus value α(t0, ε) and the convergence speed toward
this value.

For any ε ∈ I we denote A(t, ε) = [aij(t, ε)]ij the
adjacency matrix of communication weights at time t,
D(t, ε) = diag(dii(t, ε)) with dii(t, ε) =

∑
j∈N aij(t, ε),

and L(t, ε) = D(t, ε) − A(t, ε) its associated Laplacian
matrix.

B. Framework assumptions

In the following let us introduce some notation and the
main hypotheses of this work. We denote

cI(t, ε) = min
S@N

∑
i∈S,j /∈S

aij(t, ε), (4)

which is known as the edge connectivity [14].
Assumption 1: The interaction weights satisfy the two

following properties :
• cI(t, ε) > 0,∀t ≥ t0 and

∫∞
t0
cI(t, ε)ds = +∞.

• cut-balance: there exists KI(ε) ≥ 1 such that for all
non trivial subsets S @ N , t ≥ t0 and ε ∈ I ,∑

i∈S,j /∈S

aij(t, ε) ≤ KI(ε) ·
∑

i∈S,j /∈S

aji(t, ε),

Remark 1: Notice that Assumption 1 and the upper bound
ā(ε) on the interaction weights defined in equation (2) does
not imply a uniform lower bound on the non-zero interaction
weights. In fact, to satisfy the lower bound on the edge-
connectivity given in the first point in Assumption 1, some
weights aij(t, ε) may converge to 0 as long as this is
compensated by some other stronger weights aik(t, ε).

The following result states that Assumption 1 ensures that
asymptotic consensus is reached.

Proposition 1: Suppose that Assumption 1 holds. Then,
for any fixed ε ∈ I , and initial time t0, the trajectory
of system (1) reaches consensus (whose value generally
depends on t0 and ε).

Proof: For any fixed ε ∈ I , the second point in
Assumptions 1 guarantees cut-balance of the communication
weights. Moreover, the divergence imposed on the integral
of cI(t, ε) by the first point in Assumption 1 guarantees that
there exists a strongly connected graph G = (N , E) such that∫∞
t0
aij(s, ε)ds = ∞,∀(j, i) ∈ E and following [7, Proposi-

tion 4] one obtains the convergence toward consensus.
Remark 2: Proposition 1 applies in the more general

setting of integral equations with non smooth aij (see [6])
but in the present study, we use only twice continuously
differentiable aij due to the perturbation analysis that is
presented in the Section IV.

From Proposition 1, it is known that the trajectory of
system (1) will converge to consensus. It remains to charac-
terize the consensus value α(t0, ε). The analysis is carried
out for general time-varying, non-symmetric communication
weights.



III. ANALYSIS OF PARAMETRIC TIME-VARYING
CONSENSUS SYSTEMS

The aim of this section is to study the behavior of the
time-varying consensus system (1) parametrized by ε ∈ I .
Precisely, we give a characterization of the consensus value
as a convex combination of the current state at any time t. In
general, we show that non-trivial bounds can be obtained on
the components of the convex combination provided that the
interaction weights satisfiy some reciprocity condition. We
point out that in some special cases the convex combination
is time-invariant and easy to compute.

A. Consensus value

Using the matrix notation, system (1) can be represented
as

ẋ(t, ε, t0) = −L(t, ε)x(t, ε, t0), x(t0, ε, t0) = x0. (5)

For all ε ∈ I we define, for all t, t1 ≥ t0 with t ≥ t1, the
fundamental matrix Φ(t, ε, t1) of system (5) such that

x(t, ε, t0) = Φ(t, ε, t1)x(t1, ε, t0). (6)

It is important to define Φ not only for t1 = t0 since in the
sequel, we will need to study limt1→∞ limt→∞Φ(t, ε, t1).
By definition, the fundamental matrix Φ(t, ε, t1) is indepen-
dent of the initial state x0 and for all t1 ≥ t0 it is solution
of the following system :{

∂Φ
∂t (t, ε, t1) = −L(t, ε)Φ(t, ε, t1),
Φ(t1, ε, t1) = I.

(7)

Lemma 2: The fundamental matrix Φ(t, ε, t1) associated
to the general consensus system (1) is twice continuously
differentiable with regards to t and ε and its partial derivative
with regards to ε evolves according to dynamics

∂

∂t

∂Φ

∂ε
(t, ε, t1) = −L(t, ε)

∂Φ

∂ε
(t, ε, t1)− ∂L

∂ε
(t, ε)Φ(t, ε, t1).

Furthermore, if for all ε ∈ I , ∂L∂ε (t, ε) is in L1 and

dL(ε) ,
∫ ∞
t0

∥∥∥∥∂L∂ε (t, ε)

∥∥∥∥
∞
dt < +∞,

then ∂Φ
∂ε (t, ε) is bounded uniformly in time t ≥ t1:

sup
t≥t1

∥∥∥∥∂Φ

∂ε
(t, ε, t1)

∥∥∥∥
∞
≤ ndL(ε).

Proof: See Appendix A in [15].
As a direct consequence of Lemma 6 in [16], for all t1, t ≥

t0 with t ≥ t1, for any i, j ∈ N , weight Φij(t, ε, t1) is non-
negative and ∑

j∈N
Φij(t, ε, t1) = 1. (8)

Lemma 3: For any t1 ≥ t0 and ε ∈ I , matrix Φ(t, ε, t1)
has a limit when t→∞, which we denote by

Φ∗(t1, ε) = lim
t→∞

Φ(t, ε, t1).

Moreover, there exists q(t1, ε) ∈ Rn such that
Φ∗(t1, ε) = 1n · (q(t1, ε))T . (9)

Similarly to Φ(t, ε, t1), the vector q(t1, ε) is independent of
the state x(t1, ε, t0).

Proof: See [15].
The vector q(t, ε) plays a major role in the rest of the

study, in particular it relates the final consensus value α(t0, ε)
defined in equation (3) to the current states x(t, ε, t0) as
given in the next lemma.

Lemma 4: The coefficients qi(t, ε) are non-negative for
all i ∈ N and t ≥ t0, and sum up to one :

q(t, ε)T1n = 1. (10)

Furthermore, quantity q(t, ε)Tx(t, ε, t0) is invariant in time
and defines the consensus value, i.e.,

∀ε ∈ I, ∀t ≥ t0, q(t, ε)Tx(t, ε, t0) = α(t0, ε).

Proof: See [15].
Lemma 4 shows that the consensus value α(t0, ε) is a

convex combination of the current states xi(t, ε, t0) weighted
by the coefficients in vector q(t, ε). Accordingly, knowing
bounds on coefficients qi(t, ε) would result in estimates for
the consensus value α(t0, ε). We provide such bounds in the
next theorem.

Theorem 1: Under Assumption 1, the components qi(t, ε)
are positive uniformly bounded i.e., for all t ≥ t0 and i ∈
{1, . . . , n}, n ≥ 2 one has

qi(t, ε) ∈ [qmin(ε), qmax(ε)] ∈ (0, 1),

with

qmin(ε) =
(
e−KI (ε)

n

)n−1

, qmax(ε) = 1− (n− 1)qmin(ε).

Proof: See Appendix C in [15].
One can check that qmin(ε) ∈ (0, 1

n ) and qmin(ε) ≤
qmax(ε).

Remark 3: Theorem 1 can be interpreted as follows: when
the interaction network satisfies the cut-balance property, at
any time, the current state of each single agents is responsible
for part of the asymptotic value. This is clearly not trivial
since for an interaction network with a tree topology, it can
be shown that the consensus value is the initial state of the
root, no matter the initial state of the other agents. Note that
Theorem 1 could have been stated on consensus systems with
no dependance on a parameter ε, but we kept this notation
to remain consistent over the paper.

Corollary 1: Suppose Assumption 1 holds. Then, the final
consensus value of (1) is within the following bounds:

α(t0, ε) ∈ [qmin(ε) ·min
i∈N

xi,0 , qmax(ε) ·max
i∈N

xi,0],

where qmin(ε) and qmax(ε) are defined in Theorem 1.
Remark 4: Two other important properties of vector q can

be stated. One is smoothness with regards to time t and the
other is smoothness with regards to parameter ε under some
additional conditions on Laplacian matrix L(t, ε). However,
due to space limitation we limit our study to the second
property.



B. Consensus under uniformly varying interaction weights

In this part we consider a special case of uniform varia-
tion of the interaction weights throughout the network. Here,
we assume that interval I reduces to the singleton {0}. This
case will correspond in Section IV to taking the perturbation
parameter ε = 0. As a consequence, we momentarily drop
the ε dependency of weights aij and Laplacian L. The
uniform variation of the interaction weights corresponds to
assuming that for all couples of agents (i, j) and (k, h),

aij(t)

akh(t)
=

aij(t0)

akh(t0)
whenever ahk(t0) 6= 0,

which is imposed by the following assumption.
Assumption 2: The interconnection network at instant t0

is strongly connected and there exists a twice continuously
differentiable, strictly positive and uniformly non-trivially
lower and upper bounded function l(t) with l(t0) = 1 and
fixed initial interaction weights bij so that

∀t ≥ t0,∀i, j ∈ N , aij(t) = l(t)bij .

Then, matrix L(t) = l(t)L0 where L0 is the Laplacian matrix
associated to adjacency matrix [bij ]ij .

Lemma 5: Assumption 2 implies Assumption 1 for the
special case I = {0}. Consequently all the results proven
under Assumption 1 hold true under Assumption 2.

Proof: Notice that a particular case of uniformly
varying interaction weights is when they are constant, this
corresponds to l(t) = 1,∀t ≥ t0. Then, it can be shown eas-
ily that any strongly connected interaction network verifies
Assumption 1 : the integral in the first item increases linearly
since there is a uniform lower bound cI(t, 0) ≥

¯
c > 0, which

depends on the interaction network at time t0 and KI(0) is
also computed at time t0.
In the general case, we introduce the following notation

l̄ = sup
t≥t0

l(t),
¯
l = inf

t≥t0
l(t) > 0,

and
b̄ = max

i,j∈N
bij ,

¯
b = min

(i,j∈E)
bij > 0.

Then, the weighted supremum defined in equation (2) is
ā(0) = l̄·b̄. Also, for the first point of Assumption 1, we have
cI(t, 0) ≥

¯
lcI(t0, 0) which allows computing

¯
c with respect

to the initial condition and
¯
l. Finally, regarding the second

point of Assumption 1, KI(0) only depends on the ratio
between the interaction weights and is therefore independent
of l(t) but only on the bij which are constant and form a
strongly connected graph.
Under Assumption 2, system (1) becomes

ẋ(t, t0) = −l(t)L0x(t, t0). (11)

Notice that since l(t)L0 and l(t1)L0 commutes for any
t, t1 ≥ t0, the fundamental matrix for system (11) is

Φ(t, 0, t1) = e−τ(t,t1)L0 , (12)

where τ(t, t1) =
∫ t
t1
l(s)ds. Denote p0 the left eigenvector

of L0 associated to eigenvalue 0 such that pT0 1n = 1.

In the case where the interaction weights vary uniformly,
we show that Theorem 1 provides bounds on the coefficients
of the Laplacian left eigenvector p0.

Proposition 2: Suppose that Assumption 2 is satisfied.
Then, we have

lim
t→∞

e−τ(t,t1)L0 = 1np
T
0 ,

and the left eigenvector p0 of L0 satisfies for all t1 ≥ t0,

q(t1, 0) = p0 and p0i ∈ [qmin(0), qmax(0)],

where qmin(0) and qmax(0) are defined in Theorem 1.
Proof: Under Assumption 2, the product p0

Tx(t, t0) is
time invariant :

d(p0
Tx)

dt
(t, 0, t0) = p0

T ẋ(t, 0, t0)

= −l(t)p0
TL0x(t, t0) = 0.

As a consequence, since by Lemma 5 and Proposition 1,
trajectory x(t, 0, t0) converges, we have for all t1 ≥ t0,

p0
Tx(t1, 0, t0) = lim

t→∞
p0
Tx(t, 0, t0) = p0

Tx∗(t0, 0)

= α(t0, 0)p0
T1n = α(t0, 0).

Moreover, we also have according to Lemma 4,

q(t1, 0)
T
x(t1, 0, t0) = α(t0, 0).

Since the two previous equalities holds for any initial con-
ditions, and in particular so that x(t1, 0, t0) = ei (see the
proof of Lemma 3 for a detailed explanation), we see that
for all t1 ≥ t0,

q(t1, 0) = p0,∀t1 ≥ t0. (13)

The first equality comes from the definition of q in function
of the fundamental matrix Φ and from equation (12). Then,
as a direct corollary of Theorem 1, we obtain the expected
bound.

IV. CONSENSUS VALUE ESTIMATE UNDER PERTURBED
COMMUNICATION

A. Main result

In this section, we explore how the consensus value
evolves under perturbation of the dynamics (11) with uni-
formly varying weights. We focus on dynamics (1) where
the interaction weights are of the form

aij(t, ε) = l(t)bij + εmij(t), (14)

where ε ∈ I is a small perturbation parameter. Here, we
assume either I = [0, ε∗) or I = [0, ε∗] with ε∗ > 0. As
in Assumption 2, functions l(t) and m(t) are twice con-
tinuously differentiable and uniformly upper-bounded with
l(0) = 1 and bij are fixed constant weights. To make sure
that the aij(t, ε) correspond to the components of a weighted
adjacency matrix, we assume that

bij = 0⇒ mij(t) = 0, ∀t ≥ t0.



Moreover, we assume that for all t ≥ t0, l(t) ≥
¯
l > 0

similarly to the unperturbed case dealt with in Section III-
B. Then, it is always possible to find a ε∗ so that for all
ε ∈ [0, ε∗], aij(t, ε) ≥ 0. In the sequel, we assume that the
perturbation parameter ε satisfies this constraint. Finally, we
further suppose the following important restriction.

Assumption 3: The perturbation on the interaction weights
is bounded as follows :

dmax ,
∫ ∞
t0

m(t)dt <∞.

In matrix form, system (1) with interaction weights perturbed
as in (14) rewrites as{

ẋ(t, ε, t0) = −(l(t)L0 + εM(t))x(t, ε, t0),
with x(t0, ε, t0) = x0.

(15)

where matrix M(t) is the Laplacian matrix associated to the
adjacency matrix (mij(t))ij .

In the remaining of the section we study how q(t1, ε)
behaves when the parameter ε varies. In particular, we show
that this variation is smooth, and that q(t1, ε) −→

ε→0
p0 as

expected from Proposition 2. This is not obvious since it
requires interchanging limε→0 and limt→∞. We will use
the definition of q(t1, ε) in function of the fundamental
matrix Φ(t, ε, t1) : 1nq(t1, ε)

T = limt→∞Φ(t, ε, t1). To
show the smoothness of q(t1, ε) w.r.t ε, it suffices to show
the smoothness of limt→∞Φ(t, ε, t1) w.r.t. ε. For this, we
will turn to theorems allowing to interchange limits and
differentiation.

First, notice that by Lemma 2 the fundamental matrix
Φ(t, ε, t1) described by system (7) in the particular case of
system (15) satisfies

Φ(t, ε, t1) = e−τ(t,t1)L0 +R(t, ε, t1) (16)

where{
R(t, ε, t1) =

∫ t
t1
G(s, ε, t1)ds,

G(s, ε, t1) = e−τ(t,s)L0(−ε)M(s)Φ(s, ε, t1),

and τ(t, t1) =
∫ t
t1
l(w)dw. Also, denote

R∗(t1, ε) = limt→∞R(t, ε, t1).

The next lemma guarantees the existence of R∗.
Lemma 6: Under Assumption 3, function R∗(t1, ε) is

continuously differentiable with regards to ε for ε ∈ I and

∂R∗

∂ε
(t1, ε) =

∫ +∞

t1

∂G

∂ε
(s, ε, t1)ds,

where∥∥∥∥∂G∂ε (s, ε, t1)

∥∥∥∥
∞
≤ ‖M(s)‖∞

(
1 + nε∗|||M |||

)
.

The proof of the previous lemma is rather technical and
is provided in Appendix B in [15]. A consequence of the
previous result is the smoothness of q(t1, ε) with regards to
ε :

Theorem 2: Under Assumption 3, both q(t1, ε) and
R∗(t1, ε) are continuously differentiable in ε for all t1 and

q(t1, ε) = p0 +
1

n
(R∗(t1, ε))

T1n.

Proof: According to Proposition 2, we have

lim
t→∞

Φ(t, ε, t1) = 1np
T
0 +R∗(t1, ε),

where p0 is independent both of t1 and ε. By definition
of q(t1, ε), we have 1nq(t, ε)

T = 1np
T
0 + R∗(t1, ε). By

transposing and right-multiplying by 1Tn/n provides

q(t1, ε) = p0 +
1

n
(R∗(t1, ε))

T1n.

From Lemma 6, R∗(t1, ε) is also continuously differentiable
with regards to ε for ε ∈ I and so is q(t1, ε)

One interesting corollary to Lemma 6 and Theorem 2 is
that q(t, ε) converges as t→ +∞ :

Corollary 2: Suppose that Assumption 3 is satisfied.
Then, we have

‖q(t1, ε)− p0‖ ≤
ε

n

∫ +∞

t1

‖M(s)‖∞ds, (17)

and in particular, q(t1, ε) converges to p0 as t1 → +∞ even
for positive ε.

Proof: First notice that by Lemma 6, R∗ exists and

R∗(t1, ε) = −ε
∫ ∞
t1

e−τ(t,s)L0M(s)Φ(s, ε, t1)ds.

By equations (8) and (12), both ‖Φ(s, ε, t1)‖∞ = 1 and
‖e−τ(t,s)L0‖ = 1. Then, we can use the triangular inequality
to reverse integral and norm and conclude using that ‖ · ‖∞
is a submultiplicative norm to obtain

‖R∗(t1, ε)‖ ≤ ε
∫ ∞
t1

‖M(s)‖∞ds.

Theorem 2 allows to conclude. Finally, since M ∈ L1, the
previous norm converges to 0 when t1 →∞.
It is noteworthy that Corollary 2 ensures that q(t1, ε) con-
verges toward p0 when either ε→ 0 or t1 →∞. For the later
it is important to integrate ‖M(s)‖∞ on the interval [t1,∞)
in (17) although the inequality would still hold replacing t1
by t0. The convergence of q given in the previous corollary
may seem natural. However, it is not always true for general
consensus systems of type (5), even in instances where the
systems converges to consensus. This fact is illustrated via
an example in Section IV-B.

Corollary 2 can be used to study the evolution of q in a
faster time scale than the one given by time t. In particular,
one may then study the limit of q(t/ε, ε) when ε → 0.
However, this is out of the scope of the present paper.

B. Example of oscillating q

The aim of this section is to show that systems which
involve uniformly varying weights with non vanishing per-
turbation, unlike the ones described in Section IV-A, may
lead to a non converging vector q. Let us study a system of
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Fig. 1. (Left) trajectory of 2-agent system (1) for interaction weights
defined in equation (18) with ε = 0.9. (Right) first component q1(t, ε)
of the convex combination providing the asymptotic consensus value α in
function of the current state x(t, ε, 0).

type (1) with two agents. The interaction weights have the
following evolution in time{

a12(t, ε) = 1
2 (1 + ε cos(t)),

a21(t, ε) = 1
2 (1− ε cos(t)),

(18)

where ε ∈ [0, 1) is a constant parameter. This system satisfies
Assumption 1 with finite KI(ε) = 1+ε

1−ε ≥ 1, and as a
consequence converges to consensus (see Proposition 1).
However, the system does not satify Assumption 3, required
for Corollary 2 to apply. Setting x1(0) = 1 and x2(0) = 0
and integrating equation (1), we can show that

x1(t, ε, 0)− x2(t, ε, 0) = e−t,

from which, by integration, exact solutions for x1 and x2

can be obtained as :

x1(t, ε, 0) = α(0, ε) + e−t
ε(sin(t)− cos(t)) + 2

4
,

where the final consensus value is

α(0, ε) =
ε

4
+

1

2
.

For this case, the convex combination q can be obtained using
q1 + q2 = 1 and

q1(t, ε) = 1− x1(t, ε, t0)− α(0, ε)

e−t

=
ε(cos(t)− sin(t)) + 2

4

which does not converge despite asymptotic consensus for
x1 and x2 as long as ε 6= 0 as shown in Figure 1 : the
contribution of x1 and x2 for the asymptotic consensus value
keeps oscillating over time.

V. CONCLUSION

In this paper, we have studied linear consensus systems
with directed and time-varying interactions. The focus was
on characterizing the asymptotic consensus value of the
system. We have shown that this consensus value can be
expressed as a convex combination of the current state.
Under the cut-balance assumption on the interaction weights,
the components of the convex combination have been non-
trivially bounded. This means that each agent plays a non
vanishing role in the asymptotic consensus value. When the
interaction weights vary uniformly throughout the network,

the convex combination is constant in time. We have also
shown that when the uniformly varying interaction weights
are perturbed by a L1 perturbation, the convex combination
changes smoothly with regards to the perturbation parameter
ε. Finally, we have demonstrated that for such kind of pertur-
bation, the convex combination converges asymptotically in
time. On the contrary, when this assumption is not satisfied,
we have provided a case where the convex combination
keeps oscillating over time while the agents converge to a
consensus.

On-going works include applying the present results to
time-scale separation in consensus systems.
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