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Introduction Cheng-Knorr, 1976 Comments and objective

The SLDG method for Vlasov-Poisson 

Conclusion and perspectives

Introduction : results from Cheng-Knorr, 1976 Recurrence time T R = 2π k ∆v is analyzed for free streaming case...

∂t f +v ∂x f = 0, ρ = fdv , f (t = 0) = A cos(kx)f 0 (v ), f 0 (v ) = 1 √ 2π e -v 2 /2 ρ(t, x) = A∆v M-1 j=-M f 0 (v j ) cos(k (x -(j + 1/2)∆vt)) is T R periodic in time
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The SLDG method for Vlasov-Poisson : history 

Conclusion and perspectives

The SLDG method for Vlasov-Poisson : the scheme In 1D for free streaming polynomial representation on each cell exact transport (constant velocity) projection on each cell : piecewise polynomial → polynomial can be interpreted as advection of Gauss points 1

x j,0 , . . . , x j,d ∈]x min + j∆x, x min + (j + 1)∆x[ and written as

  f (t + ∆t, x j,0 ) . . . f (t + ∆t, x j,d )   = A(α)   f (t, x i,0 ) . . . f (t, x i,d )   +B(α)   f (t, x i+1,0 ) . . . f (t, x i+1,d )   with x j,• -v ∆t = x i,• + α∆x and A(α), B(α) ∈ R d+1 × R d+1
In 1D × 1D phase-space for Vlasov-Poisson 
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Free streaming for Gauss type mesh

The mesh in velocity is given by

v j, = (j + v )∆v , = 0, . . . , d with 0 < v0 < • • • < vd < 1 and we solve ∂t f + v j, ∂x f = 0
Framework not only for SLDG : what counts here is the mesh Do we have a recurrence time ? is it formula T R = 2π/(k ∆v ) ?

OK for d = 0 and v0 = 1/2. but looking at uniform cases :

d = 1 and v0 = 1/4, v1 = 3/4, → T R = 2π/(k ∆v /2) d = 2 and v0 = 1/6, v1 = 3/6, v2 = 5/6, → T R = 2π/(k ∆v /3) . . . vk = (2 + 1)/(2d + 2), = 0, . . . , d we can hope formula T R = 2π(d + 1)/(k ∆v )
We will see that formula is between : 

T R 2π( d/2 + 1)/(k ∆v )
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Recurrence & quadrature We get

ρ(t, x) = A∆v M-1 j=-M d =0 ω f 0 (v j, ) cos(k (x -(j + v )∆vt))
With symmetry of discrete velocity distribution, we obtain

ρ(t, x) = A cos(kx)h(t), with h(t) = ∆v M-1 j=-M d =0 ω f 0 (v j, ) cos(k (j + v )∆vt))
We look the expression for t 

= tm = 2πm k ∆v , m ∈ N * h(tm) = d =0 ω cos(2πmv )∆v M-1 j=-M f 0 (v j, )
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Recurrence & quadrature

As ∆v M-1 j=-M f 0 (v j, ) → f 0 (v )dv exponentially, we have

h(tm) = hm f 0 (v )dv + O(∆v p ), hm = d =0 ω cos(2πmv )
Energy restituted at tm = 2πm k ∆v , m ∈ N * is proportional to hm. hm is a quadrature formula for 1 0 cos(2πmv )dv At continuous level, we have 1 0 cos(2πmv )dv = 0 : no recurrence ⇒ link between recurrence effect and quadrature rule For uniform mesh : cos(2πm•) exactly reproduced by standard quadrature for m = 0, 1, . . . , d :

1 d + 1 d =0 cos(2πm 2 + 1 2d + 2 ) = 0, if m = q(d + 1) + r , r = 1, . . . , d (-1) q , if m = q(d + 1).
consistent with T R = 2π(d + 1)/(k ∆v ). 
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Trigonometric quadrature

We look for a quadrature rule such that 

Conclusion and perspectives

Numerical results for free streaming 

Conclusion and perspectives

Gauss-Lobatto points

The analysis can be extended to Gauss-Lobatto points Example : d = 2, the mesh is uniform :

x 0 = 0, x 1 = 1/2, x 2 = 1
Trigonometric interpolation corresponds to trapezoidal formula :

ω 0 = ω 2 = 1/4, ω 1 = 1/2
Gauss-Lobatto quadrature is Simpson rule : 

ω 0 = ω 2 = 1/6, ω 1 = 2/3 d = 2 (gauss-lobatto points) classical new h 1 1/3 0 h 2 1 1 h 3 1/3 0 h 4 1 1

Conclusion and perspectives

Numerical results for linear Landau damping 

  and observed for the simulation of the linear Landau damping∂t f + v ∂x f + E∂v f = 0, ∂x E = ρ -1 f (t = 0) = (1 + A cos(kx))f 0 (v )

  polynomial represented by Gauss points on each rectangular cell splitting : succession of 1D advections of Gauss points in x direction (each 1D advection updates its horizontal line) Poisson 1D advections of Gauss points in v direction (each 1D advection updates its vertical line)

⇒

  )dv , for all m ≤ n with n as high as possible.Possible for n = d/2 and ) -cos(2πv j ) cos(2πv ) -cos(2πv j ) dv , = 0, . . . , d.Optimal points are uniform and lead to n = d (like Gauss integration)for Gauss points, weights remain positive until d = 18.recent references : Peherstorfer, 2011 ; Austin, PhD 2016 Instead of using classical polynomial integration quadrature rule, we can use this trigonometric integration

NN

  = 16, vmax = 4, A = 10 -2 , k = 0.5, 2π/(k ∆v ) linear Landau dampingN = 64, vmax = 8, A = 10 -6 , k = 0.5, 2π/(k ∆v ) = 600, vmax = 8, A = 10 -3 , k 1 = 12π100 perturbation with k 2 = 24π 100 at time t = 200 is added. 2π/(k 1 ∆v ) and quadrature introduction of trigonometric quadrature for non uniform velocity discretization analysis for free streaming numerical results for Landau damping Perspectives/possible applications velocity semi-discretization method (N. Pham, PhD 2016) curvilinear grid DG, NUFFT
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