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Guaranteed cost control design for synchronization in networks of linear
singularly perturbed systems

Jihene Ben Rejeb, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract— This work presents the design of a decentralized
control strategy that allows singularly perturbed multi-agent
systems to achieve synchronization with global performance
guarantees. The study is mainly motivated by the presence of
two features that characterize many physical systems. The first
is the complexity in terms of interconnected subsystems and the
second is that each subsystem involves processes evolving on
different time-scales. The main difficulty that we have to over-
come is that we have to avoid the use of centralized information
related to the interconnection network structure. This problem
is solved by rewriting the synchronization problem in terms of
stabilization of a singularly perturbed uncertain linear system.
The singularly perturbed dynamics of subsystems generates
theoretical challenges related to the stabilizing controller design
but also numerical issues related to the computation of the
controller gains. We show that these problems can be solved
by decoupling the slow and fast dynamics. Our theoretical
developments are illustrated by some numerical examples.

Index Terms— Multiagent systems; consensus; singularly per-
turbed systems.

I. INTRODUCTION

The multi-agent formalism allows treating problems
coming from a wide application domain such as
engineering [1], biology, sociology [2], [3], economy.
Consensus and synchronization are challenging problems
widely studied in the context of linear agents interacting
through a directed or undirected graph with a fixed or
dynamically changing topology. There are also contributions
related to nonlinear agents such as oscillators dynamics [4],
nonholonomic robots [1] or general nonlinear systems [5].

On the other hand, there are many applications ranging
from biological systems such as gene expression systems [6],
neurons behavior [7] to engineering problems [8] that involve
processes evolving on different time-scales. One can find
many contributions with general stability and stabilization
results for such linear and nonlinear multiple time scale
systems (see [9] and references therein). One of the most
common approaches is the time-scale decomposition that
leads to decoupled slow and fast subsystems and an
appropriate combination of the corresponding results yields
a control design for the original system. Many results are
based on singular perturbation theory and these dynamical
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systems are also called singularly perturbed systems. The
problem of synchronization of singularly perturbed systems
is very challenging from a theoretical point of view and
is mainly motivated by two features that characterize the
nowadays systems. The first one is the complexity in terms
of subsystems interconnected together in order to accomplish
a global goal while the second is that physical subsystems
often involve processes that evolve on different time-scales.
Generally these features are tackled independently one from
another.

The main goal of this paper is to design a decentralized
control strategy that allows singularly perturbed multi-agent
systems to achieve synchronization with global performance
guarantees. Decentralized coordination control of multi-
agent systems attracted a lot of attention during the last
decade. An important feature of this class of large scale
systems is the fact that local information plays a key role.
This means that each system is able to design its own
control law without the help of a central entity that requires
important amounts of communication and computation.
Consequently, decentralized control aims at reducing the
communication and computation costs. When these costs
are neglected the centralized control strategies generally
outperform the decentralized ones. However, energy aware
strategies have to take into account the overall cost and
should reduce the communication and computation loads
[10]. Therefore, in this paper we design decentralized
controllers that provide a guaranteed cost in the context of
multi-agent systems with multiple time scale.

In a preliminary work [11], we have combined the two
features presented above to study the synchronization of
singularly perturbed systems. In that work we have designed
decentralized controllers able to achieve asymptotically the
synchronization goal. Here, we address the synchronization
with global performance guarantees. One may find in the
literature performance based results but in the context
of multi-agent systems or separately in the context of
singularly perturbed systems. Despite the interest of these
contributions, synchronization of singularly perturbed
systems with performance objectives is an open problem.

The contribution of this paper is the decentralized
guaranteed cost control design for a multi-agent system
under fixed undirected interaction graph. The dynamics of
each agent is represented by linear singularly perturbed
system. To solve the problem of decentralized guaranteed



cost control design, we transform the synchronization
problem in an uncertain system stabilization one. The
uncertainty comes from the fact that the graph Laplacian
eigenvalues are modeled as unknown but bounded uncertain
parameters in order to avoid an explicit use of Laplacian’s
eigenvalues. This is motivated by the fact that the only
available graph information consists in its connectivity. The
main difficulty that we face is related to the fact that we
have to ensure bounds on a global cost in a decentralized
manner i.e. by a local design. Indeed, when we deal with
optimal decentralized control, the Riccati equation, which,
in the LQ case is the basis for the derivation of the optimal
control law, involves the eigenvalues of the graph Laplacian
describing the overall network. In order to get rid of this
centralized information, instead of looking for an optimal
controller, a guaranteed cost controller is designed to ensure
a performance level of the closed-loop dynamics.

The paper is organized as follows. Section II presents some
basic definitions and notations in graph theory. Section III is
devoted to the design of the decentralized guaranteed cost
control law. Conditions on the gain matrix such that the
closed-loop singularly perturbed systems achieve asymptotic
synchronization while an upper bound on the performance
index is minimized, are expressed through linear matrix in-
equalities (LMIs). Simulation results are presented in Section
IV. The paper ends with some concluding remarks.

Notation
The following standard notation is used throughout the

paper. R is the set of real numbers, ‖x‖ is the Euclidean norm
of the vector x and ⊗ denotes the Kronecker product of two
matrices. We also denote by In ∈ Rn×n the identity matrix
of size n and by 1n,0n ∈ Rn the column vector whose
components are all 1 and 0, respectively. By 0n×m ∈ Rn×m

we denote the matrix whose all components are 0. Given
a matrix A ∈ Rn×n and A > 0 (A ≥ 0) means that A
is positive (semi-) definite. The transpose of A is denoted
by A>. We denote diag(A1, . . . , An) the block diagonal
matrix having the matrices A1 to An on the diagonal and
0 everywhere else.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a network of n identical singularly perturbed
linear systems. The analysis is based on some graph theo-
retical tools that are briefly summarized in this section.

A. Basic concepts of graph theory
With the network of n systems we associate a graph G

which is a couple (V, E). Here, V = {1, . . . , n} represents
the vertex set and E ⊂ V × V is the edge set. In the sequel
we suppose that the graph is undirected meaning that (i, j) ∈
E ⇔ (j, i) ∈ E . We also assume that G has no self-loop (i.e.
∀ i = 1, . . . , n one has (i, i) /∈ E). A weighted adjacency
matrix associated with G is G = [gij ] ∈ Rn×n such that

{
gij = gji > 0 if (i, j) ∈ E
gij = 0 otherwise

.

The corresponding weighted Laplacian matrix is L =
[lij ] ∈ Rn×n defined by




lii =

n∑

j=1

gij , ∀i = 1, . . . , n

lij = −gij if i 6= j

By definition L is symmetric and all of its rows sums
are zero. Throughout the rest of the paper the following
hypothesis holds.

Assumption 1: The undirected graph G is connected and
all the non-zero weights gi,j 6= 0 of the associated weighted
Laplacian matrix are within the interval [gm, gM ] with gM >
gm > 0.
This hypothesis is used to get consensus independently of
the initial condition under consideration and to uniformly
lower-bound the second smallest eigenvalue of the graph G
as in the next Remark.

Remark 1 (Basic properties of the Laplacian matrix [12]):
Let an undirected graph G that satisfies Assumption 1 and
let 0 = λ1 < λ2 6 . . . 6 λn be the eigenvalues of the
corresponding Laplacian matrix L. A rough lower-bound
on λ2, independent of G, is λ∗ =

g2
m

2(n−1)n2 (see [13] for
details). Therefore, one has

λ∗ < λ2 6 . . . 6 λn < n · gM , λ◦.

It is worth noting that there exists an orthonormal matrix
T ∈ Rn×n (i.e. TT> = T>T = In) such that

TLT> = D = diag(λ1, λ2, . . . , λn)

B. Decentralized synchronization of singularly perturbed
systems

In this paper we assume that for any i = 1, . . . , n, the ith

system at time t is characterized by the state (xi(t), zi(t)) ∈
Rnx+nz and a small ε > 0 such that its dynamics is given
by:

{
ẋi(t) = A11xi(t) +A12zi(t) +B1ui(t)

εżi(t) = A21xi(t) +A22zi(t) +B2ui(t)
, (1)

where ui ∈ Rm is the control input and

A11 ∈ Rnx×nx , A12 ∈ Rnx×nz , B1 ∈ Rnx×m,
A21 ∈ Rnz×nx , A22 ∈ Rnz×nz , B2 ∈ Rnz×m

such that rank(B1) = rank(B2) = m.
Assumption 2: The matrix A22 is invertible.
Definition 1: The n singularly perturbed systems defined

by (1) achieve asymptotic synchronization using local infor-
mation if there exists a state feedback controller of the form

ui(t) = K1

n∑

j=1

gij(xi(t)− xj(t)) + (2)

+K2

n∑

j=1

gij(zi(t)− zj(t)), K1 ∈ Rm×nx , K2 ∈ Rm×nz

such that

lim
t→∞

‖xi(t)− xj(t)‖ = 0 and lim
t→∞

‖zi(t)− zj(t)‖ = 0.



Let x(t) = (x1(t)>, . . . , xn(t)>)> ∈ Rn·nx and z(t) =
(z1(t)>, . . . , zn(t)>)> ∈ Rn·nz be the vectors collect-
ing the individual states xi(t) and zi(t) of the n agents.
Let also u(t) ∈ Rn·m be the vector collecting the in-
dividual controllers ui(t), i = 1, . . . , n (i.e u(t) =
(u1(t)>, . . . , un(t)>)>). Finally, let us consider the fol-
lowing global cost associated with synchronization of the
dynamics in (1):

J =

∫ ∞

0

x(t)>
(
L⊗ Inx

)
x(t) + z(t)>

(
L⊗ Inz

)
z(t)

+ u(t)>
(
In ⊗R

)
u(t)dt

(3)

where R ∈ Rm×m is a positive definite matrix that penalizes
the control effort required for synchronization.

III. GUARANTEED COST CONTROL DESIGN

A. Preliminaries

Let us recall that in [11] we used the change of variables

x̃(t) =
(
T ⊗ Inx

)
x(t), z̃(t) =

(
T ⊗ Inz

)
z(t) (4)

to rewrite the synchronization problem related to systems (1)
as a simultaneous stabilization problem for systems




˙̃xi(t) = (A11 − λiB1K1)x̃i(t) + (A12 − λiB1K2)z̃i(t)

ε ˙̃zi(t) = (A21 − λiB2K1)x̃i(t) + (A22 − λiB2K2)z̃i(t)

i = 2, . . . , n.
(5)

The design of K1 and K2 solving the simultaneous stabi-
lization of (5) is based on the classical singular perturbation
design (see [9] for instance) i.e. introducing the reduced-
order systems




˙̃xi,s(t) =
(
A0 − λiB0K0

)
x̃i,s(t), x̃i,s(0) = x̃i(0)

z̃i,s(t) = −A−122

(
A21 − λiB2K0

)
x̃i,s(t)

i = 1, . . . , n

and the corresponding boundary layer systems

ε ˙̃zi,f (t) =
(
A22 − λiB2K2

)
z̃i,f (t),

z̃i,f (0) = z̃i(0)− z̃i,s(0)

where K0 is the gain of the state feedback control that
stabilizes the reduced order systems and

A0 = A11 −A12A
−1
22 A21, B0 = B1 −A12A

−1
22 B2.

Throughout the rest of the paper, the following assumption
is imposed.

Assumption 3: The pairs (A0, B0) and (A22, B2) are sta-
bilizable.
Our main result in [11] is the following:

Theorem 2: Under Assumption 3, there exist K2 and K0

such that for i = 2, . . . , n the matrices A22 − λiB2K2 and
A0 − λiB0K0 are all Hurwitz. Then, there exists ε∗ > 0
such that the controllers (2) with

K1 = (Im −K2A
−1
22 B2)K0 +K2A

−1
22 A21.

asymptotically synchronize with local information the sys-
tems (1).

In this paper, we enforce the state feedback simultaneous
stabilization problem (SFSS) by considering the additional
constraint that consists in ensuring a guaranteed cost on
control effort.
Let us introduce ũ(t) = (T ⊗ Im)u(t) and notice that
ũ(t) = (ũ1(t)>, . . . , ũn(t)>)> with

ũi(t) = −λiK1x̃i(t)− λiK2z̃i(t), ∀i ∈ 1, . . . , n. (6)

Moreover, it is straightforward that

u(t)>(In ⊗R)u(t) = ũ(t)>(TT> ⊗R)ũ(t)

= ũ(t)>(In ⊗R)ũ(t) =

n∑

i=1

ũi(t)
>Rũi(t)

Remark 2: It is worth noting that using the change of
variables (4) the global cost J in (3) can be rewritten as
a sum of individual costs associated with the systems in (5):

J =

∫ ∞

0

x̃(t)>
(
D ⊗ Inx

)
x̃(t) + z̃(t)>

(
D ⊗ Inz

)
z̃(t)

+ ũ(t)>
(
In ⊗R

)
ũ(t)dt (7)

=

n∑

i=1

(∫ ∞

0

λix̃i(t)
>x̃i(t) + λiz̃i(t)

>z̃i(t)

+ ũi(t)
>Rũi(t)dt

)
=

n∑

i=1

J̃i

where for all i = 1, . . . , n one has

J̃i =

∫ ∞

0

λix̃i(t)
>x̃i(t) + λiz̃i(t)

>z̃i(t) + ũi(t)
>Rũi(t)dt.

(8)

B. Decentralized guaranteed cost control design

Linear singularly perturbed systems in (5) can be rewritten
as:
(

˙̃xi(t)
˙̃zi(t)

)
=

(
A11 A12

ε−1A21 ε−1A22

)(
x̃i(t)
z̃i(t)

)

+

(
B1

ε−1B2

)
ũi(t), i = 1, . . . , n

(9)

where ε > 0, x̃i(t) ∈ Rnx , z̃i(t) ∈ Rnz are the components
of the state variables defined in (4) and ũi ∈ Rm is the
control input defined in (6).

We recall that the synchronization problem of systems in
(1) is translated into a simultaneous stabilization problem
of systems in (5) or equivalently in (9). Furthermore, as
shown in (7), the global cost associated with the asymptotic
synchronization of the n singularly perturbed systems (1) can
be seen as the sum of n individual costs associated with the
stabilization of systems (5).

Remark 3: Since λ1 = 0 it is noteworthy that J̃1 = 0.
In the following, for all i = 2, . . . , n, we rewrite J̃i more
compactly as:

J̃i =

∫ ∞

0

(
λix̃i(t)

>x̃i(t) + ũi(t)
>Rũi(t)

)
dt, (10)



where x̃i(t) =
[
x̃i(t)

>, z̃i(t)
>]> ∈ Rnx=nx+nz and the

control input weight matrix R ∈ Rm×m is symmetric
positive definite.

Definition 3: We say that βi is a guaranteed cost for the
ith system in (9) with the control law ũi(t) if the value of
the cost function (10) satisfies the inequality J̃i 6 βi.

Remark 4: If there exists a guaranteed cost βi > 0 such
that the closed-loop value of the cost function (10) satisfies
J̃i 6 βi for all i = 2, . . . , n then a guaranteed cost J̄ , (n−
1) max

i=2,...,n
(βi) is ensured for the global control performance

required to asymptotically synchronize the collective closed
loop dynamics (1).

It is noteworthy that the controllers in (6), which are used
in Remark 4 above requires knowledge on the Laplacian
eigenvalues. This means that the designed controller cannot
be decentralized although it can be chosen to minimize
the global cost function J in (3). However, according to
Assumption 1, the only available graph information consists
in its connectivity.

In the following, we propose a decentralized guaranteed
cost control law that simultaneously stabilizes the closed-
loop singularly perturbed uncertain systems (9) with respect
to an adequate level of performance fixed by an upper
bound on the integral cost function (10). Before providing
the control design, let us introduce the following partitioned
matrices

Aε =

(
A11 A12

ε−1A21 ε−1A22

)
, Bε =

(
B1

ε−1B2

)

System (9) can be rewritten as follows :
˙̃xi(t) = Aεx̃i(t) +Bεũi(t), ∀i = 2, . . . , n (11)

with the feedback control law ũi = Fiûi defined by ûi of
the form

ûi(t) = −K x̃i(t) (12)

where K = [K1, K2] ∈ Rm×nx , and Fi ∈ Rnx×nx defined
as

Fi = λiInx . (13)

From basic properties of the Laplacian matrix (Remark 1),
one can conclude that, for a given undirected graph of n
vertices, the following holds :

(λ∗)2Inx 6 F>i Fi 6 (λ◦)2Inx , i = 2, . . . , n (14)

Therefore, a general manner of studying (11) without the
knowledge of Fi is to analyse the system

˙̃x(t) = Aεx̃(t) +BεFû(t), (15)

with F an uncertain matrix satisfying (14). It is noteworthy
that (14) is so called ”norm bounded uncertainty” in robust
control literature (see [14], [15]).

Remark 5: [9] Under Assumption 3, there exists ε∗ > 0
such that for all ε ∈ (0, ε∗], the pair (Aε, Bε) is stabilizable.

Theorem 4: Consider the uncertain system (15) and sup-
pose Assumptions 1 and 3 hold. Then, there exists ε∗ > 0
such that for each ε ∈ (0, ε∗] the following Riccati equation:

PεAε +A>ε Pε−2 (λ∗)
2
PεBεR

−1B>ε Pε +λ◦Inx = 0 (16)

admits a positive definite symmetric solution Pε. Moreover,
the controller

ũi(t) = −λ∗ R−1B>ε Pε x̃i(t), ∀i ∈ 2, . . . , n (17)

stabilizes (11). Furthermore, a guaranteed cost βi =
x̃i(0)>Pεx̃i(0) is achieved for the ith system in (11) using
the controller (17).

Remark 6: The individual cost functions J̃i in (10) de-
pend on λi but neither the individual guaranteed costs βi
nor the global guaranteed cost J̄ does not depend on λi.
This means that both the decentralized controllers (17) and
the guaranteed cost are independent of λi and they depend
only on the network size: n.
Now our problem is stated as finding the matrix Pε which
through conditions in Theorem 4, determines the solution to
the guaranteed cost control problem for the ith singularly
perturbed system. Indeed, the Riccati equation (16) is first
solved for Pε and then the guaranteed cost controller gains
are obtained by substituting the Riccati solution to (17).

Remark 7: Note that the obtained cost βi in Theorem 4
depends on the initial conditions x̃i(0) and z̃i(0). This depen-
dance can be removed by assuming that initial conditions are
zero mean random variables with E[x̃i(0) x̃i(0)>] = Inx .

C. Numerical implementation for decentralized guaranteed
cost control design

It is important to stress that some numerical problems
may arise in solving equation (16) because of the different
magnitudes of its coefficients caused by the small parameter
ε. Inspired by [16] we provide in this subsection an approach
that overcomes these computation difficulties. The idea is
to transform the full-order Riccati equation (11) depending
on ε into slow and fast Riccati equations independent of ε.
Doing so, we find a stabilizing solution for the guaranteed
cost control problem of singularly perturbed uncertain system
(15).

First, let us introduce the following lemma that will be
used to solve the algebraic Riccati equation (16).

Lemma 5: The algebraic Riccati equation (16) is equiva-
lent to the following Riccati equation :

PA+A>P − 2(λ∗)2PBR−1B>P + λ◦Inx = 0 (18)

where P = Γ−1ε Pε, A = ΓεAε, B = ΓεBε,

Pε =

(
P11 εP>21
εP21 εP22

)
, such that

{
P11 = P>11
P22 = P>22

(19)

Γε =

(
Inx

0nx,nz

0nz,nx εInz

)
, for all ε ∈ (0, ε∗).

Further, by making use of relation (19), the controller gain
in (17) becomes

K = [K1, K2] = R−1B>P. (20)
It is worth noting that Pε = Γ>ε P = P>Γε is symmetric but
P is not.



The Riccati equation (18) can be partitioned into

P11A11 +A>11P11 + P>21A21 +A>21P21 − P11S̃11P11

− P>21S̃>12P11 − P11S̃12P21 − P>21S̃22P21 + λ◦Inx
= 0

(21)

εP21A11 + P22A21 +A>12P11 +A>22P21 − εP21S̃11P11

− εP21S̃12P21 − P22S̃12P11 − P22S̃22P21 = 0 (22)

εP21A12 + εA>12P
>
21 + P22A22 +A>22P22 − ε2P21S̃11P

>
21

− εP>22S̃>12P>21 − εP21S̃12P22 − P22S̃22P22 + λ◦Inz
= 0

(23)

where

S̃ = 2(λ∗)2BR−1B> =

(
S̃11 S̃12

S̃>12 S̃22

)
.

Similar to Theorem 2 in [16], we apply the implicit function
theorem to show the existence of a bounded solution P in
neighborhood of ε = 0.
Setting ε→ 0 in equations (21)-(23), one obtains :

P
>
11A11 +A>11P 11 + P

>
21A21 +A>21P 21 − P 11S̃11P 11

− P>21S̃>12P 11 − P 11S̃12P 21 − P
>
21S̃22P 21 + λ◦Inx

= 0
(24)

P
>
22A21 +A>12P 11 +A>22P 21 − P>22S̃12P 11 − P 22S̃22P 21

= 0 (25)

P
>
22A22 +A>22P 22 − P 22S̃22P 22 + λ◦Inz

= 0 (26)

where P 11, P 21, P 22 are the limiting solutions when ε→ 0.
Let us define the following set :

Lf = {n > 1, such that the Riccati equation (26) has a
positive definite solution},

Note that A22 − S̃22P 22 is non-singular. Thus, equations
(24)-(26) become as follows :

P 11Ā0 + Ā>0 P 11 − P 11S̃0P 11 + Q̃0 = 0 (27)

P 21 = −N>2 +N>1 P 11 (28)

P 22A22 +A>22P 22 − P 22S̃22P 22 + λ◦Inz = 0 (29)

where

N1 = −D1D
−1
2 , N2 = A>21P 22D

−1
2

Q̃0 = nInx
−N2A21 −A>21N>2 −N2S̃22N

>
2

and

Ā0 = A11 +N1A21 + S̃12N
>
2 +N1S̃22N

>
2

S̃0 = S̃11 +N1S̃
>
12 + S̃12N

>
1 +N1S̃22N

>
1

D1 = A12 − S̃12P 22

D2 = A22 − S̃22P 22.

Let us also introduce :

Ls = {n > 1, such that the Riccati equation (27) has a
positive definite solution}.

Summarizing, instead of solving (16) we can approximate
its solution by solving (18) as stated in the next theorem.

Theorem 6: For all n ∈ L, there exists 0 < ε̄ < ε∗

such that for all ε ∈ (0, ε̄), the generalized algebraic Riccati
equation (18) has a positive definite solution of the form

P =

(
P 11 +O(ε) εP

>
12 +O(ε2)

P 21 +O(ε) P 22 +O(ε)

)

where L = Ls

⋂
Lf . Thus, a guaranteed cost controller is

given by (17) with Pε = Γ>ε P is a positive definite matrix
solving the Riccati equation (16).

Proof: The proof follows by combining Theorem 4 and
Lemma 5.
Theorem 6 implies that, if the Riccati equation (18) has a
positive matrix solution P then the solution Pε of (16) will
be the smallest upper bound on the criterion (10).
Further, the controller (17) guarantees a simultaneous stabi-
lization of the n− 1 subsystems (11) with a guaranteed cost
of value βi. Consequently, the n singularly perturbed systems
(1) achieve asymptotic synchronization under the state feed-
back controller (2) with the matrix gain (20). In addition, the
global control effort required to achieve the synchronization
is upper-bounded by J̄ = (n− 1) max

i=2,...,n
(βi).

IV. NUMERICAL EXAMPLES

In this section, we consider the synchronization of three
agents whose dynamics are given by (1) where :

A11 =

(
2.5 −6
−2 2

)
, A12 =

(
2 3
0 −2

)
, B1 =

(
2
1

)

A21 =

(
0.5 2
−1 1

)
, A22 =

(
−2 1
0 −1

)
, B2 =

(
1
1

)
.

To each agent we assign a vector state having 4 components
characterized by slow and fast dynamics.
For any agent i ∈ {1, 2, 3}, let us denote by [xi,1, xi,2]> and
[zi,1, zi,2]> its slow and fast state’ components, respectively.

The communication network among the 3 agents is de-
scribed by an undirected graph G which is connected and
the following Laplacian matrix :

L =




3 −1 −2
−1 3 −2
−2 −2 4


 .

The bounds on the eigenvalues of L are λ∗ = 0.0278 and
λ◦ = 6.

In simulation we fix ε = 0.01 and the components
of the initial condition are chosen for the 3 agents as
[2.5, 2, −0.5, −1.5], [1.5, 1, 4, −2], [0.5, −1, 3, 1].
Note that, when rewriting the system dynamics as in (11),
one can verify that Assumption 3 holds and the uncertainties
are given by Fi=2,3 ∈ {4 × I4, 6 × I4}. We choose R = 1
in (10) for the cost function. To apply Theorem 4 one needs
to compute the matrix Pε. In order to do that we first solve
(18) to obtain

P =




5.7472 −2.6140 0.0578 0.2431
−2.6140 132.3560 −0.0061 −2.6695
5.7762 −0.6120 1.5555 0.7322
24.3125 −266.9538 0.7322 9.7476


 .



Using Theorem 6 we compute

Pε =




5.7472 −2.6140 0.0578 0.2431
−2.6140 132.3560 −0.0061 −2.6695
0.0578 −0.0061 0.0156 0.0073
0.2431 −2.6695 0.0073 0.0975


 .

which yields the gain matrix

K = [K1 K2] = [38.96 , −140.43 , 2.4 , 8.29].

Figures (1) and (2) highlight the simultaneous synchroniza-
tion of the slow and fast dynamics.
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Fig. 1: The trajectories of x̃

0 2 4 6 8 10 12 14 16

−4

−2

0

2

4

Time (s)

 

 

z̃2,1

z̃2,2

z̃3,1

z̃3,2

Fig. 2: The trajectories of z̃

Next, we apply the control law in (2) with the obtained
gain matrix K to the two time scale model (1).
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Fig. 3: State trajectories of the system

From Fig 3, it can be observed that the states of
the closed-loop systems reach consensus with a global

guaranteed cost J̄ = 295.66.

V. CONCLUSION

In this paper we propose a decentralized control strat-
egy that allows singularly perturbed multi-agent systems to
achieve synchronization with global performance guarantees.
The main difficulty that we have to overcome is that we have
to avoid the use of centralized information related to the
interconnection network structure. This problem is solved
by sequentially rewriting the synchronization problem in
terms of simultaneous stabilization of singularly perturbed
systems and then as stabilization of a singularly perturbed
uncertain linear system. The singularly perturbed dynamics
of subsystems generates theoretical challenges related to the
stabilizing controller design but also numerical issues related
to the computation of the controller gains. We show that
these problems can be solved by decoupling the slow and
fast dynamics.
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[9] P. Kokotović, H. Khalil, and J. O’Reilly, Singular perturbation meth-
ods in control: analysis and design. SIAM Series in Classics and
Applied Mathematics, 1999.

[10] J. Hassan and J. Shamma, “Decentralized energy aware co-
optimization of mobility and communication in multiagent systems,”
in Proceedings of 55th IEEE Conference on Decision and Control,
CDC 2016, 2016.

[11] J. B. Rejeb, I. C. Morărescu, and J. Daafouz, “Synchronization in
networks of linear singularly perturbed systems,” in American Control
Conference, July 2016, pp. 4293–4298.

[12] C. Godsil and G. Royle, Algebraic Graph Theory. Springer-Verlag,
New-York, 2001.

[13] S. Friedland and R. Nabben, “On cheeger-type inequalities for
weighted graphs,” Journal of Graph Theory, vol. 41, no. 1, pp. 1–
17, 2002.

[14] H. Mukaidani and K. Mizukami, “The guaranteed cost control problem
of uncertain singularly perturbed systems,” Journal of Mathematical
Analysis and Applications, vol. 251, no. 2, pp. 716 – 735, 2000.

[15] G. Garcia, J. Daafouz, and J. Bernussou, “H2 guaranteed cost control
for singularly perturbed uncertain systems,” IEEE Transactions on
Automatic Control, vol. 43, no. 9, pp. 1323–1329, Sep 1998.

[16] H. Mukaidani, H. Xu, and T. Okita, “Robust stabilization of non-
standard singularly perturbed systems with uncertainties,” in IFAC
World Congress, G, vol. 151, 1999, p. 156.


