
HAL Id: hal-01653073
https://hal.science/hal-01653073v1

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability analysis of a general class of singularly
perturbed linear hybrid systems

Jihene Ben Rejeb, Irinel-Constantin Morarescu, Antoine Girard, Jamal
Daafouz

To cite this version:
Jihene Ben Rejeb, Irinel-Constantin Morarescu, Antoine Girard, Jamal Daafouz. Stability analysis
of a general class of singularly perturbed linear hybrid systems. Automatica, 2018, 90, pp.98-108.
�10.1016/j.automatica.2017.12.019�. �hal-01653073�

https://hal.science/hal-01653073v1
https://hal.archives-ouvertes.fr


Stability analysis of a general class of
singularly perturbed linear hybrid systems ?

Jihene Ben Rejeb a, Irinel-Constantin Morărescu a, Antoine Girard b, Jamal Daafouz a
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Abstract

We introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the
slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become
fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in
which the variables preserve their slow or fast nature over time. Secondly, we establish, through singular perturbation techniques, an upper
bound on the minimum dwell-time ensuring the overall system’s stability. Remarkably, this bound is the sum of two terms. The first term,
which can be equal to zero, only depends on the matrices of the reduced order linear hybrid system describing the slow dynamics and
corresponds to an upper bound on the minimum dwell time ensuring the stability of that system. The order of magnitude of the second
term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show
that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical
illustrations complete our study.

Key words: Stability analysis, Singular perturbation, Switched systems, Impulsive systems, Dwell-time.

1 Introduction

Systems characterized by processes that evolve on different
time-scales are often encountered in biology L.Chen & Ai-
hara (2002), Hodgkin & Huxley (1952) but are also present
in engineering Malloci (2009), Sanfelice & Teel (2011).
In this case, the standard stability analysis becomes more
difficult and singular perturbation theory Kokotović et al.
(1999), Khalil (2001) has to be used. This theory is based
on Tikhonov approach that proposes to approximate the dy-
namics by decoupling the slow dynamical processes from
the faster ones. The stability analysis is done separately for
each time scale and under appropriate assumptions one can
conclude on the stability of the overall system. Significant
results related to stability analysis and approximation of
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solutions of singularly perturbed systems can be found in
Balachandra & Sethna (1975), Nesic & Teel (2001), Teel
et al. (2003). We also note that singular perturbation the-
ory was used to study the behavior of piecewise smooth
systems with state triggered switches Llibre et al. (2009),
Fiore et al. (2016).
Another feature that characterizes many physical systems
is the presence of discrete events that occur during the con-
tinuous evolution. These events include abrupt changes of
dynamics or instantaneous state jumps, which lead to the
classes of switched systems or impulsive systems, respec-
tively. Stability analysis and stabilization of singularly per-
turbed linear switched systems are considered in M.Alwan
et al. (2008), Malloci, Daafouz & Iung (2009). Interestingly,
it is shown in Malloci, Daafouz & Iung (2009) that even
though the switched dynamics on each time scale are stable
for all switching signals, the overall system may be desta-
bilized by fast switching signals. Clearly, this is in contrast
with classical results on continuous singularly perturbed
linear systems Kokotović et al. (1999) and is a motivation
for developing dedicated techniques for stability analysis
of singularly perturbed hybrid systems. Stability analysis
of singularly perturbed impulsive systems is considered
in Simeonov & Bainov (1988), Abdelrahim et al. (2015).
More general singularly perturbed hybrid systems can in-
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volve both switches and impulses. A stability result for this
class of systems can be found in Sanfelice & Teel (2011).
In these works, the slow or fast nature of the state variable
does not change when an event (switch or impulse) occurs.
In this paper we introduce and analyze a class of singularly
perturbed linear hybrid systems in which, at switching in-
stants, slow variables can become fast and vice-versa. Our
framework also includes the analysis of singularly perturbed
linear systems with or without switches and/or impulses.
Moreover, taking advantage of the linear dynamics under
study, we go beyond the results in Sanfelice & Teel (2011)
by characterizing the required dwell-time in terms of the
parameter defining the ratio between the two time-scales.
Although the technique in Sanfelice & Teel (2011) can be
adapted to take into account the change of the slow or fast
nature of the variables, our results are intrinsically differ-
ent due to the different way to obtain the reduced order
system. Indeed, for the linear switching system presented
in Malloci, Daafouz & Iung (2009) we obtain a reduced
order system which is stable for any switching rule while
using the method in Sanfelice & Teel (2011) the reduced
order system is stable only for switching rules satisfying
a dwell-time condition which is independent of the ratio
between the two time-scales. Consequently, we are able
to characterize more precisely the size of the dwell-time
guaranteeing overall system stability.
The class of dynamical systems discussed in this paper is
motivated by an industrial application in steel production.
The objective in rolling mills is to reduce the thickness of
a strip and this goal is reached by maintaining the strip
in a straight line and close to the mill axis. When each
stand is linked to the others by the strip traction, there is
no discontinuity in the model. The system has a two time
scale nature as there is a slow dynamics corresponding to
the lateral displacement of the strip after each stand and a
fast dynamics corresponding to the angle between the strip
and the mill axis. The corresponding control problem can
be treated using classical linear techniques as it is enough
from a practical point of view to consider small deviations
around an ideal operating point (see Malloci et al. (2010)
and references therein). The situation is different in the
last phase of the rolling process called the tail end phase
and where the strip leaves the stands one after the other.
Traction is lost each time the strip leaves a stand and this
increases the difficulty to guide the strip as it is free to move
in all directions. There are several difficulties in this phase.
The first one is related to model discontinuities. Each time
the strip leaves a stand the system dynamics changes and
switching occurs. Moreover, the tail end phase is very short,
the switchings are very fast and stability of all subsystems
is not a sufficient condition to guarantee the stability of the
whole system. The second difficulty is related to the changes
in the nature of the dynamics after switching. The angle
which was a fast variable becomes a slow variable and this
change occurs at each time the strip leaves a stand. A sys-
tem with this behavior can be defined as a switched system
with multiple time scales, changes in the nature of the state
variables and changes in the dimension of the state vector

Malloci, Daafouz, Iung, Bonidal & Szczepanski (2009).
Starting from the above motivation, we introduce and an-
alyze a general class of singularly perturbed linear hybrid
systems with mode-dependent nature of the state variable
in which the sequence of discrete events is time-dependent.
Although some preliminary results have been presented in
Rejeb et al. (2016), the main contributions of the current
work are:
• a new class of singularly perturbed hybrid systems and a

procedure to rewrite such systems as linear hybrid sin-
gularly perturbed systems where the nature of variables
does not change at switching instants, both cases of fixed
and variable dimensions of the slow and fast state vectors
are considered;

• a new approach for stability analysis of singularly per-
turbed linear hybrid systems with both switches and
impulses;

• the derivation of an upper bound on the minimal dwell-
time between two events that ensures the stability of the
singularly perturbed linear hybrid system.

It is noteworthy that, this bound is given as the sum of two
terms. The first one corresponds to an upper bound on the
minimum dwell-time ensuring the stability of the reduced
order linear hybrid system describing the slow dynamics.
The order of magnitude of the second term is determined by
that of the parameter ε defining the ratio between the two
time-scales of the singularly perturbed system. In particular,
it follows that when the reduced order system has a com-
mon quadratic Lyapunov function, the first term is zero and
the minimum dwell-time ensuring the stability of the overall
system goes to zero as fast as ε or −ε ln(ε) when the time
scale parameter ε goes to zero.
Basically, we combine the classical singular perturbation
theory Kokotović et al. (1999) with Lyapunov function ar-
guments for hybrid systems (see Goebel et al. (2012) for
details). Our results clearly differ from existing ones on
singularly perturbed linear hybrid systems that we men-
tioned previously: Malloci, Daafouz & Iung (2009) deals
with the existence of common quadratic Lyapunov func-
tions and thus characterizes systems that are stable without
dwell-time assumption; the condition on the dwell-time es-
tablished in M.Alwan et al. (2008) does not present a clear
separation between the slow and fast dynamics of the sys-
tem; and in Simeonov & Bainov (1988), Abdelrahim et al.
(2015), Sanfelice & Teel (2011) the stability is established
under a dwell-time condition where the dwell-time does not
explicitly depend on the time-scale parameter.
The paper is organized as follows : Section 2 describes the
hybrid system model in the singular perturbation form and
introduces the relevant notations. In this section, we also
introduce a mode-dependent reordering of the state com-
ponents allowing to rewrite the system in a form in which
the variables preserve their slow or fast nature over time.
Section 3 is devoted to new preliminary results concerning
the stability analysis of singularly perturbed linear systems
without switches or jumps. Section 4.1 presents the main re-
sults along with their Lyapunov-based proofs. These results
give stability conditions and establish an upper-bound on the
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minimum dwell-time ensuring the stability of the system.
An extension to the case of mode-dependent dimension of
the state-vector is provided in Subsection 4.3. To illustrate
the results, we provide in Section 5 a dwell-time analysis
and a numerical example in the particular case of scalar fast
and slow dynamics with only two switching modes. Some
concluding remarks end the paper.

Notation

Throughout this paper, R+ , Rn and Rn×m denote respec-
tively, the set of nonnegative real numbers, the n dimensional
Euclidean space and the set of all n×m real matrices. The
identity matrix of dimension n is denoted by In. We also de-
note by 0n,m ∈ Rn×m the matrix whose components are all
0. For a matrix A ∈ Rn×n, ‖A‖ denotes the spectral norm
i.e. induced 2 norm.A ≥ 0 (A ≤ 0) means thatA is positive
semidefinite (negative semidefinite). We write A> and A−1

to respectively denote the transpose and the inverse of A.
For a symmetric matrix A ≥ 0, A

1
2 is the unique symmetric

matrix B ≥ 0 such that B2 = A. The matrix A is said to be
Hurwitz if all its eigenvalues have negative real parts. A is
said to be Schur if all its eigenvalues have modulus smaller
than one. The matrix A is said to be positive if all its coeffi-
cients are positive. We also use x(t−) = lim

δ→0, δ>0
x(t− δ).

Given a function η : (0, ε∗)→ R, we say that η(ε) = O(ε)
if and only if there exists ε0 ∈ (0, ε∗) and c > 0, such that
for all ε ∈ (0, ε0), |η(ε)| ≤ cε.

2 Problem formulation

In this paper, we consider a general class of singularly per-
turbed linear hybrid (i.e. switched and impulsive) systems.
This class encompasses the case in which some slow vary-
ing variables switch to fast variation and/or reversely fast
varying variables switch to slow variation.

In order to formalize the system dynamics, let ε > 0 be
the small parameter characterizing the time scale separation
between the slow and the fast dynamics. We consider a finite
set of indices I and we introduce the diagonal matrices
Di for all i ∈ I. Precisely, the diagonal elements of each
Di, i ∈ I belong to the set {ε, 1} and they are used to
select the fast and slow variables as explained below. We
study switched systems of the form:

DσkẊ(t) = AσkX(t), ∀t ∈ [tk, tk+1), k ∈ N (1)

with impulsive dynamics :

X(tk) = JνkX(t−k ), ∀k ≥ 1 (2)

where X(t) ∈ Rnσk , ∀t ∈ [tk, tk+1), k ∈ N, and 0 = t0 <
t1 < . . . is the monotonically increasing and unbounded se-
quence of instants of discrete events (switches or impulses),
σk ∈ I and νk ∈ J with I and J finite sets of indices. Note
that we are considering here time-dependent events and not
state dependent ones. For all k ∈ N, Aσk ,Dσk ∈ Rnσk×nσk

and Jνk ∈ Rnσk×nσk−1 are matrices defining the continuous
and impulsive dynamics.

For all i ∈ I, the matrix Di is used to specify the slow and
fast varying variables as follows:
• the h-th component of X has a fast variation when σk = i

if the h-th diagonal element of Di equals ε;
• the h-th component of X has a slow variation when
σk = i if the h-th diagonal element of Di equals 1.

In the sequel, we will mainly focus on the case where the
dimension of X is time-invariant (i.e. ni = n, ∀i ∈ I)
and the number of slow and fast varying variables remains
constant. In other words, the number of entries of Di equal
to ε is constant, denoted by nz ≤ n for all i ∈ I. This means
that X has nz fast varying components and nx = n−nz slow
varying ones. This is without loss of generality, as we shall
see in Section 4.3 that the case of time-varying dimensions
n, nz and nx can be reduced to the case of fixed dimensions
by adding artificial stable variables.

Remark 1 The stability analysis of (1)-(2) encompasses the
analysis of several existing classes of singularly perturbed
linear hybrid systems. To illustrate that, let us suppose that
Di = Dj ,∀i, j ∈ I and denote by x and z the vectors of
slow and fast components of X, respectively. Then, system
(1)-(2) becomes a singularly perturbed linear hybrid system
of the form:

(
ẋ(t)

εż(t)

)
= Aσk

(
x(t)

z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N

(
x(tk)

z(tk)

)
= Jνk

(
x(t−k )

z(t−k )

)

We can then trivially recover singularly perturbed switched
systems (when there is only one jump matrix given by the
identity) and singularly perturbed impulsive systems (when
there is only one flow matrix), which are studied in M.Alwan
et al. (2008), Malloci, Daafouz & Iung (2009) and in Sime-
onov & Bainov (1988), Abdelrahim et al. (2015), respec-
tively. We also point out that this class of systems is a sub-
class of singularly perturbed hybrid systems studied in San-
felice & Teel (2011). Fundamental differences between our
approach and these works have been highlighted in the in-
troduction.

2.1 Variable reordering

A first step in our analysis is to rewrite (1) in a form
where slow/fast variables remain slow/fast over time, in-
dependently of switches affecting the system’s dynamics.
To accomplish this step, for all i ∈ I we introduce the
permutation matrix Si such that

SiD
iS>i =

(
Inx 0nx,nz

0nz,nx εInz

)
, ∀i ∈ I (3)
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and define the time dependent change of variable(
x(t)

z(t)

)
= SσkX(t), ∀t ∈ [tk, tk+1), k ∈ N (4)

where x(t) ∈ Rnx , z(t) ∈ Rnz . In other words, we use the
matrix Si to permute the components of X such that the first
nx ones are characterized by a slow variation while the rest
of nz components have a fast variation. Let us also introduce
the following matrices:

Ai = SiA
iS>i , J

i
j→i′ = Si′J

jS>i , ∀i, i′ ∈ I, j ∈ J . (5)

Using the change of variable (4) and taking into account the
matrices definitions (3) and (5), the general system (1)-(2)
is rewritten in the following equivalent form:(

ẋ(t)

εż(t)

)
= Aσk

(
x(t)

z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (6)

with impulsive dynamics:(
x(tk)

z(tk)

)
= Jσk−1

νk→σk

(
x(t−k )

z(t−k )

)
, ∀k ≥ 1 (7)

Remark 2 Switches and impulses can, but need not, be con-

comitant. Indeed, if σk = σk−1 and Jσk−1

νk→σk 6= In, then
at time tk an impulse occurs but no switch. Similarly, if

In ∈ {J i
j→i′ | i, i′ ∈ I, j ∈ J }, then if Jσk−1

νk→σk = In and
σk 6= σk−1, then at time tk a switch occurs but no impulse.

In general, stability analysis of (6)-(7) is a difficult task as it
cannot be reduced to the analysis of the associated reduced
(slow) and boundary layer (fast) systems, as shown by a
counter-example in Malloci, Daafouz & Iung (2009). In the
following, we will provide a new methodology based on
singular perturbation techniques to characterize an upper-
bound on the minimum dwell-time ensuring stability.

2.2 Change of variable

For i, i′ ∈ I, j ∈ J , let

Ai =

(
Ai11 A

i
12

Ai21 A
i
22

)
, J i

j→i′ =

 J i
j→i′

11 J i
j→i′

12

J i
j→i′

21 J i
j→i′

22

 ,

where Ai11, J
i
j→i′

11 ∈ Rnx×nx , and Ai22, Ai12, Ai21, J i
j→i′

22 ,

J i
j→i′

12 , J i
j→i′

21 are of appropriate dimensions.

Let us impose the following standard assumption Kokotović
et al. (1999) in the singular perturbation theory framework:

Assumption 1 Ai22 is non-singular for all i ∈ I.

Then, we perform the following time dependent change of
variable:(

x(t)

y(t)

)
= Pσk

(
x(t)

z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (8)

where, for all i ∈ I one has Pi =

(
Inx 0nx,nz

(Ai22)−1Ai21 Inz

)
.

It is worth noting that the matrix Pi is invertible and for all
i ∈ I

P−1
i =

(
Inx 0nx,nz

−(Ai22)−1Ai21 Inz

)
.

Using (8), the continuous dynamics (6) in the variables x, y
becomes:(

ẋ(t)

εẏ(t)

)
=

(
Aσk0 Bσk1

εBσk2 Aσk22 + εBσk3

)(
x(t)

y(t)

)
,

∀t ∈ [tk, tk+1), k ∈ N

(9)

where for all i ∈ I one has

Ai0 = Ai11 −Ai12(Ai22)−1Ai21, B
i
1 = Ai12,

Bi2 = (Ai22)−1Ai21A
i
0, B

i
3 = (Ai22)−1Ai21A

i
12.

Similarly, the impulsive dynamics (7) is rewritten in the x, y
variables as:(

x(tk)

y(tk)

)
= Rσk−1

νk→σk

(
x(t−k )

y(t−k )

)
, ∀k ≥ 1 (10)

where for all i, i′ ∈ I, j ∈ J ,

Ri
j→i′ = Pi′J

i
j→i′P−1

i =

Ri
j→i′

11 Ri
j→i′

12

Ri
j→i′

21 Ri
j→i′

22


with

Ri
j→i′

11 = J i
j→i′

11 − J i
j→i′

12 (Ai22)−1Ai21,

Ri
j→i′

12 = J i
j→i′

12 ,

Ri
j→i′

21 = (Ai
′

22)−1Ai
′

21(J i
j→i′

11 − J i
j→i′

12 (Ai22)−1Ai21)

+ J i
j→i′

21 − J i
j→i′

22 (Ai22)−1Ai21,

Ri
j→i′

22 = (Ai
′

22)−1Ai
′

21J
i
j→i′

12 + J i
j→i′

22 .

One can then define the reduced order model, formally given
by the switched system with single time scale:

ẋ(t) = Aσk0 x(t), ∀t ∈ [tk, tk+1), k ∈ N (11)
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with impulsive dynamics:

x(tk) = R
σk−1

νk→σk
11 x(t−k ), ∀k ≥ 1. (12)

The goal of the paper is to investigate the stability of the
general singularly perturbed linear hybrid system (1)-(2), or
equivalently of (6)-(7) or of (9)-(10), for small values of the
parameter ε, and its relation to the stability of the reduced
order model (11)-(12). In particular, we aim at characteriz-
ing an upper-bound on the minimum dwell-time ensuring
stability.

3 Preliminaries

In this section, we provide new results on the Lyapunov
stability of singularly perturbed linear systems, which will
be used in the next sections to prove the main results of the
paper concerning the stability of (1)-(2). The proofs of these
results are stated in appendix.

Let us consider the singularly perturbed linear system written
under the form :{

ẋ(t) = A0x(t) +B1y(t)

εẏ(t) = A22y(t) + ε(B2x(t) +B3y(t))
(13)

Let us make the following assumption:

Assumption 2 A0 and A22 are Hurwitz.

Under the previous assumption, there exist symmetric pos-
itive definite matrices Qs ≥ Inx , Qf ≥ Inz and positive
numbers λs and λf such that:

A>0 Qs +QsA
>
0 ≤ −2λsQs

A>22Qf +QfA
>
22 ≤ −2λfQf

Then, let us define b1 =
∥∥Q 1

2
s B1Q

− 1
2

f

∥∥, b2 =
∥∥Q 1

2

f B2Q
− 1

2
s

∥∥
and b3 =

∥∥Q 1
2

f B3Q
− 1

2

f

∥∥.
The next results are instrumental for our development and
their proofs are provided in the Appendix.

Proposition 1 Under Assumption 2,

V (x, y) = x>Qsx+ y>Qfy

is a Lyapunov function for system (13) for all ε ∈ (0, ε1]
where

ε1 =
λf

(b1+b2)2

4λs
+ b3

. (14)

In the following, let us denote Ws(t) =
√
x(t)>Qsx(t)

and Wf (t) =
√
y(t)>Qfy(t).

Proposition 2 Under Assumption 2, let ε1 be given by (14),
then for all ε ∈ (0, ε1] and t ≥ 0

Wf (t) ≤Wf (0)e−
λf
ε t + εβ1

√
V (0)

where β1 =

√
b22+b23
λf

.

Proposition 3 Under Assumption 2, let ε1 be given by (14),
and let ε2 ∈ (0, ε1] ∩ (0,

λf
λs

) then for all ε ∈ (0, ε2] and
t ≥ 0

Ws(t) ≤Ws(0)e−λst + εβ2Wf (0) + εβ3

√
V (0)

where β2 = b1
λf−ε2λs and β3 = b1β1

λs
.

4 Main results

4.1 Stability analysis

We now study the stability of system (9)-(10) (or equiva-
lently of (1)-(2) or of (6)-(7)). In the rest of the paper, we
impose the following additional assumption on the singu-
larly perturbed system at hand, related to the stability of the
slow and fast dynamics of each mode.

Assumption 3 Ai0 and Ai22 are Hurwitz for all i ∈ I.

From the previous assumption, we can deduce that there exist
symmetric positive definite matrices Qis ≥ Inx , Qif ≥ Inz ,
i ∈ I, and positive numbers λis and λif such that for all
i ∈ I:

Ai
>

0 Qis +QisA
i
0 ≤ −2λisQ

i
s

Ai
>

22Q
i
f +QifA

i
22 ≤ −2λifQ

i
f

We denote λs = min
i∈I

λis and λf = min
i∈I

λif . For each i ∈ I,

let bi1 =
∥∥(Qis)

1
2B1(Qif )−

1
2

∥∥, bi2 =
∥∥(Qif )

1
2B2(Qis)

− 1
2

∥∥,
bi3 =

∥∥(Qif )
1
2B3(Qif )−

1
2

∥∥ and bj = max
i∈I

bij , j ∈ {1, 2, 3}.

Let ε1 be given by (14), then it follows from Proposition 1
that the linear dynamics of (9) are all Lyapunov stable, for
ε ∈ (0, ε1]. Let ε2 ∈ (0, ε1] ∩ (0,

λf
λs

) and β1, β2, β3 be
defined as in Propositions 2 and 3.

The stability analysis of system (9)-(10) is carried out using
the following mode dependent functionsWs(t) =

√
x(t)>Qσks x(t)

Wf (t) =
√
y(t)>Qσkf y(t)

, ∀t ∈ [tk, tk+1), k ∈ N.

The next result characterizes the variation of Ws and Wf

during the continuous dynamics between two events:

Lemma 4 Under Assumption 3, let ε ∈ (0, ε2], and let τk =
tk+1 − tk for a sequence (tk)k≥0 of event times. Then for
all k ∈ N,

Ws(t
−
k+1) ≤Ws(tk)(e−λsτk + εβ3) +Wf (tk)ε(β2 + β3)

Wf (t−k+1) ≤Ws(tk)εβ1 +Wf (tk)
(
e−

λf
ε τk + εβ1

)
.
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PROOF. This is straightforward from Propositions 2 and 3
by remarking that

√
V ≤Ws +Wf .

In the following we complete the characterization of the
variation of Ws and Wf by analyzing their behavior when
an event occurs. Let γ11, γ12, γ21, γ22 be defined as:

γ11 = max
i,i′∈I,j∈J

∥∥(Qi
′

s )
1
2Ri

j→i′
11 (Qis)

− 1
2

∥∥,
γ12 = max

i,i′∈I,j∈J

∥∥(Qi
′

s )
1
2Ri

j→i′
12 (Qif )−

1
2

∥∥,
γ21 = max

i,i′∈I,j∈J

∥∥(Qi
′

f )
1
2Ri

j→i′
21 (Qis)

− 1
2

∥∥,
γ22 = max

i,i′∈I,j∈J

∥∥(Qi
′

f )
1
2Ri

j→i′
22 (Qif )−

1
2

∥∥.
(15)

Then, we have the following result:

Lemma 5 Let a sequence (tk)k≥0 of event times, then for
all k ≥ 1,

Ws(tk) ≤ γ11Ws(t
−
k ) + γ12Wf (t−k )

Wf (tk) ≤ γ21Ws(t
−
k ) + γ22Wf (t−k ).

PROOF. We prove the first inequality:

Ws(tk) =
√
x(tk)>Qσks x(tk) =

∥∥(Qσks )
1
2x(tk)

∥∥
≤
∥∥(Qσks )

1
2

(
R
σk−1

νk→σk
11 x(t−k ) +R

σk−1

νk→σk
12 y(t−k )

)∥∥
≤
∥∥(Qσks )

1
2R

σk−1

νk→σk
11 x(t−k )

∥∥
+
∥∥(Qσks )

1
2R

σk−1

νk→σk
12 y(t−k )

)∥∥
≤
∥∥(Qσks )

1
2R

σk−1

νk→σk
11 (Qσk−1

s )−
1
2

∥∥Ws(t
−
k )

+
∥∥(Qσks )

1
2R

σk−1

νk→σk
12 (Q

σk−1

f )−
1
2

∥∥Wf (t−k )

≤ γ11Ws(t
−
k ) + γ12Wf (t−k ).

The second inequality is obtained similarly.

In order to keep the notation simple, we introduce the posi-
tive matrix parameterized by τ > 0:

Mτ =

 e−λsτ + εβ3 ε(β2 + β3)

εβ1 e−
λf
ε τ + εβ1

 .

Let us also consider the positive matrix Γ =

(
γ11 γ12

γ21 γ22

)
.

Lemma 6 Under Assumption 3, let ε ∈ (0, ε2] and let τ∗ ≥
0 such that the positive matrix ΓMτ∗ is Schur. Then, for all
sequences (tk)k≥0 of event times satisfying the dwell-time

property τk ≥ τ∗, for all k ∈ N, the system (9)-(10) is
globally asymptotically stable.

PROOF. From Lemmas 4 and 5, it follows that ∀ k ∈ N,(
Ws(tk)

Wf (tk)

)
≤ ΓMτk−1

. . .ΓMτ0

(
Ws(t0)

Wf (t0)

)
.

Remarking that the coefficient of the positive matrix Mτ are
decreasing with respect to τ, it follows that(

Ws(tk)

Wf (tk)

)
≤
(
ΓMτ∗

)k(Ws(t0)

Wf (t0)

)
.

Hence, if the positive matrix ΓMτ∗ is Schur, then both se-
quences (Ws(tk))k≥0 and (Wf (tk))k≥0 go to 0, and the
system (9)-(10) is globally asymptotically stable.

Hence, the stability of system (9)-(10) can be investigated
by studying the spectral properties of the positive matrix
ΓMτ∗ . Let us remark that values τ∗ such that ΓMτ∗ is Schur
provide upper bounds on the minimal dwell-time between
two events that ensures the stability of the singularly per-
turbed linear hybrid system. In the following, we establish
sufficient conditions for deriving such values τ∗. The proof
is provided in appendix.

Theorem 7 Under Assumption 3 the following statements
hold.

a) If γ11 > 1, there exists ε∗1 > 0 and a function η1 :
(0, ε∗1) → R+ with η1(ε) = O(ε), such that for all
ε ∈ (0, ε∗1), for all sequences (tk)k≥0 of event times sat-
isfying a dwell-time property τk ≥ τ∗, for all k ∈ N, with

τ∗ >
ln(γ11)

λs
+ η1(ε),

the system (9)-(10) is globally asymptotically stable.

b) If γ11 = 1 and γ12 6= 0, there exists ε∗2 > 0 and a function
η2 : (0, ε∗2) → R+ with η2(ε) = O(ε), such that for
all ε ∈ (0, ε∗2), for all sequences (tk)k≥0 of event times
satisfying a dwell-time property τk ≥ τ∗, for all k ∈ N,
with

τ∗ >
−ε
λf

ln(ε) + η2(ε),

the system (9)-(10) is globally asymptotically stable.

c) If γ11 = 1 and γ12 = 0, there exists ε∗3 > 0 and a function
η3 : (0, ε∗3) → R+ with η3(ε) = O(ε), such that for
all ε ∈ (0, ε∗3), for all sequences (tk)k≥0 of event times
satisfying a dwell-time property τk ≥ τ∗, for all k ∈ N,
with

τ∗ > η3(ε),

the system (9)-(10) is globally asymptotically stable.
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d) If γ11 < 1, there exists ε∗4 > 0 and a function η4 :
(0, ε∗4) → R+ with η4(ε) = O(ε), such that for all
ε ∈ (0, ε∗4), for all sequences (tk)k≥0 of event times sat-
isfying a dwell-time property τk ≥ τ∗, for all k ∈ N, with

τ∗ > η4(ε),

the system (9)-(10) is globally asymptotically stable.
Moreover, if γ22 < 1 and γ12γ21

(1−γ11)(1−γ22) < 1, there exists
ε∗5 > 0 such that for all ε ∈ (0, ε∗5) the system (9)-(10) is
globally asymptotically stable for all sequences (tk)k≥0

of event times.

PROOF. See the Appendix.

The first statement in Theorem 7 shows that a dwell-time en-
suring stability of the singularly perturbed switched impul-
sive system (9)-(10) can be written as the sum of a constant
part ln(γ11)

λs
and of a function η1(ε), which goes to 0 as fast

as ε when ε goes to 0. Interestingly, the constant part only
depends on λs and γ11, which can be determined only from
the reduced order model (11)-(12). Moreover, we will show
in Section 4.2 that (11)-(12) is globally asymptotically sta-
ble for all switching signals with dwell-time τ∗ > ln(γ11)

λs
.

The second and third statements in Theorem 7 show that the
minimum dwell-time ensuring stability of the singularly per-
turbed switched impulsive system (9)-(10) goes to 0 as fast
as −ε ln(ε) or ε when ε goes to 0. It is interesting to remark
that in that case, as we will show in Section 4.2, the reduced
order system (11)-(12) is globally asymptotically stable for
all switching signals without any dwell-time condition. It is
also noticeable that when γ12 6= 0, the dwell-time is larger
(by a factor of order − ln(ε)) than when γ12 = 0. In the for-
mer case, more time is needed to stabilize the fast variable
y so that it does not destabilize the slow variable through
the impulsive dynamics.
Finally, the last item in Theorem 7 shows that when γ11 < 1,
the minimum dwell-time ensuring stability of the singularly
perturbed switched impulsive system (9)-(10) is either equal
to 0 or goes to 0 as fast as ε when ε goes to 0. We will show
in the next section that in that case, the reduced order system
(11)-(12) is globally asymptotically stable for all switching
signals without any dwell-time condition.

4.2 Stability of reduced order system

It is interesting to remark that in the previous results, the
upper bound on the minimum dwell-time ensuring stability
of system (9)-(10) can be seen as the sum of two terms.
The first term is independent of the parameter ε, its value
is 0 when γ11 ≤ 1 and ln γ11

λs
when γ11 > 1. The second

term depends on the parameter ε and goes to 0 when ε goes
to 0. In this section, we show that an interpretation of the
first term can be given in terms of the reduced-order system
(11)-(12), since it provides an upper bound on the minimum
dwell-time guaranteeing stability for that system.

Proposition 8 Under Assumption 3 the following hold true.

a) If γ11 > 1 then, for all sequences (tk)k≥0 of event times
satisfying a dwell-time property τk ≥ τ∗ with τ∗ >
ln(γ11)
λs

, for all k ∈ N, the reduced order system (11)-(12)
is globally asymptotically stable.

b) If γ11 ≤ 1 then, for all unbounded sequences (tk)k≥0 of
event times, the reduced order system (11)-(12) is globally
asymptotically stable.

PROOF. a) We consider the functionWs given byWs(t) =√
x(t)>Qσks x(t), for all t ∈ [tk, tk+1), k ∈ N. By As-

sumption 3, it follows that for all k ∈ N, Ws(t
−
k+1) ≤

Ws(tk)e−λsτk . Moreover, from the definition of γ11 in (15),
it follows that for all k ∈ N, Ws(tk+1) ≤ Ws(t

−
k+1)γ11.

Hence,

∀k ∈ N, Ws(tk+1) ≤Ws(tk)γ11e
−λsτk . (16)

Then, since for all k ∈ N, τk ≥ τ∗ with τ∗ > ln(γ11)
λs

, it fol-
lows thatWs(tk) goes to 0 as k goes to +∞ and the reduced
order system (11)-(12) is globally asymptotically stable.
b) From (16), using γ11 ≤ 1 it follows that for all k ∈ N,
Ws(tk+1) ≤ Ws(tk)e−λsτk . Therefore, for all k ∈ N,
Ws(tk) ≤ Ws(0)e−λstk . Since (tk)k≥0 is unbounded, tk
goes to +∞ and therefore Ws(tk) goes to 0. Thus, the
reduced order system (11)-(12) is globally asymptotically
stable.

The previous propositions show that the dwell-time condi-
tion established for the singularly perturbed hybrid system
(9)-(10) in Theorems 7 coincides when ε goes to 0 with the
dwell-time condition of the reduced order system given in
(11)-(12). Since ε is assumed to be small, it appears that
the main source of conservatism in the dwell-time estimates
for the singularly perturbed hybrid system (9)-(10) comes
from the dwell-time estimates of the reduced order system.
Table 1 summarizes the main results of the paper.

4.3 Extension to the case of time varying state’s dimen-
sions vectors

In this section, we briefly explain how we can use the pre-
vious results for the analysis of system (1)-(2) in the case of
time-varying dimensions of the slow and fast state vectors.
We recall that for all t ∈ [tk, tk+1) the state vector X(t) of
system (1) is of dimension ni when σk = i. Let us also re-
call that matrices Di, i ∈ I were introduced in section 2
to define the dynamics (1). For all i ∈ I we consider that
nzi ∈ N is the number of elements of Di that are equal
with ε and nxi = ni − nzi. In other words, when σk = i,
ni, nzi and nxi are the dimensions of the state vector, fast
variables vector and slow variables vector, respectively. Fur-
thermore, let us introduce nz = max

i∈I
nzi, nx = max

i∈I
nxi

and n = nx + nz .

With the notation introduced above we define the following
augmented system:
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Table 1
Summary of the main results of the paper establishing dwell-time conditions for the stability of the singularly perturbed hybrid system

(9)-(10) and of the the reduced order system (11)-(12).

γ11 γ12, γ21, γ22 dwell-time condition for (9)-(10) dwell-time condition for (11)-(12)

γ11 > 1 – τ∗ > ln(γ11)
λs

+O(ε) τ∗ > ln(γ11)
λs

γ11 = 1
– τ∗ > − ε

λf
ln(ε) +O(ε)

τ∗ ≥ 0
γ12 = 0

τ∗ > O(ε)
γ11 < 1

–

γ22 < 1, γ12γ21
(1−γ11)(1−γ22)

< 1 τ∗ ≥ 0

{
DσkẊ(t) = AσkX(t),

D̄σk ˙̄X(t) = −λX̄(t),
∀t ∈ [tk, tk+1), k ∈ N (17)

where D̄i ∈ R(n−ni)×(n−ni) is defined similarly to Di as
a diagonal matrix with ε or 1 diagonal elements, used to
select the fast and slow variable from the components of
the artificial state vector X̄. To be precise, for all i ∈ I
we consider D̄i having nz − nzi diagonal elements equal
to ε. Consequently, the augmented vector

(
X(t)

X̄(t)

)
has an

invariant number of slow and fast components which is nx
and nz , respectively. Therefore, (17) is of the form (1) and
the dimension of its state vector as well as the number of its
slow and fast variables are constant. The parameter λ is a
positive number that can be chosen greater than λs and λf
in order to make the continuous dynamics of the auxiliary
variable X̄(t) converge faster than that of the variable X(t).

Secondly, we define a jump map for the augmented vector
as follows: {

X(tk) = JνkX(t−k )

X̄(tk) = 0
(18)

The auxiliary variable is set to 0 at jumps so that the discrete
dynamics of the auxiliary variable X̄(t) converge faster than
that of the variable X(t). It is clear that the augmented
system (17)-(18) is globally asymptotically stable if and only
if the orignal system (1)-(2) is. Then, the stability analysis
of (17)-(18) can be carried out as shown on the previous
sections.

5 Illustration on stability analysis of scalar fast and
slow dynamics

5.1 Dwell-time analysis

This section aims to illustrate the previous analysis on a low
dimensional system. We consider a linear singularly per-
turbed switched system with scalar slow and fast variables.
Moreover, we consider that I = {1, 2}. The objective is to
analyze the stability of the system under the assumption that
after each switch the slow variable becomes fast and vice-
versa. To be more precise let 0 = t0 < t1 < . . . be the
sequence of discrete instants where a switch takes place and

consider the following dynamics:{
u̇(t) = a1u(t) + b1v(t)

εv̇(t) = c1u(t) + d1v(t)
t ∈ [t2k, t2k+1), k ∈ N (19)

and{
εu̇(t) = a2u(t) + b2v(t)

v̇(t) = c2u(t) + d2v(t)
t ∈ [t2k+1, t2k+2), k ∈ N

(20)
The dynamics (19)-(20) above can be written in the compact
form (1) by using X = (u, v)> and the matrices D1 =(

1 0

0 ε

)
, D2 =

(
ε 0

0 1

)
,A1 =

(
a1 b1

c1 d1

)
and A2 =(

a2 b2

c2 d2

)
. Introducing the permutation matrices S1 = I2

and S2 =

(
0 1

1 0

)
we can define the change of variable (4)

as {
(x, z)> = S1X, t ∈ [t2k, t2k+1), k ∈ N,
(x, z)> = S2X, t ∈ [t2k+1, t2k+2), k ∈ N.

It is worth noting that no jump occurs in the X variable
meaning that J = {1} and J1 = I2 in (2). However, it can
be seen that the dynamics expressed in (x, z)> variable is
an impulsive one. Precisely, J = {1} but following (5) one

obtains that J1
1→2 = J2

1→1 = S2.

Summarizing we have to analyze the switched system:(
ẋ(t)

εż(t)

)
= Aσk

(
x(t)

z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N

with impulsive dynamics:(
x(tk)

z(tk)

)
= Jσk−1

νk→σk

(
x(t−k )

z(t−k )

)
, ∀k ≥ 1
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where σk ∈ I = {1, 2}, νk ∈ J = {1}, J1
1→2 = J2

1→1 =

S2,A1 = S1A
1S>1 = A1 andA2 = S2A

2S>2 =

(
d2 c2

b2 a2

)
.

The time dependent change of coordinates (8) is expressed
as:

y(t) = z(t) +
c1
d1
x(t), t ∈ [tk, tk+1), k ∈ N,

y(t) = z(t) +
b2
a2
x(t), t ∈ [t2k+1, t2k+2), k ∈ N.

(21)

Assumption 3 simply requires that
A1

0 = a1 −
b1c1
d1

< 0, A1
22 = d1 < 0,

A2
0 = d2 −

b2c2
a2

< 0, A2
22 = a2 < 0.

Then, Qis, Q
i
f , i ∈ I can be chosen as any positive scalars

and it is easy to check that

λs = min

(
b1c1
d1
− a1,

b2c2
a2
− d2

)
, λf = min(−d1,−a2).

In our analysis, an important role is played by the values

R1
1→2

11 and R2
1→1

11 , which determine the value of γ11, which
in turn (see Theorems 7 and Table 1) allows concluding
whether the required dwell time approaches 0 when ε goes
to 0. Therefore it is worth to explicit that:

R1
1→2

11 = − c1
d1
, R2

1→1
11 = − b2

a2
.

Furthermore, following (15) one has γ11 = max
(∣∣∣ qc1d1 ∣∣∣ , ∣∣∣ b2qa2 ∣∣∣)

where q =
√

Q2
s

Q1
s

. For our analysis, it is desirable to have

γ11 as small as possible, it is minimal when q =
√
|d1b2|
|c1a2|

and in that case γ11 =
√
|c1b2|
|d1a2| . Then, γ11 < 1 if and only

if |c1b2||d1a2| < 1 and following Theorem 7, a dwell-time of or-
der O(ε) is sufficient to stabilize the system. When ε → 0
it yields that the switching system given by the two slow
manifolds of (19)-(20) is stable whatever is the considered
switching rule (i.e. no dwell-time required). This result is
illustrated in Fig. 1 which takes into account that the two
slow manifolds of (19)-(20) are the lines:

c1u(t) + d1v(t) = 0 and a2u(t) + b2v(t) = 0.

It is noteworthy that |c1b2||d1a2| < 1 essentially says that the
slope of the slow manifold associated with (19) is smaller
than the slope of the slow manifold associated with (20).

u

v

a 2
u

+
b 2
v

=
0

c1u
+ d1v

= 0

(u0, v0)

Fig. 1. The slow manifold associated with (19) and (20) when
|c1b2|
|d1a2|

< 1. The dashed lines represent the asymptotic behavior of
the overall system with initial state (u0, v0) when ε→ 0 and no
dwell-time (or O(ε) dwell-time) is imposed. It can be seen that
system (19)-(20) is asymptotically stable for any switching rule.

Reversely, γ11 > 1 if and only if |c1b2||d1a2| > 1, meaning that
the slope of the slow manifold associated with (20) is smaller
than the slope of the slow manifold associated with (19). In
this case we use Theorem 7 to deduce that a dwell-time of
order ln(γ11)

λs
+ O(ε) is required. In absence of dwell-time

we can see in Fig. 2 that the switching system given by the
two slow manifolds of (19)-(20) is unstable.

u

v

c 1
u

+
d 1
v

=
0

a2u
+ b2v

= 0

(u0, v0)

Fig. 2. The slow manifold associated with (19) and (20) when
|c1b2|
|d1a2|

> 1. The dashed lines represent the asymptotic behavior
of the overall system with initial state (u0, v0) when ε → 0 and
no dwell-time (or O(ε) dwell-time) is imposed. It is illustrated
that in this case a dwell-time of order ln(γ11)

λs
+ O(ε) has to be

imposed in order to guarantee the system’s stability.

5.2 Numerical examples

In this section we provide a numerical illustration of the
previous results. Let us reconsider system (19)-(20) when

9



the state matrices take the following numerical values:

A1 =

(
−1 0.5

−1 −2

)
, A2 =

(
−2.5 −2

3 1

)
. (22)

Assumption 3 holds since
a1 −

b1c1
d1

= −1.25 < 0 d1 = −2 < 0,

d2 −
b2c2
a2

= −1.4 < 0 a2 = −2.5 < 0.

Then, λs = 1.25 and λf = 2 for any choice of positive

scalars Qis, Q
i
f , i ∈ I. Letting q =

√
Q2
s

Q1
s

=
√
|d1b2|
|c1a2| =

2
√

2
5 we obtain γ11 =

√
|c1b2|
|d1a2| =

√
2
5 < 1. Therefore,

according to Theorem 7, the minimum stabilizing dwell time
is in O(ε).
Let ε = 10−3 and the initial condition X0 = (2, 1). Using
Theorem 7 one deduces that the required dwell-time for the
stability of system (19)-(20) is 6.16 · 10−4 = O(ε).

0 0.005 0.01 0.015 0.02 0.025
−1

−0.5

0

0.5

1

1.5

2

Time (s)

 

 

 u(t)

 v(t)

Fig. 3. State’s trajectory for (19)-(20) with A1,A2 defined by
(22) and 6.16 · 10−4 = O(ε)

The two slow manifolds of the system are respectively:{
− u(t)− 2v(t) = 0

− 2.5u(t)− 2v(t) = 0.

The behavior of the system’s trajectory in the (u, v)- plane
is plot in Fig. 4.

Let us now consider another choice for the state matrices
A1,A2 in (19)-(20). In the following we define:

A1 =

(
−1 0.5

−3 −2

)
, A2 =

(
−2.5 −4

1 0.5

)
. (23)

Again, one can easily observe that Assumption 3 holds:
a1 −

b1c1
d1

= −1.75 < 0, d1 = −2 < 0,

d2 −
b2c2
a2

= −1.1 < 0, a2 = −2.5 < 0.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

∆1 : c1u(t) + d1v(t)

∆2 : a2u(t) + b2v(t)

v

Fig. 4. State’s trajectory in (u, v)- plane for (19)-(20) with A1,A2

defined by (22) and tk+1 − tk = τ = 6.16 · 10−4 = O(ε) sec.
Note that first switches take place before the trajectory reaches the
slow manifolds. Unlike Figures 1 and 2 here we see the trajectory
of the system for a fixed ε and not the limiting behavior when
ε→ 0.

Then, λs = 1.1 and λf = 2 for any choice of positive scalars

Qis, Q
i
f , i ∈ I. Letting q =

√
Q2
s

Q1
s

=
√
|d1b2|
|c1a2| = 4√

15
we

obtain γ11 =
√
|c1b2|
|d1a2| = 2

√
3
5 > 1. Therefore, according

to Theorem 7, an upper bound on the minimum stabilizing
dwell time is given by ln(γ11)

λs
+O(ε) where, in the present

case, ln(γ11)
λs

= 0.40sec.

The two slow manifolds associated with the system are given
in this case by the lines:{

− 3u(t)− 2v(t) = 0

− 2.5u(t)− 4v(t) = 0.

As previously we consider the initial condition X0 = (2, 1),
ε = 10−3.
Using Theorem 7 we obtain a required dwell-time equals
0.406 sec to ensure stability. Simulating the system with
tk+1 − tk = τ = 0.406 sec we can see in Fig. 5 that
expected stability is obtained. Fig. 6 shows the first part of
the trajectory illustrating its behavior.

0 2 4 6 8 10 12 14

−3

−2

−1

0

1

2

Time (s)

 

 

 u(t)

 v(t)

Fig. 5. State’s trajectory for (19)-(20) with A1,A2 defined by
(23) and tk+1 − tk = τ = 0.406 sec

6 Conclusion

We introduced and analyzed a class of singularly perturbed
switched linear systems in which the nature of the variable is
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0 0.5 1 1.5 2 2.5

−3

−2

−1

0

1

∆1 : c1u(t) + d1v(t)

∆2 : a2u(t) + b2v(t)

u

v

Fig. 6. First part of the state’s trajectory in (u, v)-
plane for (19)-(20) with A1,A2 defined by (23) and
tk+1 − tk = τ = 0.406 sec

mode-dependent. At switching instants, slow variables can
become fast and reversely. Moreover, the state vector can
loose or gain components at the switchings times. We show
that the dwell-time required to ensure stability of the over-
all system is the sum of two terms. The first one essentially
consists of a dwell-time ensuring stability of the reduced or-
der system. The second term depends on the scale parameter
defining the ratio between the two time-scales and goes to
zero when the parameter goes to zero. Our results comple-
ment existing results on stability analysis of singularly per-
turbed linear systems by showing the correlation between
the values of the stabilizing dwell-time and of the scale pa-
rameter. A low-dimension numerical example illustrates our
results.

Appendix

Proof of Proposition 1: By computing the time derivative of
V along the trajectories of (13), one has

V̇ = 2x>Qsẋ+ 2y>Qf ẏ = 2x>QsA0x+
2

ε
y>QfA22y

+ 2x>QsB1y + 2y>QfB2x+ 2y>QfB3y.

Let us note that

x>QsB1y = x>Q
1
2
s Q

1
2
s B1Q

− 1
2

f Q
1
2

f y

≤ b1‖x>Q
1
2
s ‖ · ‖Q

1
2

f y‖ = b1
√
x>Qsx

√
y>Qfy

(24)

and similarly

y>QfB2x = y>Q
1
2

f Q
1
2

f B2Q
− 1

2
s Q

1
2
s y

≤ b2‖y>Q
1
2

f ‖ · ‖Q
1
2
s x‖ = b2

√
x>Qsx

√
y>Qfy

(25)

Consequently,

V̇ ≤ − 2λsx
>Qsx−

2λf
ε
y>Qfy

+ 2(b1 + b2)
√
x>Qsx

√
y>Qfy + 2b3y

>Qfy

Then, it follows that

V̇ ≤ −
(

2λf
ε
− 2b3 −

(b1 + b2)2

2λs

)
y>Qfy.

Then, for all ε ∈ (0, ε1] , V̇ ≤ 0. Since V is also positive
definite and radially unbounded, it is a Lyapunov function
for system (13).

Proof of Proposition 2 : Computing the time derivative of
Wf gives

Ẇf =
2y>Qf ẏ

2
√
y>Qfy

≤
−λfε y

>Qfy + y>Qf (B2x+B3y)√
y>Qfy

≤ −λf
ε
Wf + b2Ws + b3Wf

≤ −λf
ε
Wf +

√
b22 + b23

√
W 2
s +W 2

f

≤ −λf
ε
Wf +

√
b22 + b23

√
V .

From Proposition 1, it follows that for all t ≥ 0,

Ẇf (t) ≤ −λf
ε
Wf (t) +

√
b22 + b23

√
V (0).

Then, we have

Wf (t) ≤Wf (0)e−
λf
ε t +

√
b22 + b23

√
V (0)

∫ t

0

e−
λf
ε (t−s)ds

≤Wf (0)e−
λf
ε t + ε

√
b22 + b23
λf

√
V (0)

(
1− e−

λf
ε t
)

≤Wf (0)e−
λf
ε t + ε

√
b22 + b23
λf

√
V (0).

Proof of Proposition 3 : Computing the time derivative of
Ws and using (24) gives

Ẇs =
2x>Qsẋ

2
√
x>Qsx

≤ −λsx
>Qsx+ x>QsB1y√

x>Qsx

≤ − λsWs + b1Wf .

Using Proposition 2, one gets:

Ẇs(t) ≤ − λsWs(t) + b1Wf (0)e
−λf
ε t + εb1β1

√
V (0).
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Then, we have:

Ws(t) ≤ e−λstWs(0) + b1Wf (0)

∫ t

0

e−
λf
ε se−λs(t−s)ds

+ εb1β1

√
V (0)

∫ t

0

e−λs(t−s)ds

≤ e−λstWs(0) +
b1

λf
ε − λs

Wf (0)
(

e−λst − e−
λf
ε t
)

+
εb1β1

λs

√
V (0)

(
1− e−λst

)
.

Then, ε ≤ ε2 <
λf
λs

gives

Ws(t) ≤ e−λstWs(0) +
b1ε

λf − ε2λs
Wf (0) +

εb1β1

λs

√
V (0).

Proof of Theorem 7: a) Let us remark that

ΓMτ∗ =

 γ11e
−λsτ∗ + εδ1 γ12e

−
λf
ε τ∗ + εδ2

γ21e
−λsτ∗ + εδ3 γ22e

−
λf
ε τ∗ + εδ4


where

δ1 = γ11β3 + γ12β1, δ2 = γ11(β2 + β3) + γ12β1,

δ3 = γ21β3 + γ22β1, δ4 = γ21(β2 + β3) + γ22β1.
(26)

Moreover, the positive matrix ΓMτ∗ is Schur if and only
if there exists p ∈ R2

+, such that
(
ΓMτ∗

)>
p < p (see e.g.

Rantzer (2011)). Let us look for p under the form (1, aε)>

with a > δ2. Then,
(
ΓMτ∗

)>
p < p is equivalent to γ11e

−λsτ∗ + εδ1 + aεγ21e
−λsτ∗ + aε2δ3 < 1

γ12e
−
λf
ε τ∗ + εδ2 + aεγ22e

−
λf
ε τ∗ + aε2δ4 < aε.

(27)
The first inequality of (27) is equivalent to

τ∗ >
−1

λs
ln
(1− εδ1 − aε2δ3

γ11 + aεγ21

)
=

ln(γ11)

λs
+ η1(ε).

where

η1(ε) =
1

λs

(
ln(1 +

aεγ21

γ11
)− ln(1− εδ1− aε2δ3)

)
. (28)

It is easy to show that η1(ε) = O(ε). Moreover, let us remark
that η1(ε) is only defined if 1− εδ1 − aε2δ3 > 0, that is if
ε < ε3 where

ε3 =
−δ1 +

√
δ2
1 + 4aδ3

2aδ3
. (29)

The second inequality of (27) is equivalent to

τ∗ >
−ε
λf

ln
(aε− εδ2 − aε2δ4

γ12 + aεγ22

)
⇐⇒ τ∗ >

ε

λf

(
ln
( γ12 + aεγ22

a− δ2 − aεδ4

)
− ln(ε)

)
.

As τ∗ > ln(γ11)
λs

+ η1(ε) ≥ ln(γ11)
λs

, then the previous in-
equality holds if

ln(γ11)

λs
>

ε

λf

(
ln
( γ12 + aεγ22

a− δ2 − aεδ4

)
− ln(ε)

)
. (30)

By remarking that the right-hand side of the inequality goes
to 0 when ε goes to 0, one concludes that exists ε4 > 0
such that for all ε ∈ (0, ε4), (30) holds. Then, the theorem
is proved by setting ε∗1 = min(ε2, ε3, ε4).
b) Similarly to item a), it is sufficient to show that (27)
holds. Since γ11 = 1, the first inequality holds if and only if
τ∗ > η1(ε). The second inequality holds if and only if τ∗ >
−ε
λf

ln(ε) + η2(ε), where η2(ε) =
ε

λf
ln
( γ12 + aεγ22

a− δ2 − aεδ4

)
.

It is easy to show that η2(ε) = O(ε). Moreover let us remark
that η2(ε) is only defined if a − δ2 − aεδ4 > 0, that is if
ε < ε5 with

ε5 =
a− δ2
aδ4

. (31)

Moreover, since η1(ε) = O(ε), there exists ε6 > 0 such
that for all ε ∈ (0, ε6), η1(ε) < −1

λf
ε ln(ε). The theorem is

proved by setting ε∗2 = min(ε2, ε5, ε6).

c) Again it is sufficient to show that (27) holds. Since γ11 =
1, the first inequality holds if and only if τ∗ > η1(ε). Since
γ12 = 0, the second inequality holds if and only if

τ∗ >
−ε
λf

ln
(a− δ2 − aεδ4

aγ22

)
.

Let

η3(ε) = max
(
η1(ε),

−ε
λf

ln
(a− δ2 − aεδ4

aγ22

))
. (32)

Then, it is easy to show that η3(ε) = O(ε) and is well de-
fined for ε < min(ε3, ε5). The theorem is proved by setting
ε∗3 = min(ε2, ε3, ε5).

d) The positive matrix ΓMτ∗ is Schur if and only if there
exists p ∈ R2

+, such that
(
ΓMτ∗

)>
p < p (see e.g. Rantzer

(2011)). Let us look for p under the form (1, a)> with a > 0.
Then,

(
ΓMτ∗

)>
p < p is equivalent with γ11e

−λsτ∗ + εδ1 + aγ21e
−λsτ∗ + aεδ3 < 1

γ12e
−
λf
ε τ∗ + εδ2 + aγ22e

−
λf
ε τ∗ + aεδ4 < a
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which is also equivalent with τ∗ > 1
λs

ln
(

γ11+aγ21
1−aεδ3−εδ1

)
τ∗ > ε

λf
ln
(

γ12+aγ22
a−εδ2−aεδ4

)
.

(33)

Since γ11 < 1 it is possible to choose a > 0 such that
γ11 + aγ21 < 1, it follows that the first inequality holds for
any τ∗ ≥ 0 and for all ε ∈ (0, ε6) with

ε6 =
1− γ11 − aγ21

aδ3 + δ1
. (34)

Then the second inequality is equivalent to τ∗ > η4(ε) where

η4(ε) =
ε

λf
ln
( γ12 + aγ22

a− εδ2 − aεδ4

)
. (35)

It is easy to show that η4(ε) = O(ε) and is well defined for
ε < ε7 given by

ε7 =
a

aδ3 + δ1
. (36)

The theorem is proved by setting ε∗4 = min(ε2, ε6, ε7).

Moreover, if γ22 < 1 and γ12γ21
(1−γ11)(1−γ22) < 1, it is possible

to choose a > 0 such that γ12
1−γ22 < a < 1−γ11

γ21
. It follows

that the first inequality holds for any τ∗ ≥ 0 and for all
ε ∈ (0, ε6). As for the second inequality, it holds for any
τ∗ ≥ 0 and for all ε ∈ (0, ε8) with

ε8 =
a− γ12 − aγ22

δ2 + aδ4
. (37)

The theorem is proved by setting ε∗5 = min(ε2, ε6, ε8).
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