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KÄHLER GEOMETRY OF HOROSYMMETRIC VARIETIES, AND

APPLICATION TO MABUCHI’S K-ENERGY FUNCTIONAL

THIBAUT DELCROIX

Abstract. We introduce a class of almost homogeneous varieties contained
in the class of spherical varieties and containing horospherical varieties as well
as complete symmetric varieties. We develop Kähler geometry on these va-
rieties, with applications to canonical metrics in mind, as a generalization of
the Guillemin-Abreu-Donaldson geometry of toric varieties. Namely we asso-
ciate convex functions with Hermitian metrics on line bundles, and express the

curvature form in terms of this function, as well as the corresponding Monge-
Ampère volume form and scalar curvature. We then provide an expression for
the Mabuchi functional and derive as an application a combinatorial sufficient
condition of properness similar to one obtained by Li, Zhou and Zhu on group
compactifications. This finally translates to a sufficient criterion of existence
of constant scalar curvature Kähler metrics thanks to the recent work of Chen
and Cheng. It yields infinitely many new examples of explicit Kähler classes
admitting cscK metrics.

1. Introduction

Toric manifolds are complex manifolds equipped with an action of (C∗)n such
that there is a point with dense orbit and trivial stabilizer. The Kähler geometry
of toric manifolds plays a fundamental role in Kähler geometry as a major source
of examples as well as a testing ground for conjectures. It involves strong interac-
tions with domains as various as convex analysis, real Monge-Ampère equations,
combinatorics of polytopes, algebraic geometry, etc. The study of Kähler metrics
on toric manifolds relies strongly on works of Guillemin, Abreu, then Donaldson.
They have developed, using Legendre transform as a main tool, a very precise
setting including:

• a model behavior for smooth Kähler metrics,
• a powerful expression of the scalar curvature,
• applications to the study of canonical Kähler metrics via the ubiquitous

Mabuchi functional.

This setting allowed Donaldson to prove the Yau-Tian-Donaldson conjecture for
constant scalar curvature Kähler (cscK) metrics on toric surfaces. That is, given a
toric surface X equipped with an ample line bundle L, he showed that existence of
cscK metrics in the Kähler class c1(L) is equivalent to torus equivariant K-stability
of (X,L). He further translated this condition into a number (in general infinite)
of combinatorial conditions on the associated polytope.

2010 Mathematics Subject Classification. 14M27; 32M12; 32Q15.
Key words and phrases. horosymmetric varieties; Mabuchi K-energy functional; spherical va-

rieties; cscK metrics; log Kahler Einstein metrics.

1



2 THIBAUT DELCROIX

Our goal in this article is to generalize this setting to a much larger class of
varieties, that we introduce: the class of horosymmetric varieties.

Let G be a complex connected linear reductive group. A normal algebraic G-
variety X is called spherical if any Borel subgroup B of G acts with an open
dense orbit on X . Major subclasses of spherical varieties are given by biequivariant
group compactifications, and horospherical varieties. A horospherical variety is aG-
variety with an open dense orbit which is a G-homogeneous fibration over a general-
ized flag manifold with fiber a torus (C∗)r. The author’s previous work on spherical
varieties [Del17a, Del16] has highlighted how they provide a richer source of exam-
ples than toric varieties, with several examples of behavior which cannot appear for
toric varieties. While it was possible to work on the full class of spherical manifolds,
from the point of view of algebraic geometry, for the question of the existence of
Kähler-Einstein metrics thanks to the proof of the Yau-Tian-Donaldson conjecture
for Fano manifolds, it is necessary to develop Guillemin-Abreu-Donaldson theory
to treat more general questions. It seems a very challenging problem to do this
uniformly for all spherical varieties. On the other hand, the author did develop
part of this setting for group compactifications and horospherical varieties.

Group compactifications do not share a nice property that toric, horospherical
and spherical varieties possess and frequently used in Kähler geometry: a codimen-
sion one invariant irreducible subvariety in a group compactification leaves the class
of group compactifications. We introduce the class of horosymmetric varieties as
a natural subclass of spherical varieties containing horospherical varieties, group
compactifications and more generally equivariant compactifications of symmetric
spaces, which possesses the property of being closed under taking a codimension
one invariant irreducible subvariety. The definition is modeled on the description of
orbits of wonderful compactifications of adjoint (complex) symmetric spaces by De
Concini and Procesi: they all have a dense orbit which is a homogeneous fibration
over a generalized flag manifold, whose fibers are symmetric spaces. We say that
a normal G-variety is horosymmetric if it admits an open dense orbit which is a
homogeneous fibration over a generalized flag manifold, whose fibers are symmet-
ric spaces. Such a homogeneous space is sometimes called a parabolic induction
from a symmetric space. Here we allow symmetric spaces under reductive groups,
thus recovering horospherical varieties by considering (C∗)r as a symmetric space
for the group (C∗)r and the involution σ(t) = t−1. For the sake of giving precise
statement in this introduction, let us introduce some notations. A horosymmetric
homogeneous space is a homogeneous space G/H such that there exists

• a parabolic subgroup P of G, with unipotent radical Pu,
• a Levi subgroup L of P ,
• and an involution of complex groups σ : L→ L,

such that Pu ⊂ H and (Lσ)0 ⊂ L∩H as a finite index subgroup, where Lσ denotes
the subgroup of elements fixed by σ and (Lσ)0 its neutral connected component.

Spherical varieties in general admit a combinatorial description: there is on one
hand a complete combinatorial characterization of spherical homogeneous spaces
by Losev [Los09] and on the other hand a combinatorial classification of embed-
dings of a given spherical homogeneous space by Luna and Vust [LV83, Kno91].
General results about parabolic induction allow to derive easily the information
about a horosymmetric homogeneous spaces from the information about the sym-
metric space fiber. For symmetric spaces, most of the information is contained in
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the restricted root system. Choose a torus Ts ⊂ L on which the involution acts as
the inverse, and maximal for this property. It is contained in a σ-stable maximal
torus T in L. Then consider the restriction of roots of G (with respect to T ) to
Ts. Let Φs denote the subset of roots whose restriction are not identically zero.
The restrictions of the roots in Φs form a (possibly non reduced) root system called
the restricted root system, with corresponding notions of restricted Weyl group W̄ ,
restricted Weyl chambers, etc. Let Y(Ts) denote the group of one-parameter sub-
groups of Ts, and identify as = Y(Ts)⊗R with the Lie algebra of the non-compact
part of the torus Ts. The image of as by the exponential, then by the action on the
base point x ∈ X , intersects every orbit of a maximal compact subgroup K of G
along restricted Weyl group orbits (see Section 2 for details).

Let L be a G-linearized line bundle on a horosymmetric homogeneous space. It
is determined by its isotropy character χ. Fix a maximal compact subgroup K of
G. To a K-invariant metric h on L we associate a function u : as → R, called the
toric potential, which together with χ totally encodes the metric. One of our main
result is the derivation of an expression of the curvature form ω of h in terms of
its toric potential. We achieve this for the general case, but let us only give the
statement in the nicer situation where the restriction of L to the symmetric space
fiber is trivial. By fixing a choice of basis of a complement of h in g, we may define
reference real (1,1)-forms ω♥,♦ indexed by couples of indices in {1, . . . , r}∪Φ+

s ∪ΦQu

(where r = dim(Ts), Φ
+
s is the intersection of Φs with some system of positive roots,

ΦQu = −ΦPu is the set of opposite of roots of Pu) that form a point-wise basis,
and we express the curvature form in these terms. Given a root α of G, we denote
by α∨ its associated coroot. There is a natural way (see Section 3) to identify both
χ and the differential dau of u at some point a ∈ as as elements of Y(T ), so that
their action on any coroot used in the next statement are well-defined.

Theorem 1.1. Assume that the restriction of L to the symmetric fiber is trivial.
Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs. Then

ωexp(a)H =
∑

1≤j1,j2≤r

1

4
d2au(lj1 , lj2)ωj1,j2 +

∑

α∈ΦQu

−e2α

2
(dau− 2χ)(α∨)ωα,α

+
∑

β∈Φ+
s

dau(β
∨)

sinh(2β(a))
ωβ,β.

The previous theorem concerns only horosymmetric homogeneous spaces. To
move on to horosymmetric varieties, we need more input from the general theory
of spherical varieties. To a G-linearized line bundle on a horosymmetric variety
are associated several polytopes. Of major importance is the (algebraic) moment
polytope ∆+, obtained as the closure of the set of suitably normalized highest
weights of the spaces of multi-sections of L, seen as G-representations. It lies in the
real vector space X(T )⊗R, where X(T ) denotes the group of characters of T . The
main application of the moment polytope to Kähler geometry is that it controls
the asymptotic behavior of toric potentials, which in the case of positively curved
metrics further allows to give a formula for integration with respect to the Monge-
Ampère measure of the curvature form, in conjunction with the previous theorem.
Again we do not state our results in their most general form in this introduction
but prefer to give the general philosophy in a situation which is simpler than the
general one.
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Theorem 1.2. Assume that L is an ample G-linearized line bundle on a non-
singular horosymmetric variety X, and that it admits a global Q-semi-invariant
holomorphic section, where Q is the parabolic opposite to P with respect to T . Let
h be a smooth K-invariant metric on L with positive curvature ω and toric potential
u. Then

(1) u is smooth, W̄ -invariant and strictly convex,
(2) a 7→ dau defines a diffeomorphism from Int(−a+s ) onto Int(2χ− 2∆+).

Let ψ denote a K-invariant function on X, integrable with respect to ωn. Let
dq denote the Lebesgue measure on the affine span of ∆+, normalized by the lattice
χ+ X(T/T ∩H).

Then there exists a constant C, independent of h and ψ, such that
∫

X

ψωn = C

∫

∆+

ψ(d2χ−2qu
∗)PDH(q)dq.

where PDH(q) =
∏

α∈ΦQu∪Φ+
s
κ(α, q)/κ(α,̟) , ̟ is the half sum of positive roots

of G and u∗ is the convex conjugate of u.

The two theorems above form a strong basis to attack Kähler geometry questions
on horosymmetric varieties. They are for example all that is needed to study the
existence of Fano Kähler-Einstein metrics with the strategy following the lines of
Wang and Zhu’s work on toric Fano manifolds. They also allow to push further,
namely to compute an expression of the scalar curvature, to compute an expres-
sion of the (log)-Mabuchi functional, then to obtain a coercivity criterion for this
functional, in the line of work of Li-Zhou-Zhu for group compactifications.

The Mabuchi functional is a functional on the space of Kähler metrics in a given
class, whose smooth minimizers if they exist should be cscK metrics. There are
several extensions of this notion, in particular the log-Mabuchi functional, related to
the existence of log-Kähler-Einstein metrics. A natural way to search for minimizers
of this functional is to try to prove its properness, or coercivity, with respect to the
J-functional. The J-functional is another standard functional in Kähler geometry,
which may be considered as a measure of distance from a fixed reference metric in
the space of Kähler metrics.

We provide in this paper an application of our setting to this problem of coer-
civity of the Mabuchi functional, obtaining a very general, but at the same time
far from optimal, coercivity criterion for the Mabuchi functional on horosymmetric
varieties. We work under several simplifying assumptions to carry out the proof
while keeping a reasonable length for the paper, but expect that several of these
assumptions can be removed with a little work (see Section 7.1 for a detailed dis-
cussion).

Instead of stating these assumptions in this introduction, let us state the result
in three examples of situations where they are satisfied. They are as follows. In all
cases G is a complex connected linear reductive group and X is a smooth projective
G-variety.

(1) The manifold X is a group compactification, that is, G = G0 × G0 and
there exists a point x ∈ X with stabilizer diag(G0) ⊂ G and dense orbit.
We may consider any ample G-linearized line bundle on X .

(2) The manifoldX is a homogeneous toric bundle under the action ofG, that is
there exists a projective homogeneous G/P and a G-equivariant surjective
morphism X → G/P with fiber isomorphic to a toric variety, under the
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action of P which factorizes through a torus (C∗)r. We consider any ample
G-linearized line bundles on X .

(3) The manifold X is a toroidal symmetric variety of type AIII(r, m > 2r),
that is, m and r are two positive integers with m > 2r, G = SLm,
there exists a point x ∈ X with dense orbit, whose orbit is isomorphic
to SLm/S(GLr ×GLm−r), and there exists a dominant G-equivariant mor-
phism from X to the wonderful compactification of this symmetric space.
We may consider any ample G-linearized line bundle which restricts to a
trivial line bundle on the dense orbit.

Let Θ be a G-equivariant boundary, that is, an effective Q-divisor Θ =
∑

Y cY Y
where Y runs over all G-stable irreducible codimension one submanifolds of X . We
assume furthermore that the support of Θ is simple normal crossing and cY < 1
for all Y . In particular, the pair (X,Θ) is klt. It follows from the combinatorial
description of horosymmetric varieties that to each Y as above is associated an
element µY of Y(Ts). Let ∆+ be the moment polytope of L, and let λ0 be a

well chosen point in ∆+ (see Section 7). Let ∆̃+
Y denote the bounded cone with

vertex λ0 and base the face of ∆+ whose outer normal is −µY in the affine space
χ+X(T/T ∩H)⊗R. Let χac denote the restriction of the character

∑

α∈ΦQu
α of

P to H , and set

ΛY =
−cY + 1−

∑

α∈ΦQu∪Φ+
s
α(µY )

sup{p(µY ), p ∈ χ−∆+}
,

IH(a) =
∑

β∈Φ+
s

ln sinh(−2β(a))−
∑

α∈ΦQu

2α(a),

and

S̄Θ = S̄ − n
∑

Y

cY L|
n−1
Y /Ln.

Let MabΘ denote the log-Mabuchi functional in this setting, and write MabΘ(u)
for its value on the Hermitian metric with toric potential u. For the question of
coercivity, the log-Mabuchi functional matters only up to normalizing additive and
multiplicative constants, so we ignore these in the statement.

Theorem 1.3. Let p = p(q) := 2(χ− q), then we have

MabΘ(u) =
∑

Y

ΛY

∫

∆̃+
Y

(nu∗(p)− u∗(p)
∑ χ(α∨)

q(α∨)
+ dpu

∗(p))PDH(q)dq

+

∫

∆+

u∗(p)(
∑ χac(α∨)

q(α∨)
− S̄Θ)PDH(q)dq −

∫

∆+

IH(dpu
∗)PDH(q)dq

−

∫

∆+

ln det(d2pu
∗)PDH(q)dq

where u∗ denotes the Legendre transform, or convex conjugate, of u.

As an application of this formula, we obtain the following sufficient condition for
coercivity. Consider the function FL defined piecewise by

FL(q) = (n+ 1)ΛY − S̄Θ +
∑ (χac − ΛY χ)(α

∨)

q(α∨)
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for q in ∆̃+
Y . Define an element bar of the affine space generated by ∆+ by setting

bar =

∫

∆+

qFL(q)
PDH(q)dq
∫

∆+ PDHdq
.

Despite the notation, it is not in general the barycenter of ∆+ with respect to a
positive measure. We will however see how to consider it as a barycenter in the
article. The coercivity criterion is stated in terms of FL and bar. Let 2ρH denote
the element of a∗s defined by the restriction of

∑

α∈ΦQu∪Φ+ α to as.

Theorem 1.4. Assume that FL > 0 and that the point

(min
Y

ΛY )

∫

∆+ PDHdq
∫

∆+ FLPDHdq
(bar− χ)− 2ρH

is in the relative interior of the dual cone of a+s . Then the Mabuchi functional is
coercive modulo the action of Z(L)0.

Thanks to recent progresses in the field, the above sufficient criterion for proper-
ness has strong consequences on the existence of canonical metrics that we illustrate
with two corollaries. Since we consider only smooth and invariant potentials, there
are no precise statements in the literature which would yield existence of canon-
ical metrics when combined with our coercivity criterion. On the other hand,
such statements do hold from carefully following a combination of arguments from
[BBE+16, BDL17, CC18a], for cscK metrics and (weak) log-Kähler-Einstein met-
rics. We provide in two appendices the outlines of the proofs highlighting the
possible obstacles coming from the restriction to smooth K-invariant potentials,
and why they are easy to overcome. For cscK metrics this relies heavily on the re-
cent breakthrough of Chen and Cheng [CC18a] and allows to obtain infinite families
of new examples of classes with constant scalar curvature metrics.

Corollary 1.5. Under the same combinatorial condition, there exists a constant
scalar curvature Kähler metric in c1(L).

In the case when L = K−1
X ⊗ O(−Θ) is ample, the pair (X,Θ) is log-Fano

and minimizers of the log-Mabuchi functional are log-Kähler-Einstein metrics. We
obtain, by combining our coercivity criterion, the reference work [BBE+16] and an
argument from [BDL17], the following.

Corollary 1.6. Assume L = K−1
X ⊗ O(−Θ), then (X,Θ) admits a log-Kähler-

Einstein metric provided bar−
∑

α∈ΦQu∪Φ+ α is in the relative interior of the dual

cone of a+s .

Note that our proof does not provide conical Kähler-Einstein metrics in a strong
sense. We rather obtain weak log-Kähler-Einstein metrics in the sense of [BBE+16]
(and they are weakly conical by [GP16]). It would be worthwhile to follow a more
precise approach to obtain a better regularity for the metrics as it was done for
toric manifolds in [DGSW18] and [WZZ16].

If one works on, say, a biequivariant compactification of a semisimple group,
then it is not hard to check that the condition above is open as L and Θ vary.
Starting from an example of Kähler-Einstein Fano manifold obtained in [Del17a],
we can extract from this corollary an explicit subset of K−1

X in the ample cone,

with non-empty interior, such that each corresponding L writes as L = K−1
(X,Θ) and

the pair (X,Θ) admits a log-Kähler-Einstein metric.
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While the point of view adopted in this article is definitely in line with the au-
thor’s earlier work on group compactifications and horospherical varieties, it should
be mentioned that there were previous works, and different perspectives on both
these classes. Group compactifications have been studied in detail from the alge-
braic point of view and the first article about the existence of canonical metrics on
these was [AK05] to the author’s knowledge, and it built on the extensive study of
reductive varieties in [AB04a, AB04b]. Homogeneous toric bundles have been stud-
ied for the Kähler-Einstein metric existence problem by Podestà and Spiro [PS10],
their point of view on the Kähler geometry of this subclass of horospherical varieties
being somewhat different from the author’s. Donaldson highlighted in [Don08] the
importance and studying these varieties, and there were partly unpublished work of
Raza and Nyberg on these subjects in their PhD theses [Raz, Raz07, Nyb]. Finally,
concerning the application to the Mabuchi functional, we were strongly influenced
by Li, Zhou and Zhu’s article [LZZ18]. The latter in turn used as foundations on
one side our work on group compactifications and on the other side a strategy for
obtaining coercivity of the Mabuchi functional developed initially by Zhou and Zhu
[ZZ08]. It should be noted that the criterion we obtain for (non-semi-simple) group
compactifications is a priori not equivalent to the one given in [LZZ18]. We do not
claim that ours is better but only that theirs did not generalize naturally to our
broader setting.

The paper is organized as follows. Section 2 is devoted to the introduction of
horosymmetric homogeneous spaces, and of the combinatorial data associated to
them. In Section 3, we introduce the toric potential of a K-invariant metric on
a G-linearized line bundle on a horosymmetric homogeneous space, and compute
the curvature form of such a metric in terms of this function. Even though the
proof is rather technical, involving a lot of Lie bracket computations, it is a central
part of the theory to have this precise expression. Theorem 1.1 is Corollary 3.11, a
special case of Theorem 3.10. In Section 4, we switch to horosymmetric varieties,
we recall their combinatorial classification inherited from the theory of spherical
varieties, and we check that a G-invariant irreducible codimension one subvariety
remains horosymmetric. Section 5 presents the combinatorial data associated with
line bundles on horosymmetric varieties, and in particular the link between several
convex polytopes associated to such a line bundle. Section 6 applies the previ-
ous sections to Hermitian metrics on polarized horosymmetric varieties, to obtain
the behavior of toric potentials and an integration formula. In particular, Theo-
rem 1.2 is proved here (Proposition 6.3 and Proposition 6.9). Finally, we give in
Section 7 the application to the Mabuchi functional, starting with a computation
of the scalar curvature, then of the Mabuchi functional, to arrive to a coercivity
criterion. Theorem 1.3 and Theorem 1.4 are proved in this final section (respec-
tively in Theorem 7.5 and Theorem 7.10). Corollary 1.5 follows from Theorem 1.4
and Appendix B, while Corollary 1.6 follows from Corollary 7.13 and Appendix C.

We tried to illustrate all notions by simple examples (even if they sometimes
appear trivial, we believe they are essential to make the link between the theory of
spherical varieties and standard examples of complex geometry) and to follow for
the whole paper the example of symmetric varieties of type AIII.

Acknowledgements. The several referees for this article deserve special thanks
for their valuable comments and corrections. I would also like to warmly thank
Chinh Lu who always provided very relevant answers to my questions on several
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aspects of the variational approach to existence of canonical metrics. The main
part of this work was accomplished while I was an FSMP Postdoctoral researcher
hosted at the École Normale Supérieure in Paris.

2. Horosymmetric homogeneous spaces

In this section we introduce horosymmetric homogeneous spaces and their asso-
ciated combinatorial data, extracting from the literature the results needed for the
next sections.

2.1. Definition and examples. We always work over the field C of complex num-
bers. Given an algebraic group G, we denote by Gu its unipotent radical. A complex
algebraic group G is called reductive if Gu is trivial. A subgroup L of G is called
a Levi subgroup of G if it is a reductive subgroup of G such that G is isomorphic
to the semidirect product of Gu and L. There always exists a Levi subgroup, and
any two Levi subgroups are conjugate by an element of Gu.

From now on and for the whole paper, G will denote a connected, reductive,
complex, linear algebraic group. Recall that a parabolic subgroup of G is a closed
subgroup P such that the corresponding homogeneous space G/P is a projective
manifold, called a generalized flag manifold. Recall also for later use that a Borel
subgroup of G is a parabolic subgroup which is minimal with respect to inclusion.
Note that any parabolic subgroup of G contains at least one Borel subgroup of G.

Definition 2.1. A closed subgroup H of G is a horosymmetric subgroup if there
exists a parabolic subgroup P of G, a Levi subgroup L of P and a complex algebraic
group involution σ of L such that

• Pu ⊂ H ⊂ P and
• (Lσ)0 ⊂ L ∩H as a finite index subgroup,

where Lσ denotes the subgroup of elements fixed by σ and (Lσ)0 its neutral con-
nected component.

Remark 2.2. The condition of being horosymmetric may be read off directly from
the Lie algebra of H . As a convention, we denote the Lie algebra of a group by the
same letter, in fraktur gothic lower case letter. Then H is horosymmetric if and
only if there exists a parabolic subgroup P , a Levi subgroup L of P , and a complex
Lie algebra involution σ of l such that

h = pu ⊕ lσ

From now on, H will denote a horosymmetric subgroup, and P , L, σ will be as
in the above definition. We keep the same notation σ for the induced involution
of the Lie algebra l. We will also say that G/H is a horosymmetric homogeneous
space.

Note that L ∩ H ⊂ NL(L
σ), and we have the following description of NL(L

σ),
due to De Concini and Procesi. They assume in their paper that G is semisimple
but the proof applies to reductive groups just as well.

Proposition 2.3 ([DP83]). The normalizer NL(L
σ) is equal to the subgroup of all

g such that gσ(g)−1 is in the center of L.

In particular if L = G is semisimple, then NL(L
σ)/(Lσ)0 is finite. Note also that

if in addition L is adjoint, NL(L
σ) = Lσ and if L is simply connected, then Lσ is

connected.
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Example 2.4. Trivial examples of horosymmetric subgroups are obtained by set-
ting σ = idL. Then H = P is a parabolic subgroup and G/H is a generalized flag
manifold. Since we will use them later, let us recall a fundamental example of flag
manifold: the Grassmannian Grr,m of r-dimensional linear subspaces in Cm, under
the action of SLm. The stabilizer of a point is a proper, maximal (with respect to
inclusion) parabolic subgroup of SLm (for 1 ≤ r ≤ m− 1).

Example 2.5. Assume that G = (C∗)n, then P = L = G. If we consider the
involution defined by σ(g) = g−1, which is an honest complex algebraic group
involution since G is abelian, we obtain {e} ⊂ H ⊂ {±1}n and in any case G/H ≃
(C∗)n. Hence a torus may be considered as a horosymmetric homogeneous space.

Let [L,L] denote the derived subgroup of L and Z(L) the center of L. Then L
is a semidirect product of these two subgroups, which means, at the level of Lie
algebras, that

l = [l, l]⊕ z(l).

Note that any involution of L preserves this decomposition.

Example 2.6. A closed subgroup of G is called horospherical if it contains the
unipotent radical of a Borel subgroup of G.

Assume that the involution σ of L restricts to the identity on [l, l]. Then H
contains the unipotent radical of any Borel subgroup contained in P . Hence H is
horospherical.

Conversely, if H is a horospherical subgroup of G, then taking P := NG(H)
which is a parabolic subgroup of G, and letting L be any Levi subgroup of P , we
have h = pu ⊕ [l, l] ⊕ r where r = h ∩ z(l) (see [Pas08, Section 2]). Choose any
complement c of r in z(l), and consider the involution of l defined as id on [l, l]⊕ r

and as −id on c. This shows that H is a horosymmetric subgroup of G.

Example 2.7. Consider the linear action of SL2 on C2 \ {0}. It is a transitive
action and the stabilizer of (1, 0) is the unipotent subgroupBu of the Borel subgroup
formed by upper triangular matrices. Under this action, C2 \{0} is a horospherical,
hence horosymmetric, homogeneous space. Alternatively, one may consider the
action of GL2 instead of the action of SL2.

Example 2.8. Assume P = L = G, then σ is an involution of G, and (Gσ)0 ⊂
H ⊂ NG((G

σ)0). Such a subgroup is simply called a symmetric subgroups and the
associated homogeneous spaces is a (complex reductive) symmetric spaces.

All horosymmetric homogeneous spaces may actually be considered as parabolic
inductions from symmetric spaces. Let us recall the definition of parabolic induc-
tion.

Definition 2.9. Let G and L be two reductive algebraic groups, then we say that
a G-variety X is obtained from an L-variety Y by parabolic induction if there exists
a parabolic subgroup P of G, and an surjective group morphism P → L such that
X = G ∗P Y is the G-homogeneous fiber bundle over G/P with fiber Y .

In our situation, G/H admits a natural structure of G-homogeneous fiber bundle
over G/P , with fiber P/H . The action of P on P/H factorizes by P/Pu and under
the natural isomorphism L ≃ P/Pu, identifies the fiber with the L-variety L/L∩H ,
which is a symmetric homogeneous space. Conversely, any parabolic induction from
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a symmetric space is a horosymmetric homogeneous space. The special case of
horospherical homogeneous spaces consists of parabolic inductions from tori.

We will denote by f the G-equivariant map G/H → G/P and by π the quotient
map G→ G/H .

Let us now give more explicit examples of horosymmetric homogeneous spaces,
starting by examples of symmetric spaces.

Example 2.10. Assume g = slm for some m. Then there are three families of
group involutions of g up to conjugation [GW09, Sections 11.3.4 and 11.3.5]. For a
nicer presentation we work on the group G = SLm. For an integer p > 0, we define
the 2p × 2p block diagonal matrix Tp by T1 = ( 0 1

−1 0 ), and Tp = diag(T1, . . . , T1).
For an integer 0 < r < m/2, we define the m×m matrix Jr as follows. Let Sr be
the r × r matrix with coefficients (δj+k,r+1)j,k, and set

Jr =





0 0 Sr

0 Im−2r 0
Sr 0 0



 .

The types of involutions are the following:

(1) (Type AI(m)) Consider the involution of G defined by σ(g) = (gt)−1 where
·t denotes the transposition of matrices. Then Gσ = SOm. The symmet-
ric space G/NG(G

σ) may be identified with the space of non-degenerate
quadrics in Pm−1, equipped with the action of G induced by its natural
action on Pm−1.

(2) (Type AII(p)) Assume m = 2p is even. Let σ be the involution defined by
σ(g) = Tp(g

t)−1T t
p. Then Gσ = Sp2p is the group of elements that preserve

the non-degenerate skew-symmetric bilinear form ω(u, v) = utTpv on C2p.
(3) (Type AIII(r, m)) Let σ be the involution g 7→ JrgJr. ThenGσ is conjugate

to the subgroup S(GLr ×GLm−r).
The space G/Gσ may be considered as the set of pairs (V1, V2) of linear

subspaces Vj ⊂ Cm of dimension dim(V1) = r, dim(V2) = m− r, such that
V1 ∩ V2 = {0}. This is an (open dense) orbit for the diagonal action of G
on the product of Grassmannians Grr,m ×Grm−r,m.

Example 2.11. Let us illustrate the characterization of the normalizer of a sym-
metric subgroup in type AIII case. First, since G = SLm is simply connected,
Gσ is connected. Furthermore, it is easy to check here that NG(G

σ) is different
from Gσ if and only if m is even and r = m/2, in which case Gσ is of index two
in NG(G

σ). For example, if m = 2 and r = 1, NG(G
σ) is generated by Gσ and

diag(i,−i). In that situation, G/NG(G
σ) is the space of unordered pairs {V1, V2}

of linear subspaces Vj ⊂ Cm of dimension r for j = 1 and m − r for j = 2, such
that V1 ∩ V2 = {0}.

Example 2.12. Finally, let us give an explicit example of non trivial parabolic
induction from a symmetric space. Consider the subgroup H of SL3 defined as the
set of matrices of the form





a b 0
b a 0
e f g



 .

Then obviously H is contained in the parabolic P composed of matrices with zeroes
where the general matrix of H has zeroes, and contains its unipotent radical, which
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consists of the matrices as above with a = g = 1 and b = 0. The subgroup
L = S(GL2 × C∗) is then a Levi subgroup of P and L ∩ H is the subgroup of
elements of L fixed by the involution g 7→MgM where

M =





0 1 0
1 0 0
0 0 1



 .

2.2. Root systems.

2.2.1. Maximally split torus. A torus T in L is split if σ(t) = t−1 for any t ∈ T . A
torus T in L is maximally split if T is a σ-stable maximal torus in L which contains
a split torus Ts of maximal dimension among split tori. It turns out that any split
torus is contained in a σ-stable maximal torus of L [Vus74] hence maximally split
tori exist. From now on, T denotes a maximally split torus in L with respect to σ,
and Ts denotes its maximal split subtorus. If T σ denotes the subtorus of elements
of T fixed by σ, then T σ × Ts → T is a surjective morphism, with kernel a finite
subgroup. The dimension of Ts is called the rank of the symmetric space L/L∩H .

Example 2.13. The ranks and maximal tori for involutions of SLm are as follows.

• (Type AI(m)) For σ : g 7→ (gt)−1, the rank is m − 1 and the torus T of
diagonal matrices is a split torus which is also maximal, hence Ts = T in
this case.

• (Type AII(p)) For σ : g 7→ Tp(g
t)−1T t

p, with m = 2p, the rank is p − 1,
and the torus of diagonal matrices provides a maximally split torus. The
maximal split subtorus Ts is then the subtorus of diagonal matrices of the
form

diag(a1, a1, a2, a2, . . . , ap, ap)

with a1, . . . , ap−1 ∈ C∗ and ap = (a21 · · · a
2
p−1)

−1, and T σ is the subtorus of

diagonal matrices of the form diag(a1, a
−1
1 , a2, a

−1
2 , . . . , ap, a

−1
p ) with a1, . . . , ap ∈

C∗. We record for later use that σ(diag(a1, . . . , an)) = diag(a−1
2 , a−1

1 , a−1
4 , . . . , a−1

m−1).
• (Type AIII(r, m) Finally, for σ : g 7→ JrgJr, the rank is r, and the torus T

of diagonal matrices is again maximally split. Let υ denote the permutation
of {1, . . . ,m} defined by υ(i) = m+1− i if 1 ≤ i ≤ r or m+1− r ≤ i ≤ m,
and υ(i) = i otherwise. Then σ acts on diagonal matrices as

σ(diag(a1, . . . , am)) = diag(aυ(1), . . . , aυ(m)).

We then see that the subtorus T σ is the torus of diagonal matrices of the
form diag(a1, a2, . . . , am−r, ar, ar−1, . . . , a1) and that Ts is the subtorus of
diagonal matrices of the form diag(a1, . . . , ar, 1, . . . , 1, a

−1
r , . . . , a−1

1 ).

2.2.2. Root systems and Lie algebras decompositions. We denote by X(T ) the group
of characters of T , that is, algebraic group morphisms from T to C∗. We denote by
Φ ⊂ X(T ) the root system of (G, T ). Recall the root space decomposition of g:

g = t⊕
⊕

α∈Φ

gα, gα = {x ∈ g; Ad(t)(x) = α(t)x ∀t ∈ T }

where Ad denotes the adjoint representation of G on g.

Example 2.14. In our examples we concentrate on the case when G = SLm, and
the root system is of type Am−1. Let us recall its root system with respect to
the maximal torus of diagonal matrices, in order to fix the notations to be used in



12 THIBAUT DELCROIX

examples throughout the article. The roots are the group morphisms αj,k : T → C∗,
for 1 ≤ j 6= k ≤ m, defined by αj,k(diag(a1, . . . , am)) = aj/ak. The root space gαj,k

is then the set of matrices with only one non zero coefficient at the intersection of
the jth-line and kth-column.

We denote by ΦL ⊂ Φ the root system of L with respect to T , by ΦPu ⊂ Φ the
set of roots of Pu, so that

l = t⊕
⊕

α∈ΦL

gα, p = l⊕
⊕

α∈ΦPu

gα

and
h = l ∩ h⊕

⊕

α∈ΦPu

gα.

Example 2.15. In the case of Example 2.12,G = SL3 and T is the torus of diagonal
matrices. Using notations from Example 2.14, we have Φ = {±α1,2,±α2,3,±α1,3},
ΦL = {±α1,2}, ΦPu = {−α1,3,−α2,3}.

2.2.3. Restricted root system. The set of roots in ΦL fixed by σ is a sub root system
denoted by Φσ

L. Let Φs = ΦL \ Φσ
L. Note that Φs is not a root system in general.

Let us now introduce the restricted root system of L/L∩H . Given α ∈ ΦL, we set
ᾱ = α− σ(α). It is zero if and only if α ∈ Φσ

L.

Proposition 2.16 ([Ric82, Section 4]). The set

Φ̄ = {ᾱ;α ∈ Φs} ⊂ X(T )

is a (possibly non reduced) root system in the linear subspace of X(T )⊗R it gener-
ates. The Weyl group W̄ of the root system Φ̄ may be identified with NL(Ts)/ZL(Ts)
and furthermore any element of W̄ admits a representant in N(Lσ)0(Ts).

The root system Φ̄ is called the restricted root system of the symmetric space
L/L ∩ H . We will also say that its elements are restricted roots, that W̄ is the
restricted Weyl group, etc.

Another interpretation of the restricted root system, which justifies the name, is
obtained as follows. For any t ∈ Ts, and α ∈ ΦL, we have

σ(α)(t) = α(σ(t)) = α(t−1) = (−α)(t).

As a consequence, ᾱ|Ts = 2α|Ts , that is, up to a factor two, ᾱ encodes the restriction
of α to Ts. More significantly, given γ ∈ X(Ts), let l̄γ denote the subset of elements x
in l such that Ad(t)(x) = γ(t)x for all t ∈ Ts. Then by simultaneous diagonalization,
we check that l =

⊕

γ∈X(Ts)
l̄γ . We immediately remark that l̄0 contains t and all

gα for α ∈ Φσ
L, and that l̄γ contains gα as soon as α ∈ ΦL is such that ᾱ|Ts = 2γ.

By the usual root decomposition of l, we check that actually

l̄0 = t⊕
⊕

α∈Φσ
L

gα, l̄γ =
⊕

ᾱ|Ts=2γ

gα

for γ 6= 0, and

l = l̄0 ⊕
⊕

ᾱ∈Φ̄

l̄ᾱ/2.

A restricted root ᾱ is fully determined by its restriction to Ts since T = TsT
σ and

ᾱ|Tσ = 0 since σ(ᾱ) = −ᾱ.

Example 2.17. For involutions of SLm, the restricted root systems are as follows.
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• In the case of type AI(m), Φσ
L is empty and Φs = ΦL = Φ. For any α ∈ Φ,

we have σ(α) = −α, hence the restricted root system is just the double 2Φ
of Φ.

• In the case of type AII(p), we check that

σ(αj,k) = αk+(−1)k+1,j+(−1)j+1 .

In fact it is easier to identify the restricted root system by analyzing the re-
striction of roots to Ts. We denote an element of Ts by diag(b1, b1, b2, b2, . . . , bp, bp).
We check easily that, for 1 ≤ j 6= k ≤ p,

α2j,2k−1|Ts = α2j−1,2k−1|Ts = α2j−1,2k|Ts = α2j,2k|Ts = bj/bk.

We deduce that Φσ
L = {±α2j−1,2j ; 1 ≤ j ≤ p} and that the restricted root

system is of typeAp−1, with elements ᾱ2j,2k : diag(b1, b1, b2, b2, . . . , bp, bp) 7→
b2j/b

2
k for 1 ≤ j 6= k ≤ p.

• In the case of type AIII(r, m), finally, we will also identify the root system
via restriction to Ts. We will denote an element of Ts, which is a diagonal
matrix, by diag(b1, . . . , br, 1 . . . , 1, b

−1
r , . . . , b−1

1 ). In the case when m = 2r,
there are no 1 in the middle and the restricted root system will be slightly
different. In general, the restriction αj,k|Ts is trivial if and only if r + 1 ≤
j 6= k ≤ m − r, which proves Φσ

L is the subsystem formed by these roots.
Since αj,k = −αk,j , it is obviously enough to consider only the case when
j < k. For 1 ≤ j < k ≤ r, we have αj,k|Ts = αm−k+1,m−j+1|Ts = bj/bk. For
1 ≤ j ≤ r and r + 1 ≤ k ≤ m − r, we have αj,k|Ts = αm−k+1,m−j+1|Ts =
bj . Finally, for 1 ≤ j ≤ r and m + 1 − r ≤ k ≤ m, we have αj,k|Ts =
αm−k+1,m−j+1|Ts = bjbm+1−k. Remark that in this last case, we may have
αm−k+1,m−j+1 = αj,k, namely when j = m + 1 − k. In this situation we
obtain the function b2j . Hence, whenever r + 1 ≤ m − r, or equivalently
r < m/2 since both r and m are integers, the restricted root system is non
reduced. It is possible to check that it is of type BCr . In the remaining
case, that is when m = 2r, the restricted root system is of type Cr.

2.3. Cartan involution and fundamental domain. There always exists a Car-
tan involution of G such that its restriction to L commutes with σ. We fix such
a Cartan involution θ. Denote by K = Gθ the corresponding maximal compact
subgroup of G. Let as denote the Lie subalgebra ts ∩ ik of ts.

Consider the group Y(Ts) of one-parameter subgroups of Ts, that is, algebraic
group morphisms C∗ → Ts. This group naturally embeds in as: given λ ∈ Y(Ts),
it induces a Lie algebra morphism deλ : C → ts. Here we identified the Lie algebra
of C∗ with C and the exponential map is given by the usual exponential. Then
deλ(1) must be an element of as and it determines λ completely. This induces an
injection of Y(Ts) in as which actually allows to identify as with Y(Ts)⊗ R.

Recall that we may either consider the restricted root system Φ̄ as in X(T ), in
which case it lies in the subgroup X(T/T ∩ H), or, via the restriction to Ts, we
may consider Φ̄ to be in X(Ts). This allows to define a Weyl chambers in as with
respect to the restricted root system. Choose any such Weyl chamber, denote it by
a+s and call it the positive restricted Weyl chamber.

Proposition 2.18. The natural map as → exp(as)H/H is injective, and the inter-
section of a K-orbit in G/H with exp(as)H/H is the image by this map of a W̄ -orbit
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in as. As a consequence, the subset exp(a+s )H/H is a fundamental domain for the
action of K on G/H.

Proof. Remark thatK acts transitively on the baseG/P of the fibration f : G/H →
G/P , since P is parabolic. We are then reduced to finding a fundamental domain
for the action of K ∩ P = K ∩ L on the fiber L/L ∩H .

Flensted-Jensen proves in [FJ80, Section 2] that a fundamental domain is given
by the positive Weyl chamber of a root system which is in general different from
the restricted root system described above. However, in our situation, the group L
and the involution σ are complex, and this allows to show that the two chambers
are the same.

More precisely, Flensted-Jensen considers the subspace l′ of elements fixed by
the involution σθ. The positive Weyl chamber he considers is then a positive Weyl
chamber for the root system formed by the non zero eigenvalues of the action of
ad(as) on l′. Now remark that the involution σθ stabilizes any of the subspaces
l̄ᾱ/2, which we may decompose as l̄ᾱ/2 = l̄′ᾱ/2⊕ l̄′′ᾱ/2 where l̄′ᾱ/2 = l̄ᾱ/2∩ l′ and l̄′′ᾱ/2 is

the subspace of elements x such that σθ(x) = −x. Furthermore, since σ(it) = iσ(t),
multiplication by i induces a bijection between l̄′ᾱ/2 and l̄′′ᾱ/2, and in particular l̄′ᾱ/2
is not {0} if and only if so is l̄ᾱ/2. As a consequence, the set of non zero eigenvalues

of the action of ad(as) on l′ is precisely Φ̄.
The reader may find a more detailed account of the results of Flensted-Jensen

and of the structure of the action of K on G/H in [vdB05, Section 3]. �

2.4. Colored data for horosymmetric homogeneous spaces. As a parabolic
induction from a symmetric space, H is a spherical subgroup of G, that is, any Borel
subgroup of G acts with an open dense orbit on G/H (see [Bri, Per14, Tim11,
Kno91] for general presentations of spherical homogeneous spaces, and spherical
varieties which will appear later).

Given a choice of Borel subgroup B, a spherical homogeneous space G/H is
determined by three combinatorial objects (the highly non-trivial theorem that
these objects fully determine H up to conjugacy was obtained by Losev [Los09]).

• The first one is its associated lattice M, defined as the subgroup of char-
acters χ ∈ X(B) such that there exists a function f ∈ C(G/H) with
b · f = χ(b)f for all b ∈ B (where b · f(x) = f(b−1x) by definition). Let
us call M the spherical lattice of G/H . Let N = HomZ(M,Z) denote the
dual lattice.

• The second one, the valuation cone V , is defined as the set of elements
of N ⊗ Q which are induced by the restriction of G-invariant, Q-valued
valuations on C(G/H) to B-semi-invariant functions as in the definition of
M.

• Finally, the third object needed to characterize the spherical homogeneous
space G/H is the color map ρ : D → N , as a map from an abstract finite
set D to N , that is, we only need to know the image of ρ and the cardinality
of its fibers. The set D is actually the set of codimension one B-orbits in
G/H , called colors, and the map ρ is obtained by associating to a color D
the element of N induced by the divisorial valuation on C(G/H) defined
by D.
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In the case of horosymmetric spaces (which are parabolic inductions from sym-
metric spaces) these data may mostly be interpreted in terms of the restricted root
system for a well chosen Borel B. The choice of Borel subgroup is as follows.

First, for the case of the symmetric space L/(L ∩ H), a nice Borel subgroup is
provided by:

Lemma 2.19. [DP83, Lemma 1.2] There exists a Borel subgroup of L containing
T , with corresponding positive roots Φ+

L in ΦL, so that for any positive root α ∈ Φ+
L ,

either σ(α) = α or −σ(α) is in Φ+
L .

Now for the horosymmetric space we let Q denote the parabolic subgroup of G
opposite to P with respect to L, that is, the only parabolic subgroup of G such that
Q ∩ P = L and L is also a Levi subgroup of Q. First choose any Borel subgroup
B′ of G such that T ⊂ B′ ⊂ Q. Then B′ ∩L is a Borel subgroup of L. Since Borel
subgroups of L containing T are conjugate by an element of NL(T ) ⊂ Q, we can
choose an element q ∈ NL(T ) such that B = qB′q−1 is a still a Borel subgroup
satisfying T ⊂ B ⊂ Q and furthermore Φ+

L satisfies the conclusions of the above
Lemma.

We fix such a Borel subgroup and denote by Φ+ the corresponding positive root
system of Φ. We will use the notations Φ+

L = Φ+ ∩ ΦL and Φ+
s := Φ+

L ∩ Φs. Note
also that ΦPu = −Φ+ \ ΦL and ΦQu = −ΦPu . Let S denote the set of simple
roots of Φ generating Φ+, and let SL = ΦL ∩ S, Ss = Φs ∩ S. This induces a
natural choice of simple roots in the restricted root system: S̄ = {ᾱ;α ∈ Ss}, and
corresponding positive roots Φ̄+ = {ᾱ;α ∈ Φ+

s }.
Given α ∈ Φ, recall that the coroot α∨ is defined as the unique element in [g, g]∩t

such that for all x ∈ t, α(x) = 2κ(x, α∨)/κ(α∨, α∨) where κ denotes the Killing
form on g. Since α is real on t∩ ik, the coroot α∨ is in a = t∩ ik which we may also
identify with Y(T )⊗ R.

Example 2.20. In our favorite group SLm, the coroot α∨
j,k is the diagonal matrix

with lth-coefficient equal to δl,j − δl,k.

We use also the notion of restricted coroots for the restricted root, as defined in
[Vus90, Section 2.3]:

Definition 2.21. Given α ∈ Φs the restricted coroot ᾱ∨ is defined as:

• α∨/2 if −σ(α) = α (α is then called a real root),
• (α∨ − σ(α∨))/2 = (α∨ + (−σ(α))∨)/2 if σ(α)(α∨) = 0,
• (α− σ(α))∨ if σ(α)(α∨) = 1, in which case α− σ(α) ∈ Φs.

The restricted coroots form a root system dual to the restricted root system, and
we thus call simple restricted coroots the basis of this root system corresponding to
the choice of positive roots ᾱ∨ for α ∈ Φ+

s . One has to be careful here: in general
the simple restricted coroots are not the coroots of simple restricted roots.

Example 2.22. Consider the example of type AIII(2, m > 4). Then we already
described the restricted root system in Example 2.17. There are two real roots α1,m

and α2,m−1. The restricted coroots are diagonal matrices of the form

diag(b1, b2, 0, . . . , 0,−b2,−b1)

and we write this more concisely as a point with coordinates (b1, b2). The restricted
coroot ᾱ∨

1,m is then (1/2, 0), while ᾱ∨
2,m−1 = (0, 1/2). The roots α1,2 and α1,m−1
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Figure 1. Roots and coroots of type AIII(2, m > 4)

•
ᾱ1,3

ᾱ2,3

ᾱ1,m

2ᾱ2,3 = ᾱ2,m−1

ᾱ1,m−1

ᾱ1,2

•
ᾱ∨
1,m

ᾱ∨
2,m−1

ᾱ∨
1,3

ᾱ∨
2,3

ᾱ∨
1,m−1

ᾱ∨
1,2

satisfy σ(α)(α∨) = 0, hence we have ᾱ∨
1,2 = (1/2,−1/2) and ᾱ∨

1,m−1 = (1/2, 1/2).
Finally, the roots α1,3 and α2,3 satisfy σ(α)(α∨) = 1, and we have α1,3 − σ(α1,3) =
α1,m and α2,3 − σ(α2,3) = α2,m−1, hence ᾱ∨

1,3 = (1, 0) and ᾱ∨
2,3 = (0, 1). We have

described that way all (positive) restricted coroots. Figure 1 illustrates the positive
restricted roots and coroots in this example.

Recall that f : G/H → G/P denotes the fibration map. The set of colors
D(G/P ) of the generalized flag manifold G/P is in bijection with the set ΦQu ∩ S
of simple roots that are also roots of Qu, and any pre-image by f of a color of
G/P is a color of G/H . Denote by Dα the color of G/P associated with the root
α ∈ ΦQu ∩ S.

We identify as with Y(T/T ∩H)⊗ R.

Proposition 2.23 ([Tim11, Proposition 20.4] and [Vus90]). Assume that G/H is
a horosymmetric space. Then

• the spherical lattice M is the lattice X(T/T ∩H),
• the valuation cone V is the negative restricted Weyl chamber −a+s ,
• the set of colors may be decomposed as a union of two sets D = D(L/L ∩
H) ∪ f−1D(G/P ). The image of the color f−1(Dα) by ρ is the restriction
α∨|M of the coroot α∨ for α ∈ ΦQu ∩S. The image ρ(D(L/L∩H)) on the
other hand is the set of simple restricted coroots.

Remark 2.24. If G = L is semisimple and simply connected, then M is a lattice
between the lattice of restricted weights and the lattice of restricted roots deter-
mined by the restricted root system [Vus90]. More precisely, it is the lattice of
restricted weights if and only if H = Gσ and it is the lattice of restricted roots if
and only if H = NG(G

σ).

Remark that the proposition does not give here a complete description of ρ in
general as it does not give the cardinality of all orbits. There is however a rather
general case where the discussion is simply settled. Say that the symmetric space
L/L∩H has no Hermitian factor if [L,L]∩ZL(L∩H) is finite. Then Vust proved
the following full characterization of ρ:

Proposition 2.25 ([Vus90]). Assume that L/L∩H has no Hermitian factor. Then
the color map ρ is injective on D(L/L ∩H).

Note, and this is a general fact for parabolic inductions, that the images of colors
in f−1D(G/P ) by ρ all lie in the valuation cone V . Indeed, for any two simple roots
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Figure 2. Colored data for type AIII(2, m > 4)

•

α and β, κ(α, β) ≤ 0. Given α ∈ ΦQu ∩ S, this implies that κ(α, β) ≤ 0 for any
β ∈ Φ+

L and thus κ(α, β̄) ≤ 0 for β ∈ Ss.

Example 2.26. We draw here Figure 2 as an example of colored data for the
symmetric space of type AIII(2, m > 4). Here the color map is not injective, but is
described in details in [Vus90, Section 6.1]. The dotted grid represents the dual of
the spherical lattice (which coincides here with the lattice generated by restricted
coroots), the cone delimited by the dashed rays represents the valuation cone (the
negative restricted Weyl chamber), and the circles are centered on the points in
the image of the color map (the simple restricted coroots), the number of circles
reflecting the cardinality of the fiber.

3. Curvature forms

We now begin the study of Kähler geometry on horosymmetric spaces. We first
recall how linearized line bundles on homogeneous spaces are encoded by their
isotropy characters, then we consider K-invariant Hermitian metrics. We associate
two functions to a Hermitian metric: the quasipotential and the toric potential.
We express the curvature form of the metric in terms of the isotropy character and
toric potential, using the quasipotential as a tool in the proof.

For this section, we use the letter q to denote a metric, as the letter h denotes
elements of the group H . Recall that given a Hermitian metric q on a line bundle L,
its curvature form ω may be defined locally as follows. Let s be a local trivialization
of L and let ϕ denote the function defined by ϕ = − ln |s|2q. Then the curvature

form is the globally defined form which satisfies locally ω = i∂∂̄ϕ.

3.1. Linearized line bundles on horosymmetric homogeneous spaces. Let
L be a G-linearized line bundle on G/H . The pulled back line bundle π∗L on G is
trivial, and we denote by s a G-equivariant trivialization of π∗L on G. Denote by
χ the character of H defined by h · ξ = χ(h)ξ for any ξ in the fiber LeH . It fully
determines the G-linearized line bundle L. The line bundle is trivializable on G/H
if and only if χ is the restriction of a character of G.

Example 3.1. The anticanonical line bundle admits a natural linearization, in-
duced by the linearization of the tangent bundle. We may determine the isotropy
character χ from the isotropy representation of H on the tangent space at eH . If
one identify this tangent space with g/h, then, working at the level of Lie algebras,
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the isotropy representation is given by h · (ξ + h) = [h, ξ] + h for h ∈ h, ξ ∈ g.
Taking the determinant of this representation, we obtain for a horosymmetric ho-
mogeneous space G/H that the isotropy Lie algebra character for the anticanonical
line bundle is the restriction of the character

∑

α∈ΦQu
α of p to h.

Example 3.2. On a Hermitian symmetric space, there may be non-trivial line
bundles on G/H , as there may exist characters of H which are not restrictions of
characters of G. Let us illustrate this with our favorite type AIII example. Consider
the matrix

Mr =





1√
2
Ir 0 1√

2
Sr

0 Im−2r 0
− 1√

2
Sr 0 1√

2
Ir



 so that MrJrM
−1
r =

(

Im−r 0
0 −Ir

)

,

then MrHM
−1
r = S(GLm−r ×GLr). This group obviously has non trivial charac-

ters not induced by a character of the (semisimple) group G, for example (A 0
0 D ) 7→

det(D). Write an element of H as

h =





A11 A12 A13

A21 A22 A21Sr

SrA13Sr SrA12 SrA11Sr





then composing with conjugation by M we obtain the non-trivial character

χ : h 7→ det(SrA11Sr − SrA13).

Example 3.3. Consider the simplest example of type AIII, that is, P1×P1\diag(P1)
equipped with the diagonal action of SL2, and with base point ([1 : 1], [−1 : 1]).
Then we have naturally linearized line bundles given by the restriction of O(k,m)
for k,m ∈ N. The character associated to the line bundle O(k,m) is χm−k with χ
as above, which translates here as χ : ( a b

b a ) 7→ a− b. In particular we recover that
it is trivial if and only if k = m.

3.2. Quasipotential and toric potential. Let q be a smooth K-invariant metric
on L.

Definition 3.4.

• The quasipotential of q is the function φ on G defined by

φ(g) = −2 ln |s(g)|π∗q.

• The toric potential of q is the function u : as → R defined by

u(x) = φ(exp(x)).

Proposition 3.5. The function φ satisfies the following equivariance relation:

φ(kgh) = φ(g) − 2 ln |χ(h)|,

for any k ∈ K, g ∈ G and h ∈ H. In particular φ is fully determined by u.

Proof. First, by G-invariance of s, we have

φ(kgh) = −2 ln |kgh · s(e)|π∗q

= −2 ln |k · g · h · π∗s(e)|q by equivariance of π

= −2 ln |g · χ(h)π∗(s(e))|q by K-invariance of q and by definition of χ

= −2 ln |g · s(e)|π∗q − 2 ln |χ(h)|
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Hence the equivariance relation.
Recall from Proposition 2.18 that any K-orbit on G/H intersects the image of

as, so in view of the equivariance formula for φ, we see that φ, hence q, is fully
determined by u. �

3.3. Reference (1, 0)-forms. We choose root vectors 0 6= eα ∈ gα for α ∈ Φ, such
that [θ(eα), eα] = α∨. In other words, the triples (α∨, eα,−θ(eα)) are sl2-triples.
Using these root vectors, we can give a more explicit decomposition of h:

h =
⊕

α∈ΦPu

Ceα ⊕ tσ ⊕
⊕

α∈Φσ
L

Ceα ⊕
⊕

α∈Φ+
s

C(eα + σ(eα))

Choose a basis (l1, . . . , lr) of the real vector space as. Let us further add the
vectors eα for α ∈ ΦQu and τβ = eβ − σ(eβ), for β ∈ Φ+

s . Then we obtain a
family which is the complex basis of a complement of h in g. This also defines local
coordinates

g exp





∑

j

zjlj +
∑

α

zαeα +
∑

β

zβτβ



H

near a point gH in G/H , depending on the choice of g. Let γg♦ denote the element

of Ω
(1,0)
gH G/H defined by these coordinates, where ♦ is either some j, some α or

some β. Then x 7→ γ
exp(x)
♦ provides an exp(as)-invariant smooth (1, 0)-form on

exp(as)H/H (note that it is well defined since by Proposition 2.18, x 7→ exp(x)H is
injective on as). From now on we denote by γ♦ the corresponding (1, 0)-form and
by ω♦,♥̄ the (1, 1)-form iγ♦ ∧ γ̄♥.

3.4. Reference volume form and integration. We introduce a reference volume
form on G/H . Recall from Example 3.1 that the naturally linearized canonical line
bundleKL/L∩H on the symmetric space L/L∩H is L-trivial up to passing to a finite
tensor power. For simplicity, we ignore this finite tensor power in the following. The
general case follows by considering multisections instead of sections. From now on,
we assume that there exists a nowhere vanishing section s0 : L/L ∩H → KL/L∩H

which is L-equivariant. We can further assume that s0 coincides with
∧

j γj∧
∧

β γβ
on exp(as)H/H where j runs from 1 to r and β runs over the set Φ+

s .
Recall that f denotes the map G/H → G/P . Let Kf = KG/H −f∗KG/P denote

the relative canonical bundle. Then the section s0 above may be considered as a
trivialization of Kf on the fiber above eP ∈ G/P . Since the map f is G-equivariant,
Kf admits a natural G-linearization, and we may use the action of the maximal
compact group K to build a K-equivariant trivialization sf of Kf on G/H . Setting
|sf |qf = 1 provides a smooth K-invariant metric qf on Kf . Let qP denote the
smooth K-invariant metric on KG/P which satisfies |f∗(

∧

α γ
e
α)|qP = 1, where α

runs over the set ΦQu . Pulling it pack provides a smooth K-invariant metric on
f∗KG/P .

The two metrics together provide a smooth reference metric qH = qf ⊗ f∗qP on
KG/H = Kf ⊗ f∗KG/P , which is K-invariant. We denote by dVH the associated
smooth volume form on G/H . It is defined point-wise as follows: if ξ is an element

of the fiber of KG/H at gH , then (dVH)gH = in
2

|ξ|−2
qH ξ ∧ ξ̄.
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Proposition 3.6. Let a ∈ as, then

(dVH)exp(a)H = e
2
∑

α∈ΦQu
α(a)

(

∧

♦
ω♦,♦̄

)

exp(a)H

Proof. At a point exp(a)H for a ∈ as, we can choose

ξ =
∧

♦
γ
exp(a)
♦ = exp(−a)∗ ·

∧

♦
γe♦,

and we get

(dVH)exp(a)H = |ξ|−2
qH i

n2

ξ ∧ ξ̄

= | exp(−a)∗ ·
∧

α

γeα|
−2
f∗qP

in
2

ξ ∧ ξ̄

by definition of qH and qf ,

= | exp(−a)∗ · f∗(
∧

α

γeα)|
−2
qP i

n2

ξ ∧ ξ̄

= e2
∑

α α(a)in
2

ξ ∧ ξ̄

because P acts on the fiber at eP of KG/P via the character −
∑

α∈ΦQu
α,

= e2
∑

α α(a)in(−1)n(n−1)/2ξ ∧ ξ̄

= e2
∑

α α(a)in
∧

♦
γ♦ ∧ γ̄♦

= e2
∑

α α(a)
∧

♦
ω♦,♦̄

by definition. �

Remark that dVH depends on the precise choice of basis of the complement of h
in g only by a multiplicative constant, as it only changes the element of the fiber
of KG/P at eP where qP takes value one, and the element of the fiber of Kf at eH
where qf takes value one.

Combining fiber integration with respect to the fibration f , and the formula for
integration on symmetric spaces from [FJ80, Theorem 2.6], we obtain a formula
that reduces integration of a K-invariant function on G/H with respect to dVG/H

to integration of its restriction to exp(a+s ) with respect to an explicit measure.
Let JH denote the function on as defined by

JH(x) =
∏

α∈Φ+
s

| sinh(2α(x))|.

Another possible expression of the function JH is:

JH(x) =
∏

ᾱ∈Φ̄+

| sinh(ᾱ(x))mᾱ |

where mᾱ = dim(l̄ᾱ/2) is the number of β ∈ Φs such that β̄ = ᾱ. The function JH
will be given explicitly for some examples following the main result of the current
section (see e.g. Example 3.14).
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Proposition 3.7. There exists a constant CH > 0 such that for any K-invariant
function ψ on G/H which is integrable with respect to dVH , we have

∫

G/H

ψdVH = CH

∫

a
+
s

ψ(exp(x)H)JH(x)dx

where dx is a fixed Lebesgue measure on as.

Note that one could choose to integrate on any restricted Weyl chamber (we will
later integrate over the negative restricted Weyl chamber). In these situations, the
absolute values in the definition of JH are important.

Here again, a more detailed account on the integration formula for symmetric
spaces may be found in [vdB05, Section 3].

3.5. Preparation for curvature form. To shorten the formulas, we start using
the following notations, for y ∈ g,

ℜ(y) =
y − θ(y)

2
∈ ik and ℑ(y) =

y + θ(y)

2
∈ k.

For y ∈ l, we will also use the notations

H(y) =
y + σ(y)

2
∈ h and P(y) =

y − σ(y)

2
.

Remark that τβ = 2P(eβ) and define µβ = 2H(eβ).

Lemma 3.8. Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs. Consider an element
D in g and write

D =
∑

1≤j≤r

zjlj +
∑

α∈ΦQu

zαeα +
∑

β∈Φ+
s

zβτβ + h

where h ∈ h, and zj for 1 ≤ j ≤ r, zα for α ∈ ΦQu , and zβ for β ∈ Φ+
s denote com-

plex numbers. Then we may write D = AD+BD+CD with AD ∈ Ad(exp(−a))(k),
BD ∈ as and CD ∈ h as follows.

AD =
∑

1≤j≤r

ℑ(zj lj) + exp(ad(−a))
{

∑

β∈Φ+
s

(

ℑ(zβτβ)

cosh(β(a))
−

ℑ(zβµβ)

sinh(β(a))

)

+
∑

α∈ΦQu

2eα(a)ℑ(zαeα)
}

BD =
∑

1≤j≤r

ℜ(zj lj)

CD = h+
∑

β∈Φ+
s

{

tanh(β(a))ℜ(zβµβ) + coth(β(a))ℑ(zβµβ)
}

+
∑

α∈ΦQu

−e2α(a)θ(zαeα)

Proof. This is a straightforward rewriting, using the following relations. For α ∈
ΦQu ,

exp(ad(−a))(zαeα + θ(zαeα)) = eα(−a)zαeα + e−α(−a)θ(zαeα)
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where we remark that zαeα+ θ(zαeα) ∈ k and θ(zαeα) ∈ h. For the terms in τβ , we
use the relations

zβτβ = ℜ(zβτβ) + ℑ(zβτβ),

exp(ad(−a))(ℑ(zβτβ)) = cosh(β(a))ℑ(zβτβ)− sinh(β(a))ℜ(zβµβ),

exp(ad(−a))(ℑ(zβµβ)) = cosh(β(a))ℑ(zβµβ)− sinh(β(a))ℜ(zβτβ).

Note that the relations hold because a ∈ as, hence σ(β)(a) = −β(a). �

Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs, and consider now the function

D = D(z) =
∑

1≤j≤r

zjlj +
∑

α∈Φ+
P

zαeα +
∑

β∈Φ+
L\Φσ

L

zβτβ ,

where z denotes the tuple obtained by merging the tuples (zj)j , (zα)α and (zβ)β .
Let AD, BD, CD be the elements provided by Lemma 3.8 applied to D. Let

E = E(z) := ([BD, D] + [CD, BD] + [CD, D])/2

and introduce also AE , BE , CE the elements provided by Lemma 3.8 applied to E.

Lemma 3.9. For small enough values of z, we have

exp(D) = exp(−a)k exp(a+ y +O) exp(h),

where O = O(z) ∈ g is of order strictly higher than two in z, k = k(z) ∈ K,
y = y(z) ∈ as, and h = h(z) ∈ h. Furthermore,

y = BD +BE

and

exp(h) = exp(CE) exp(CD).

Proof. Throughout the proof, O denotes an element of g for z small enough, of
order strictly higher than two in z, which may change from line to line.

We first write D = AD + BD + CD, with AD ∈ Ad(exp(−a))(k), BD ∈ as and
CD ∈ h given by Lemma 3.8. Remark that they are all of order one in z

Using the Baker-Campbell-Hausdorff formula [Hoc65, Theorem X.3.1] twice, we
obtain that

exp(−AD) exp(D) exp(−CD) = exp(BD+
1

2
([CD, BD]+[CD, AD]+[BD, AD])+O).

Writing AD = D−BD−CD we easily check that 1
2 ([CD, BD]+[CD, AD]+[BD, AD])

is equal to the E introduced before. We may then decompose again E as AE +
BE + CE where AE ∈ Ad(exp(−a))(k), BE ∈ as and CE ∈ h given by Lemma 3.8
and all terms are of order two in z. Using again the Baker-Campbell-Hausdorff
formula, we get

exp(D) = exp(AD) exp(AE) exp(BD +BE +O) exp(CE) exp(CD).

In view of the space where AD and AE live, we can write exp(AD) exp(AE) =
exp(−a)k exp(a) for some k ∈ K which is the one involved in the statement
of the lemma. A final application of the Baker-Campbell-Hausdorff formula to
exp(a) exp(BD+BE +O) yields the result since a commutes with BD and BE , and
any bracket involving at least once O remains negligible. �
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3.6. Expression of the curvature form. Given a function u : as → R we may
consider its differential dau ∈ a∗s at a given point a ∈ as as an element of a∗ by
setting dau(x) = dau ◦ P(x) and identifying a∗s with X(T/T ∩H)⊗ R.

Let L be a G-linearized line bundle on G/H corresponding to the character χ of
H . We also denote by χ the corresponding Lie algebra character h → C. Hoping it
will cause no confusion, we will also denote by χ the restriction of χ to a ∩ h and
consider it as an element of a∗ by setting χ(x) = χ ◦ H(x) for x ∈ a.

Let q be a smooth K-invariant metric on L with toric potential u, and let ω
denote the curvature form of q.

Theorem 3.10. Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs. Then

ωexp(a)H =
∑

Ω♦,♥̄ω♦,♥̄

where the sum runs over the indices j, α, β, and the coefficients are as follows.
Let 1 ≤ j, j1, j2 ≤ r, α, α1, α2 ∈ ΦQu , and β, β1, β2 ∈ Φ+

s with β1 6= β2 and
α2 − α1 ∈ Φs, then

Ωj1,j̄2 =
1

4
d2u(lj1 , lj2), Ωj,β̄ =

1

2
β(lj)(1 − tanh2(β))χ(θ(µβ)),

Ωα,ᾱ =
−e2α

2
(du− 2χ)(α∨), Ωα1,ᾱ2 =

2χ([θ(eα2), eα1 ])

e−2α1 + e−2α2
,

Ωβ1,β̄2
=
tanh(β2 − β1)

2

{ 1

sinh(2β1)
−

1

sinh(2β2)

}

χ([θ(eβ2), eβ1 ])

+
tanh(β1 + β2)

2

{ 1

sinh(2β2)
+

1

sinh(2β1)

}

χ([θ(eβ2), σ(eβ1)])

and

Ωβ,β̄ =
du(β∨)

sinh(2β)
−

2

cosh(2β)
χ ◦ ℜ([θσ(eβ), eβ ])

where all quantities are evaluated at a. Finally, the remaining coefficients except
obviously the symmetric of those above are zero.

This very involved description drastically simplifies if the restriction of χ to
L∩H is trivial on [L,L]∩H . It is equivalent to the fact that it coincides with the
restriction of a character of L to L ∩H , or also to the fact that the corresponding
line bundle is trivial on the symmetric fiber L/L ∩H . This particular case in fact
covers a wealth of examples, as it is the case for any choice of line bundle whenever
the symmetric fiber has no Hermitian factor. In the Hermitian case there are still
plenty of line bundle which satisfy this extra assumption. A remarkable example is
the anticanonical line bundle.

Corollary 3.11. Assume that the restriction of L to the symmetric fiber L/L∩H
is trivial. Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs. Then ωexp(a)H may
compactly be written as

1

4
d2au(lj1 , lj2)ωj1,j̄2 +

−e2α

2
(dau− 2χ)(α∨)ωα,ᾱ +

dau(β
∨)

sinh(2β(a))
ωβ,β̄

where summands are implicitly taken over {1, . . . , r}, ΦQu and Φ+
s respectively.
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Example 3.12. Consider the example of C2 \ {0}, viewed as a horospherical space
under the natural action of SL2. Then as is one-dimensional and we may choose
ΦQu = {α2,1} (Φ+

s is obviously empty). We choose l1 = α∨
2,1 as basis of as and

consider u as a one real variable function, writing dau = u′(y)α2,1 for a = yl1, so
that d2au(l1, l1) = 4u′′(y). Then since H = Stab(1, 0) has no characters, we have at
exp(yl1)H ,

ω = u′′(y)ω1,1̄ + e−4yu′(y)ωα2,1,ᾱ2,1 .

One major application of this general computation of curvature forms, but not
the only one, will be through the Monge-Ampère operator, which reads, with respect
to the reference volume form, as follows.

Corollary 3.13. Assume that the restriction of L to the symmetric fiber L/L∩H
is trivial. Let a ∈ as be such that β(a) 6= 0 for all β ∈ Φs. Then at exp(a)H,
ωn/dVH is equal to

n!

22r+|ΦQu |
det(((d2au)(lj , lk))j,k)

JH(a)

∏

α∈ΦQu

(2χ− dau)(α
∨)

∏

β∈Φ+
s

|dau(β
∨)|

Example 3.14. Consider the example of symmetric space of type AIII(2, m > 4).
We choose as basis l1, l2 the basis dual to (ᾱ1,2, ᾱ2,3). We write a = a1l1 + a2l2
and dau = u1(a)ᾱ1 + u2(a)ᾱ2. We check easily that P(α∨

1,2) = ᾱ∨
1,2, P(α∨

1,m−1) =
ᾱ∨
1,m−1, P(α∨

1,m) = ᾱ∨
1,3, P(α∨

2,m−1) = ᾱ∨
2,3, P(α∨

1,k) = ᾱ∨
1,m and P(α∨

2,k) = ᾱ∨
2,m−1

for 3 ≤ k ≤ m − 2. Hence we may compute, under the assumption that χ is zero,
that at exp(a)H , ωn/dVH is equal to n!/2 times

(u1,1u2,2 − u21,2)(2u1 − u2)
2u2m−7

1 u22(u2 − u1)
2m−7

sinh(a1)2 sinh(a1 + a2)2m−8 sinh(2a1 + 2a2) sinh(a1 + 2a2)2 sinh(a2)2m−8 sinh(2a2)

Let us now illustrate on examples how the other terms in the curvature form
may appear.

Example 3.15. Consider again P1×P1\diag(P1) equipped with the diagonal action
of SL2, and with the linearized line bundle O(k,m). Then we can take β = α1,2,
eβ = ( 0 1

0 0 ) and l1 = β∨ = ( 1 0
0 −1 ). We may further consider u as a function of a

single variable t by writing a = ( t 0
0 −t ) and we get

ωexp(a)H =
u′′(t)

4
ω1,1̄ + (k −m)(1 − tanh2(2t))(ω1,β̄ + ωβ,1̄) +

u′(t)

sinh(4t)
ωβ,β̄

Example 3.16. Consider the symmetric space of type AIII(1, 3). It admits the
non-trivial character χ : (ai,j) 7→ a1,1 + a1,3. For a metric on the line bundle
corresponding to this character, we get for example

R([θσ(eα1,3 ), eα1,3 ] =





0 0 1/2
0 0 0
1/2 0 0





hence a non-trivial contribution in Ωα1,3,ᾱ1,3 which is equal to

dau(α
∨
1,3)

sinh(2α1,3(a))
−

1

cosh(2α1,3(a))
.
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Example 3.17. Consider the symmetric space G/Gσ of type AIII(2, 4). It admits
the non-trivial character χ : (ai,j) 7→ a1,1 + a2,2 + a2,3 + a1,4, at the Lie algebra
level and for (ai,j) ∈ h. For a metric on the line bundle corresponding to this
character, we have for example [θ(eα3,4 ), eα2,4 ] = eα2,3 , [θ(eα3,4), σ(eα2,4 )] = −eα4,1

and χ(eα2,3) = χ ◦ H(eα2,3) = 1/2, χ(−eα4,1) = χ ◦ H(−eα4,1) = −1/2, hence,
writing a = diag(t1, t2,−t2,−t1) we have

Ωα2,4,ᾱ3,4 =
−1

2 cosh(2t1) cosh(2t2)
.

Example 3.18. Consider again Example 2.12. Using the same notations, we have
a non-trivial character χ which associates a+ b to any element of H . In this case,
since [θ(eα2,3), eα1,3 ] = eα1,2 , and χ(eα1,2) = χ ◦ H(eα1,2) = 1/2, we have

Ωα1,3,ᾱ2,3 =
1

2 cosh(2t)

at the point exp(diag(t,−t, 0))H . We check also that

Ωα2,3,ᾱ2,3 = e2t(2− u′(t))/4.

The previous examples show that any of the terms written in Theorem 3.10 may
be non-zero.

3.7. Proof of Theorem 3.10. Step 1
Recall that π denotes the quotient map G→ G/H . By definition of the quasipo-

tential φ : G → R of q, i∂∂φ is the curvature form of π∗q. Furthermore, this
curvature form coincides with π∗ω.

Let f♦ ∈ g be any of the elements lj , eα or τβ for 1 ≤ j ≤ r, α ∈ ΦQu or β ∈ Φ+
s .

Identifying g with T
(1,0)
e G, we build a global G-invariant (1, 0) holomorphic vector

fields η♦ by setting (η♦)g = g∗f♦ ∈ T
(1,0)
g G. Then

π∗ωg(η♦, η̄♥) = i
∂2

∂z♦∂z̄♥

∣

∣

∣

∣

0

φ(g exp(z♦f♦ + z♥f♥)).

By definition, the set of all direct images π∗η♦ at exp(a)H provides a basis

of T
(1,0)
exp(a)HG/H which coincides with the dual basis to the basis formed by the

(γ♦)exp(a)H in Ω
(1,0)
exp(a)HG/H . We thus have

Ω♦,♥̄ = −iωexp(a)H(π∗η♦, π∗η̄♥)

= −i(π∗ω)exp(a)(η♦, η̄♥)

=
∂2

∂z♦∂z̄♥

∣

∣

∣

∣

0

φ(exp(a) exp(z♦f♦ + z♥f♥)).

Step 2
Set D = z♦f♦ + z♥f♥. Using Lemma 3.9, we write

exp(D) = exp(−a)k exp(a+ y +O) exp(h).

Then

φ(exp(a) exp(D)) = φ(k exp(a+ y +O) exp(h))

by the equivariance property of the quasipotential (Proposition 3.5), this is

= φ(exp(a+ y +O)) − 2 ln |χ(exp(h))|
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Recall from Lemma 3.9 and the notations introduced before this lemma that y =
BD + BE and exp(h) = exp(CE) exp(CD) where E = 1

2 ([BD, D] + [CD, BD] +
[CD, D]) and BD, CD, BE , CE are provided by Lemma 3.8. Note that

ln |χ(exp(CE) exp(CD))| = ln |χ(exp(CE))|+ ln |χ(exp(CD))|

= ln |eχ(CE)|+ ln |eχ(CD)|

where we still denote by χ the Lie algebra character h → C induced by χ,

= Re(χ(CE) + χ(CD))

= Re(χ(CE + CD)).

We may now write

Ω♦,♥̄ =
∂2

∂z♦∂z̄♥

∣

∣

∣

∣

0

φ(exp(a+BD +BE +O)) − 2 ln |χ(exp(CE) exp(CD))|

=
∂2

∂z♦∂z̄♥

∣

∣

∣

∣

0

φ(exp(a+BD +BE))− 2 ln |χ(exp(CE) exp(CD))|

=
∂2

∂z♦∂z̄♥

∣

∣

∣

∣

0

(u(a+BD +BE)− 2 Re(χ(CE + CD)).

Note that here the term O denotes terms of order strictly higher than two in
(z♦, z♥), which become negligible in our computation. Actually, other terms will
be negligible and we will now denote by O a sum of terms (which may change from
line to line) each with a factor among z2♦, z̄2♦, z♦z̄♦, z2♥, z̄2♥, z♥z̄♥, z♦z♥ or z̄♦z̄♥.

Step 3
The case by case computation follows.
1) Consider the case D = z1lj1 + z2lj2 , then we have BD = (z1 + z̄1)lj1/2+ (z2+

z̄2)lj2/2 and BE = CE = CD = 0 hence

Ωj1,j̄2 =
1

4
d2au(lj1 , lj2).

2) Consider the case D = z1eα+z2lj . By Lemma 3.8, we have BD = ℜ(z2lj) and

CD = −e2α(a)θ(z1eα). We now compute E = ([BD, D]− [BD, CD] + [CD, D])/2:

2[BD, D] = O − z1z̄2α(θ(lj))eα,

2[BD, CD] = z2z̄1α(lj)e
2α(a)θ(eα) +O,

[CD, D] = −z2z̄1α(lj)e
2α(a)θ(eα) +O,

hence

E =
1

4
z1z̄2α(lj)eα −

3

4
z2z̄1α(lj)e

2α(a)θ(eα) +O.

Using Lemma 3.8 again we check that BE = O is negligible and

CE = −z2z̄1α(lj)e
2α(a)θ(eα) +O.

Since θ(eα) is in the Lie algebra of the unipotent radical ofH , we have χ(θ(eα)) = 0,
we may thus end the computation and obtain

Ωj,ᾱ = Ωα,j̄ = 0.

3) Consider the case D = z1eα1 + z2eα2 . We have BD = 0 and

CD = −e2α1(a)θ(z1eα1)− e2α2(a)θ(z2eα2).
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Then E = [CD, D]/2 is equal to

E = O − e2α1(a)z̄1z2[θ(eα1), eα2 ]/2− e2α2(a)z1z̄2[θ(eα2), eα1 ]/2

We then need to treat several cases separately, depending on α1 − α2.
3.i) If α1 = α2 = α then we have

E = −
1

2
e2α(a)(z̄1z2 + z1z̄2)α

∨ +O

hence

BE = −
1

2
e2α(a)(z̄1z2 + z1z̄2)P(α∨) +O

and

CE = −
1

2
e2α(a)(z̄1z2 + z1z̄2)H(α∨) +O.

Since χ is trivial on the unipotent radical of H , we have

Re(χ(CD + CE)) = Re(χ(CE)) = χ ◦ ℜ(CE) = χ(CE).

We then end the computation to obtain

Ωα,ᾱ =
−1

2
e2α(a)(dau(α

∨)− 2χ(α∨))

3.ii) If α2−α1 ∈ Φσ
L then we getBE = O and CE = O+E. Furthermore, we check

easily that [θ(eα1), eα2 ] ∈ gα2−α1 ⊂ [h, h] (consider [[θ(eα2−α1), eα2−α1 ], eα2−α1 ]) so
χ([θ(eα1), eα2 ]) = 0, and the same holds for [θ(eα2), eα1 ]. We can then end the
computation and obtain

Ωα1,ᾱ2 = 0.

3.iii) If α2 − α1 ∈ ΦL \ Φσ
L then we have BE = O and

CE =O − e2α1(a)z̄1z2H([θ(eα1), eα2 ])/2

− e2α2(a)z1z̄2H([θ(eα2), eα1 ])/2

+ tanh((α2 − α1)(a))ℜ(−e
2α1(a)z̄1z2H([θ(eα1), eα2 ])/2))

+ coth((α2 − α1)(a))ℑ(−e
2α1(a)z̄1z2H([θ(eα1), eα2 ])/2))

+ tanh((α1 − α2)(a))ℜ(−e
2α2(a)z̄2z1H([θ(eα2), eα1 ])/2))

+ coth((α1 − α2)(a))ℑ(−e
2α2(a)z̄2z1H([θ(eα2), eα1 ])/2)).

As a consequence,

ℜ(CE) =O − e2α1(a)ℜ(z̄1z2H([θ(eα1), eα2 ]))/2

− e2α2(a)ℜ(z1z̄2H([θ(eα2), eα1 ]))/2

+ tanh((α2 − α1)(a))ℜ(−e
2α1(a)z̄1z2H([θ(eα1), eα2 ])/2))

+ tanh((α1 − α2)(a))ℜ(−e
2α2(a)z̄2z1H([θ(eα2), eα1 ])/2)).

We then check by computation that

Ωα1,ᾱ2 =
1

2

(

e2α2(a)(1 + tanh((α1 − α2)(a)))

+ e2α1(a)(1 + tanh((α2 − α1)(a)))
)

χ ◦ H([θ(eα2), eα1 ])

=
2χ([θ(eα2 , eα1 ])

(e−2α1(a) + e−2α2(a))
.
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3.iv) If α2 − α1 ∈ Φ \ ΦL, say α1 − α2 ∈ ΦPu for example, then BE = O and

CE = O +
−e2α2(a)

2
z̄2z1[θ(eα2), eα1 ]

− e2(α2−α1)(a)θ(
−e2α1(a)

2
z̄1z2[θ(eα1), eα2 ]).

Since [θ(eα2), eα1 ] is in the Lie algebra of the unipotent radical of H we have the
vanishing χ([θ(eα2), eα1 ]) = 0 hence

Ωα1,ᾱ2 = 0.

3.v) Finally, if α2 − α1 /∈ Φ, then we have [θ(eα1), eα2 ] = [θ(eα2), eα1 ] = 0 hence
BE = O and CE = O, and we deduce

Ωα1,ᾱ2 = 0.

4) Consider now the case D = z1lj + z2τβ . Then BD = ℜ(z1lj) and

CD = tanh(β(a))ℜ(z2µβ) + coth(β(a))ℑ(z2µβ).

We compute
[BD, D] = O + z̄1z2β(lj)µβ/2

[CD, BD] =O +
z1z̄2
4
β(lj)(coth(β(a)) − tanh(β(a)))θ(τβ)

−
z̄1z2
4
β(lj)(tanh(β(a)) + coth(β(a))τβ

and

[CD, D] = O +
z1z̄2
2
β(lj)(coth(β(a)− tanh(β(a))θ(τβ).

From these computations we deduce

E =O + z̄1z2
β(lj)

4
(µβ −

tanh(β(a) + coth(β(a))

2
τβ)

+ z1z̄2
3β(lj)

8
(coth(β(a)) − tanh(β(a)))θ(τβ)).

We then have BE = O and

ℜ(CE) = O +
β(lj)

4
ℜ(z̄1z2µβ)

+ tanh(β(a))ℜ(z̄1z2
−β(lj)

8
(tanh(β(a)) + coth(β(a)))µβ)

+ tanh(−β(a))ℜ(z1z̄2
3β(lj)

8
(coth(β(a)) − tanh(β(a)))θ(µβ))

= O + β(lj)(1− tanh2(β(a)))ℜ(z̄1z2µβ)/2

since ℜ(z1z̄2θ(µβ)) = −ℜ(θ(z1z̄2θ(µβ)) = −ℜ(z̄1z2µβ). We may thus finish the
computation to obtain

Ωj,β̄ = β(lj)(1− tanh2(β(a)))χ(θ(µβ ))/2.

5) Consider the case D = z1τβ + z2eα. Then we have BD = 0 and

CD = −e2α(a)θ(z2eα) + tanh(β(a))ℜ(z1µβ) + coth(β(a))ℑ(z1µβ).

Then E = [CD, D]/2, which is equal to

z1z̄2
2
e2α(a)[τβ , θ(eα)] +

−z̄1z2
4

(coth(β(a)) − tanh(β(a)))[eα, θ(µβ)] +O.
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We then remark that [τβ , θ(eα)] ∈ g−α+β ⊕ g−α+σ(β) and [eα, θ(µβ)] ∈ gα−β ⊕
gα−σ(β). It is impossible for −α + β as well as for −α + σ(β) to lie in ΦL (write
these roots in a basis of simple roots adapted to P to check this assertion). Hence
we obtain that CE is a sum of a negligible term and a term in g−α+β ⊕ g−α+σ(β) ⊕
gα−β) ⊕ gα−σ(β) ∩ h. Since this last space is contained in the Lie algebra of the
unipotent radical of H , we obtain that χ ◦ ℜ(CE) is negligible, hence

Ωβ,ᾱ = 0.

6) Consider finally the case D = z1τβ1 + z2τβ2 . Then we have BD = 0 and

CD =tanh(β1(a))ℜ(z1µβ1) + coth(β1(a))ℑ(z1µβ1)

+ tanh(β2(a))ℜ(z2µβ2) + coth(β2(a))ℑ(z2µβ2).

Then in view of the relation coth(x) − tanh(x) = 2/ sinh(2x), we have

E =
z̄2z1[θ(µβ2), τβ1 ]

2 sinh(2β2(a))
+
z̄1z2[θ(µβ1), τβ2 ]

2 sinh(2β1(a))
+O

We separate in two cases the end of the computation.
6.i) If β1 6= β2 then, note that for 1 ≤ j 6= k ≤ 2, we have

[θ(µβk
), τβj ] = 2P([θ(eβk

), eβj ]) + 2P([θσ(eβk
), eβj ])

where [eβj , θ(eβk
)] ∈ gβj−βk

and [eβj , θσ(eβk
)] ∈ gβj−σ(βk). It shows that BE is

negligible, and that ℜ(CE) is equal to the sum of a negligible term and

tanh(β2(a)− β1(a))

sinh(2β1(a))
ℜ(z̄1z2H([θ(eβ1), eβ2 ]))

+
tanh(β2(a)− σ(β1)(a))

sinh(2β1(a))
ℜ(z̄1z2H([θσ(eβ1), eβ2 ]))

+
tanh(β1(a)− β2(a))

sinh(2β2(a))
ℜ(z̄2z1H([θ(eβ2), eβ1 ]))

+
tanh(β1(a)− σ(β2)(a))

sinh(2β2(a))
ℜ(z̄2z1H([θσ(eβ2), eβ1 ])).

We may rewrite this as

tanh(β2 − β1)(
1

sinh(2β1(a))
−

1

sinh(2β2(a))
)ℜ(z̄1z2H([θ(eβ1), eβ2 ]))

+ tanh(β1 + β2)(
1

sinh(2β1(a))
+

1

sinh(2β2(a))
)ℜ(z̄1z2H([θσ(eβ1), eβ2 ])).

We compute now

Ωβ1,β̄2
=

1

2
tanh(β2(a)− β1(a))(

1

sinh(2β1(a))
−

1

sinh(2β2(a))
)χ([θ(eβ2), eβ1 ])

+
1

2
tanh(β1 + β2)(

1

sinh(2β1(a))
+

1

sinh(2β2(a))
)χ([θ(eβ2), σ(eβ1)])

6.ii) If β1 = β2 = β then we have

E =
z1z̄2 + z̄1z2
sinh(2β)

(P(β∨) + P([θσ(eβ), eβ ]))

and thus

BE =
z1z̄2 + z̄1z2
sinh(2β)

P(β∨)
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and

ℜ(CE) =
z1z̄2 + z̄1z2
sinh(2β)

tanh(β − σ(β))ℜ ◦ H([θσ(eβ), eβ])

=
z1z̄2 + z̄1z2
cosh(2β)

H ◦ ℜ([θσ(eβ), eβ ]).

Hence

Ωβ,β̄ =
dau(β

∨)

sinh(2β)
−

2

cosh(2β)
χ ◦ ℜ([θσ(eβ), eβ]).

4. Horosymmetric varieties

We move on to introduce horosymmetric varieties. We provide several examples
and present the classification theory inherited from that of spherical varieties. We
then check the property that a G-invariant irreducible codimension one subvariety
in a horosymmetric variety is still horosymmetric.

4.1. Definition and examples.

Definition 4.1. A horosymmetric variety X is a normal G-variety such that G
acts with an open dense orbit which is a horosymmetric homogeneous space.

Example 4.2. By Example 2.6, any horospherical variety (see [Pas08]) may be
considered as a horosymmetric variety. It includes in particular generalized flag
manifolds, toric varieties and homogeneous toric bundles.

Example 4.3. Consider the projective plane P2 equipped with the action of SL2 or
GL2 induced by a choice of affine chart C2 in P2. There are three orbits under this
action: the fixed point {0}, the open dense orbit C2 \ {0} and the projective line at
infinity P1. The GL2-variety P2 is hence a horospherical variety by Example 2.7.
We may further consider the blow up of P2 at the fixed point {0} and lift the action
of GL2 to check that this blow up is also a horospherical variety. More generally,
Hirzebruch surfaces have structures of GL2-horospherical varieties refining their
toric structure.

Assume G = L is semisimple and H = NG(G
σ). Then the wonderful compactifi-

cations of G/H constructed by De Concini and Procesi [DP83] is a horosymmetric
variety. It is a particularly nice compactification of G/H characterized by the
following properties. Let r denote the rank of G/H and set I = {1, . . . , r}.

Theorem 4.4 ([DP83]). The wonderful compactification X of G/H is the unique
smooth G-equivariant compactification of X such that:

• G-orbit closures XJ in X are in bijection with subsets J ⊂ I and
• all XJ are smooth and intersect transversely, with XJ =

⋂

j∈J X{j}.

Furthermore, for each J , there exists a parabolic subgroup PJ of G, with σ-stable
semisimple Levi factor L′

J , and an equivariant fibration XJ → G/PJ with fiber the
wonderful compactification of L′

J/NL′
J
((L′

J )
σ).

Example 4.5. Consider the symmetric space G/H of type AIII(2, m > 4). Recall
from Example 2.11 that H = NG(H). Using the description of G/H as a dense
orbit in the product of Grassmannians X0 = Gr2,m×Grm−2,m as in Example 2.10,
we obtain a first example of (horo)symmetric variety with open orbit G/H : this
product of Grassmannians X0 itself. It contains three orbits under the action of
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G = SLm: the dense orbit of pairs of linear subspaces in direct sum, the closed orbit
of flags (V1, V2) with V1 ⊂ V2, and the codimension one orbit of pairs (V1, V2) with
dim(V1 ∩ V2) = 1. One can blow up X0 along the closed orbit to obtain another
G-equivariant compactification X of G/H . This new compactification X is none
other than the wonderful compactification of G/H .

In higher ranks, one may still obtain the wonderful compactifications from the
product of Grassmannians, but this requires a more involved sequence of blow-ups.

From Theorem 4.4, one sees the first examples of horosymmetric varieties that
are neither horospherical nor symmetric. Indeed, the description of orbits in a
wonderful compactification show that orbit closures in wonderful compactifications
are all horosymmetric, with the only symmetric being the open orbit and the only
horospherical being the closed one (actually a generalized flag manifold).

Since it applies only to H = NG(G
σ), the construction of De Concini and Procesi

does not exhaust the compactifications of symmetric spaces satisfying the properties
of Theorem 4.4, still called wonderful compactifications. The simplest example of
wonderful compactification which is not in the examples studied by De Concini and
Procesi is the following.

Example 4.6. Consider the variety P1 × P1 equipped with the diagonal action of
SL2. There are two orbits under this action: the diagonal embedding of P1 and
its complement. The complement is open dense and isomorphic to the symmetric
space SL2/T where T is a maximal torus of SL2.

The wonderful compactification constructed by De Concini and Procesi and cor-
responding to this involution on the other hand is P2 seen as a compactification of
SL2/NSL2

(T ) by adding a quadric.

Example 4.7. Several papers expanded results valid on the wonderful compact-
ification of a symmetric space to so-called complete symmetric varieties (see e.g.
[DP85, Bif90]), that is, smooth G-equivariant compactifications of G/H that domi-
nate the wonderful compactification. Any complete symmetric variety is a horosym-
metric variety.

4.2. Combinatorial description of horosymmetric varieties.

4.2.1. Colored fans. As spherical varieties, horosymmetric varieties with open orbit
G/H are classified by colored fans for the spherical homogeneous space G/H , which
are defined in terms of the combinatorial data M, V and ρ : D → N (Recall these
were described in Proposition 2.23).

Definition 4.8.

• A colored cone is a pair (C,R), where R ⊂ D, 0 /∈ ρ(R), and C ⊂ N ⊗Q is
a strictly convex cone generated by ρ(R) and finitely many elements of V
such that the intersection of the relative interior of C with V is not empty.

• Given two colored cones (C,R) and (C0,R0), we say that (C0,R0) is a face
of (C,R) if C0 is a face of C and R0 = R∩ ρ−1(C0).

• A colored fan is a non-empty finite set F of colored cones such that the face
of any colored cone in F is still in F , any v ∈ V is in the relative interior
of at most one cone, and the intersection of any two colored cones is a face
of both.

An equivariant embedding (X, x) of G/H is the data of a horosymmetric variety
X and a base point x ∈ X such that G · x = X and StabG(x) = H .
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Theorem 4.9 ([Kno91, Theorem 3.3 and Theorem 4.2]). There is a bijection
(X, x) 7−→ FX between embeddings of G/H up to G-equivariant isomorphism and
colored fans. There is a bijection Y 7→ (CY ,RY ) between the orbits of G in X, and
the colored cones in FX. An orbit Y is in the closure of another orbit Z in X if and
only if the colored cone (CZ ,RZ) is a face of (CY ,RY ). The variety X is complete
if and only if the support |FX | =

⋃

(C,R)∈FX
C contains the valuation cone V.

There is a corresponding description of equivariant morphisms between embed-
dings of G/H in terms of the colored fans. Since the only such morphism we will use
is the discoloration in Section 6, let us just refer the reader to [Kno91, Theorem 4.1]
for a precise statement.

Example 4.10. AssumeG is a semisimple group, andH is a symmetric subgroup of
G. Then there is a natural choice of colored fan given by the negative Weyl chamber
and its faces. If H = NG(H) then the corresponding variety is the wonderful
compactification of G/H .

More generally if the valuation cone is strictly convex, then the embedding cor-
responding to the colored fan given by the valuation cone and its faces is called
wonderful if it is in addition smooth. There are criterions of smoothness for spheri-
cal varieties [Bri91], and some simpler criterions for the case of horospherical [Pas08]
and symmetric [Ruz11, Section 3] varieties. It would certainly be possible and use-
ful to derive such a simpler criterion for the class of horosymmetric varieties. In
the case of toroidal horosymmetric varieties, which are introduced in the next sec-
tion, the criterion is very simple, as it is the case for toroidal spherical varieties in
general.

4.2.2. Toroidal horosymmetric varieties. Given an embedding (X, x) of G/H we
denote by FX its colored fan and we call the elements of DX =

⋃

(C,R)∈F R ⊂ D
the colors of X . It should be noted that the set of colors does not depend on the
base point x, but FX does. We however omit this dependence in the notation.

Definition 4.11. An embedding is toroidal if DX is empty, else it is colored.

A toroidal horosymmetric variety is globally a parabolic induction from a sym-
metric variety. More generally, we record the following elementary statement, easily
seen by the classification of horosymmetric varieties by colored fan, and the fact
that the colored fan of a parabolic induction is the same as the colored fan of the
embedding one starts with.

Proposition 4.12. A horosymmetric variety with set of colors DX is globally a
parabolic induction from a symmetric variety if and only if DX ∩ f−1D(G/P ) = ∅.

Example 4.13. The horospherical variety P2 under the action of SL2 is not a
global parabolic induction (in particular it is not toroidal), but the blow up of P2

is.

The following result shows that, in a toroidal horosymmetric variety, there is a
well identified toric subvariety which will play an important role in later applica-
tions.

Proposition 4.14 ([Kno94, Corollary 8.3 and paragraph after Corollary 6.3]). Let
(X, x) be a toroidal embedding of the horosymmetric space G/H, with colored fan
FX. Then the closure Z of T ·x in X is the T/T ∩H-toric variety whose fan (as a
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spherical variety) consists of the images, by elements of the restricted Weyl group
W̄ , of the cones C in the colored cone FX.

Remark 4.15. We insist here that we obtain the fan of Z as a spherical variety
under the action of T/T ∩H . It does not exactly coincide in general with the fan of
Z as a toric variety with the classical conventions, but to the opposite of this fan.
We refer to Pezzini [Pez10, Section 2] for details, but the short explanation is that
a character λ of a torus T may be interpreted as a regular B = T -semi-invariant
function on T with weight −λ: λ(b−1t) = (−λ)(b)λ(t). This difference is important
to get the correct expression for the asymptotic behavior of metrics in Section 6.
This fact was overlooked in some previous works [Del17a, Del17b] of the author,
fortunately with no serious consequences.

Example 4.16. Assume X is the wonderful compactification of a symmetric space
then the fan of its toric subvariety Z is the fan obtained by considering the collection
of all restricted Weyl chambers for Φ̄ and their faces.

Finally, let us mention the criterion of smoothness for toroidal horosymmetric
varieties:

Proposition 4.17 ([Per14, Corollary 3.3.4]). A toroidal horosymmetric embedding
(X, x) is smooth if and only if the toric subvariety Z is smooth, that is, if and only
if every cone in the colored fan is generated by a subset of a basis of N .

4.3. Facets of a horosymmetric variety.

Definition 4.18. Let X be a horosymmetric variety under the action of G. A facet
of X is a G-stable irreducible codimension one subvariety in X .

The goal of this section is to prove the following result.

Proposition 4.19. Let X be a horosymmetric variety under the action of G, then
any facet of X is also a horosymmetric variety under the action of G.

We will actually obtain more precise statements describing the corresponding
horosymmetric homogeneous spaces, using [Bri90]. Let us first introduce some
terminology.

Definition 4.20. An elementary embedding (E, x) of G/H is an embedding such
that the complement of G/H in E is a single codimension one orbit of G. Equiva-
lently, it is an embedding whose colored fan consists of a single ray CE ⊂ −a+s with
no colors.

Elementary embeddings are in bijection with indivisible one parameter subgroups
in −a+s ∩ Y(Ts) by selecting the only such one parameter subgroup in the ray
associated to the elementary embedding. Given an indivisible µ ∈ −a+s ∩Y(Ts) we
denote by (Eµ, x) the corresponding elementary embedding. Furthermore xµ :=
limz→0 µ(z) · x exists in Eµ and is in the open B-orbit of the codimension one G-
orbit [BP87, Section 2.10]. We will use [Bri90] to describe the Lie algebra of the
isotropy subgroup of xµ.

We have fixed since Section 2 a maximal torus T of G and a Borel subgroup
B containing T . Recall that parabolic subgroups containing B are classified by
subsets of the set of simple roots S. More precisely, given a subset I ⊂ S, there is
a unique parabolic subgroup QI of G containing B such that ΦQu

I
∩ S = S \ I. It
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further contains a unique Levi subgroup LI containing T , and ΦLI ∩ S = I. We
denote by PI the parabolic subgroup opposite to QI with respect to LI .

The subgroup B∩L is a Borel subgroup of L containing T , and we have the same
correspondence between subsets I of SL and parabolic subgroupsQL

I of L containing
B ∩ L. We have the obvious relation QL

I = QI ∩ L, and all of these parabolic
subgroups are contained in QSL = Q. The Levi subgroup of QL

I containing T is
none other than LI .

Given a one parameter subgroup µ ∈ Y(T ), we obtain a subset of SL by setting
I(µ) = {α ∈ SL;α(µ) = 0}. Then the Levi subgroup LI(µ) of QL

I(µ) containing

T coincides with the centralizer ZL(µ) of µ. In particular, µ is contained in the
radical of the Levi subgroup LI(µ). Pay attention to the fact that ZL(µ) may be
different from ZG(µ) here.

Take µ ∈ Y(Ts). Then the restriction of σ to LI(µ) = ZL(µ) is still a well defined
involution. Since µ is contained in the radical of LI(µ), we may choose a σ-stable
complement m of Cµ in lI(µ) which contains the derived Lie algebra [lI(µ), lI(µ)].
Define a new involution σµ on LI(µ) by setting, at the level of Lie algebras,

σµ(zµ+m) = zµ+ σ(m).

This is a well defined involution of Lie algebras thanks to our choice of complement
m.

The following proposition provides a more precise version of Proposition 4.19.
Indeed, given a facet Y of X , the union of the open G-orbits in X and Y form an
elementary embedding of G/H .

Proposition 4.21. Let µ ∈ Y(Ts) indivisible. Then the isotropy subgroup Hµ of
xµ is horosymmetric as follows:

hµ = puI(µ) ⊕ l
σµ

I(µ).

Proof. An elementary embedding is toroidal, hence, by Proposition 4.12, it is a
global parabolic induction EL →֒ Eµ → G/P where (EL, x) is the elementary
embedding of L/L∩H associated with the same one parameter subgroup µ. Since
xµ ∈ EL, we obtain that Pu ⊂ Hµ ⊂ P and Hµ is determined by L ∩Hµ.

We now use the results of [Bri90] applied to the case of symmetric spaces to
obtain a description of l∩ hµ. By Proposition 2.4 in [Bri90] and the remarks about
the case of symmetric spaces in Section 2.2 of the same paper, we have

l ∩ hµ = Cµ⊕ tσ ⊕
⊕

α∈Φσ
L

Ceα ⊕
⊕

α∈Φ+
s ;ᾱ(µ)=0

C(e−α + σ(e−α))⊕
⊕

α∈Φ+
s ;ᾱ(µ) 6=0

Ce−α.

Since µ ∈ Y(Ts), we have ᾱ(µ) = 2α(µ), so we may write the above expression as

l ∩ hµ = l
σµ

I(µ) ⊕
⊕

α∈ΦPu
I(µ)

∩ΦL

gα

Putting both results together, we get

hµ = l
σµ

I(µ) ⊕
⊕

α∈ΦPu
I(µ)

gα

hence the statement. �
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Example 4.22. Consider the symmetric space of type AIII(2, m > 4). Take
µ ∈ −a+s an indivisible one parameter subgroup. Then there are three possibilities
for I(µ): we have I(ᾱ∨

1,m) = S \ {α1,2, αm−1,m}, I(ᾱ∨
2,m−1) = S \ {α2,3, αm−2,m−1},

and I(µ) = S in the other cases. In the first situation, [lI(µ), lI(µ)] is isomorphic to
the simple Lie algebra slm−2 and the induced involution is still of type AIII, but
now of rank one. In the second situation, [lI(µ), lI(µ)] splits as a direct sum of three
summands, one fixed by σ and the other two, each isomorphic to sl2, exchanged by
σ. Finally, in the third scenario, the isotropy group is in fact horospherical.

Remark 4.23. It is in fact very general that if the ray is in the interior of the
valuation cone, then the closed orbit in the corresponding elementary embedding
is horospherical, with an explicit description of its Lie algebra [BP87, Proposition
3.10].

Remark 4.24. Gagliardi and Hofscheier [GH15] obtained a description of the
combinatorial data associated to any orbit in a spherical variety. We could in
principle (neglecting the difficulty of describing the color map in general) have used
this to show that facets of horosymmetric varieties are horosymmetric. However
their result identifies only the conjugacy class of the isotropy subgroup, while we
will need the precise knowledge of the isotropy group (actually Lie algebra) of a
specific point in the orbit. On the other hand, it is possible to identify precisely the
isotropy group of the point we consider, and not only its Lie algebra, by combining
our result with that of [GH15]. This could be used to fully recover the description
of orbit closures in wonderful compactifications given by De Concini and Procesi.
We mention here, as it could be useful for other applications in Kähler geometry,
that the work of Gagliardi and Hofscheier [GH15] further allows to identify the
colored fan of a facet of a horosymmetric variety.

5. Linearized line bundles on horosymmetric varieties

In this section, we consider G-linearized line bundles on a G-horosymmetric
variety X . We explain how to associate to such a line bundle L a privileged B-
invariant Q-divisor, and several convex polytopes. For example, one can associate
to L its (algebraic) moment polytope, and in the case X is toroidal, the moment
polytope of the restriction of L to the toric subvariety. We determine the relations
between these polytopes, and illustrate these notions on some examples, including
the anticanonical line bundle.

Note that if G is simply connected, all line bundles on X are G-linearized
[KKV89, KKLV89]. Else, if L is not linearized, there exists a tensor power Lk

which is linearized. Finally, recall that any two linearizations of the same line
bundle differ by a character of G.

5.1. Special function associated to a linearized line bundle. Let X be a
horosymmetric embedding of G/H . Let L be a G-linearized line bundle on X .
The action of G on L induces an action of G on meromorphic sections of L, given
explicitly by (g · s)(x) = g · (s(g−1 · x)). Such a section is called B-semi-invariant if
it is an eigenvector for the action of B, that is, there exists a character λ of B such
that b · s = λ(b)s.

A meromorphic section s of L defines a Cartier divisor Ds = div(s) representing
L. If s is B-semi-invariant, then Ds is B-invariant. There are two types of irre-
ducible B-stable Weil divisor on X : the closure of colors D ∈ D of G/H , and the
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facets of X . Denote by IG(X) the set of facets of X . Since Ds is by definition
Cartier, it writes, by [Bri89, Proposition 3.1],

Ds =
∑

Y ∈IG(X)

vs(µY )Y +
∑

D∈DX

vs(ρ(D))D +
∑

D∈D\DX

nDD

for some integers nD and a piecewise linear integral function vs on the fan FX .
In general there may not be any privileged B-semi-invariant meromorphic section

of L. Given such a section s, with associated weight λs ∈ X(B), the others are
obtained by multiplying by eigenvectors f for the action of B on C(G/H), with
eigenvalue an element λf of M. Assume however that λs|Ts ∈ X(Ts) is induced by
an element of M under the epimorphism X(Ts) → M = X(T/T ∩ H). Then we
can choose f so that (λsλf )|Ts is trivial.

Definition 5.1. Assume there exists a section sL such that λs|Ts is trivial. Then
we call this section, well defined up to multiplicative scalar, the special section of
L, and DL = div(sL) the special divisor representing L.

In the general case, we may still define DL as a Q-divisor. Indeed, let s be a
B-semi-invariant section of L with weight λ. There always exists a tensor power
Lk of L such that the corresponding multisection s⊗k has a B-weight kλ whose
restriction to Ts is induced by an element of M. Thus the previous paragraph
defines the special divisor DLk .

Definition 5.2. In the situation described above, the special divisor of L is the
Q-divisor DL = DLk/k.

Using the fact that DLk is Cartier, we may write

DL =
∑

Y ∈IG(X)

vL(µY )Y +
∑

D∈DX

vL(ρ(D))D +
∑

D∈D\DX

nL,DD.

for some piecewise rational linear function vL on FX .

Definition 5.3. The function vL will be referred to as the special function associ-
ated to L.

Remark that it takes non integral values if L admits no special section. Note
that all of these notions are relative to the choice of a Borel subgroup B.

Definition 5.4. The unique W̄ -invariant function vtL defined by vtL = vL on −a+s ,
is the toric special function of L.

5.2. Toroidal case. When X is toroidal, we may identify the restriction of a G-
linearized line bundle to the toric subvariety Z in terms of the objects defined in
Section 5.1.

Proposition 5.5. Let L be a G-linearized line bundle on a toroidal horosymmetric
variety X. For a sufficiently divisible integer m, the restriction Lm|Z defines a
(T/T ∩H) ⋊ W̄ -linearized toric line bundle on Z, such that the divisor associated
with the (T/T ∩H)⋊ W̄ -invariant section coincides with

∑

F∈IT/T∩H (Z)

mvtL(µF )F.
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Proof. The restriction L|Z inherits a linearization of the action of Ts as well as of the
action ofNK(Ts)∩H . The line bundle Lk for any k divisible enough admits a special
section s. By definition of the special section, s is in particular Ts ∩ H-invariant,
hence Ts ∩H acts trivially on L|Z . Thus the Ts-linearization of Lk actually comes
from a T/T ∩H-linearization. The section s|Z is obviously T/T ∩H-invariant.

Let nw be a representant in NK(Ts) ∩H of w ∈ W̄ . Then for any t ∈ Ts

nw · s(n−1
w · t · x) = nw · s(n−1

w tnw · x)

since nw ∈ H ,

= nwn
−1
w tnw · s(x)

since n ∈ NK(Ts) and s is Ts-invariant,

= χ(nw)t · s(x)

where χ is the character of H associated to Lk

= χ(nw)s(t · x).

Since there is a finite number of nw and they are in K, we may choose k so that
χ(nw) = 1 for all w ∈ W̄ .

We now use the local structure of spherical varieties [BP87, Proposition 3.4].
Consider ∆ =

⋃

D∈DD ⊂ G/H and set U = X \ ∆̄ and V = Z ∩U . Then V is the
toric subvariety associated to the subfan contained in −a+s , and the toric divisors
in V are precisely the Y ∩ V for Y ∈ IG

X . By [Bri89, Section 3.2], the restriction of
DLk to V is

div(s) ∩ V =
∑

Y ∈IG(X)

kvL(µY )(Y ∩ V ).

By nw-invariance of s, we obtain

div(s) ∩w · V =
∑

Y ∈IG(X)

kvL(µY )w · (Y ∩ V ).

We deduce that

div(s|Z) =
∑

F∈IT/T∩H (Z)

kvtL(µF )F.

Remark that our reasoning with the representatives nw did not endow Lk|Z with a
W̄ -linearization a priori. However, s|Z is the (up to multiplicative scalar) T/T ∩H-
invariant section of Lk|Z and div(s|Z) is W̄ -invariant, hence Lk|Z admits a natural
W̄ -linearization such that w · s|Z = µ(w)s|Z for all w ∈ W̄ and some character
µ : W̄ → S1 of W̄ . The group W̄ being finite, we may take a multiple m of k such
that the character m

k µ is trivial, and obtain that the T/T ∩H-invariant section is

also W̄ -invariant. �

5.3. Polytopes. To a G-linearized line bundle L on a complete horosymmetric
variety X , we may associate several different convex polytopes. The first one is
obtained directly from the special divisor of L.

Definition 5.6. The special polytope ∆L of L is the convex polytope in M ⊗ R

defined by the inequalities m+vL ≥ 0, and m(ρ(D))+nD,L ≥ 0 for all D ∈ D\DX .
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Definition 5.7. The toric polytope ∆t
L of L is the convex polytope defined by

∆t
L = {m ∈ M⊗ R;m+ vtL ≥ 0}.

Remark that the toric polytope is W̄ -invariant (and independent of the choice
of a Borel subgroup B containing T ).

Definition 5.8. The moment polytope ∆+
L is the set defined as the closure in

X(T ) ⊗ R of the set of all λ/k such that there exists a non-zero B-semi-invariant
global holomorphic section s of Lk with weight λ (that is, b ·s = λ(b)s for all b ∈ B).

Note that all of these sets are multiplicative with respect to tensor powers, that
is ∆♥

Lk = k∆♥
L for any positive integer k.

Even though the definitions above are somewhat different, it becomes clear that
they have a strong relationship once we interpret the definitions in terms of sections
of the line bundle L. Recall that any irreducible G-representation contains a unique
B-stable line, where B acts via a character called the highest weight of the repre-
sentation. The moment polytope is then by definition the closure of the set of all
highest weights of irreducible subrepresentations of G in the space of multisection
H0(X,Lk), divided by k, for all positive integers k. On the other hand, assum-
ing there exists a special section s of L, then by definition the points in M∩∆L
precisely encode the (weights of the) B-semi-invariant rational functions f on X
such that fs is a B-eigenvector in the representation H0(X,L). The more precise
relationship between the two polytopes is as follows.

Proposition 5.9. Let χ ∈ X(H) be the isotropy character associated to the restric-
tion of L to G/H. Consider χ as before as an element of X(T/Ts)⊗R ⊂ X(T )⊗R

via its restriction to T ∩H. Then

∆+
L = χ+∆L.

Proof. By multiplicativity, we may as well prove the result for Lk. This has two
consequences: we may choose k so that L has a special section, and kχ|Ts ∩H = 0.

Let s denote the special section of Lk, and denote by λ ∈ X(B) = X(T ) its
character. By [Bri89, Proposition 3.3] (see also [Bri, Section 5.3]), we have

∆+
Lk = λ+∆Lk .

We know that λ|Ts = 0 hence we may consider λ as an element of X(T/Ts) ⊂ X(T ).
From the other consequence of considering Lk, we see that we may also consider

kχ as an element of X(T ∩H/Ts ∩ H). The natural epimorphism T ∩ H → T/Ts
identifies T ∩H/Ts ∩H with T/Ts. Let t ∈ T ∩H . We have, by definition of s,

λ(t)s(eH) = t · s(t−1H)

= t · s(eH)

since t ∈ H

= (kχ)(t)s(eH)

by definition of χ, hence the theorem. �

Recall the characterization of ample and globally generated line bundles proved
by Brion. Given a maximal cone C contained in FX , let mC denote the element of
M⊗Q such that vL(y) = mC(y) for y ∈ C.
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Figure 3. Relationship between polytopes

• M⊗ R

X(T/Ts)⊗ R

•χ

∆L

∆+
L

∆t
L

W̄

Proposition 5.10 ([Bri89, Théorème 3.3]). The G-linearized line bundle L is glob-
ally generated if and only if

• The function vL is convex and
• nD,L ≥ mC(ρ(D)) for all D ∈ D \ DX and maximal cone C ∈ FX.

It is ample if and only if it is globally generated and furthermore

• mC1 6= mC2 if C1 6= C2 ∈ FX are two maximal cones,
• nD,L 6= mC(ρ(D)) for all D ∈ D \ DX and maximal cone C ∈ FX.

Definition 5.11. The support function w∆ : V ∗ −→ R of a convex polytope ∆ in
a real vector space V is defined by

w∆(x) = sup{m(x);m ∈ ∆}.

One may recover the convex polytope ∆ from its support function by checking
∆ = {m ∈ V ;m ≤ w∆}. As a consequence from this definition, we have:

Corollary 5.12. If L is globally generated, then vL(y) = w∆L
(−y) for y ∈ |FX |.

Let C+ denote the positive Weyl chamber in a∗ = X(T ) ⊗ R, which may be
defined as

C+ = {p ∈ a∗; p(α∨) ≥ 0, ∀α ∈ Φ+}.

Similarly, we define the positive restricted Weyl chamber in a∗s as

C̄+ = {p ∈ a∗s; p(ᾱ
∨) ≥ 0, ∀ᾱ ∈ Φ̄+}.

The following proposition describes the relationship between the toric polytope and
the special polytope (see Figure 3 for an illustration).

Proposition 5.13. The polytope ∆L is a translate by an element of C̄+ of a
polytope which is the intersection of a W̄ -invariant polytope with C̄+. In particular,
∆L ⊂ C̄+ and

∆t
L = Conv(W̄ ·∆L).

Proof. By definition, the polytope ∆L has outer normal along codimension one
faces which are given by some elements of the valuation cone and the images by ρ
of some colors. Since the only images of colors that are not in the valuation cone
are simple restricted coroots by Proposition 2.23 we obtain at once that ∆L is a
translate of a polytope which is the intersection of a W̄ -invariant polytope with
C̄+.
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To check that it is a translation by an element of C̄+, it is enough to check
that ∆L is included in C̄+ itself. This is a direct consequence of the relation
∆+

L = χ + ∆L together with the fact that ∆+
L ⊂ C+ by definition. Indeed, given

p ∈ ∆L and α ∈ Φ+
s , we have

p(ᾱ∨) = (p+ χ)(ᾱ∨)− χ(ᾱ∨)

which is positive since χ is zero on as, p+χ ∈ ∆+
L ⊂ C+ and ᾱ∨ is a positive multiple

of either a positive coroot or the sum of two positive coroots by Definition 2.21.
We have thus proved that ∆L ⊂ C̄+. By definition of the toric polytope, the

supporting hyperplanes defining ∆t
L are those supporting ∆L with normal in C̄+,

and their images by W̄ . Since ∆L ⊂ C̄+, all images of the special polytope by W̄
are contained in ∆t

L, hence the result. �

Recall that the linear part of a cone containing the origin is the largest linear
subspace included in the cone.

Corollary 5.14. The following conditions are equivalent:

(1) Lm admits a global holomorphic Q-semi-invariant section for some m ∈ N∗,
(2) ∆+

L ∩ X(T/T ∩ [L,L])⊗ R 6= ∅
(3) ∆L intersects the linear part of C̄+,
(4) ∆t

L ∩ C̄+ = ∆L = −χ+∆+
L .

Proof. The first condition translates directly into a condition on ∆+
L : it is equivalent

to the fact that some Lm admits a global holomorphic B-semi-invariant section
whose weight is in X(T/T ∩ [L,L]), that is, ∆+

L ∩ X(T/T ∩ [L,L]) 6= ∅.
One checks easily that the linear part of C̄+ ⊂ X(Ts)⊗R is X(Ts/Ts∩ [L,L])⊗R,

and coincides also with the linear subspace of W̄ -invariant elements of X(Ts) ⊗ R.
Now since ∆+

L = ∆L +χ and χ ∈ X(T/(([L,L]∩T )Ts))⊗R ⊂ X(T/[L,L]∩T )⊗R,
the first condition is equivalent to ∆L ∩ X(Ts/Ts ∩ [L,L])⊗ R 6= ∅.

Finally, thanks to Proposition 5.13, we obtain the equivalence with the last
condition. �

5.4. The anticanonical line bundle. Recall the Weil divisor representing the
anticanonical class obtained by Brion on any spherical variety.

Proposition 5.15 ([Bri97, Sections 4.1 and 4.2]). For any spherical G-variety X,
there is a B-semi-invariant section of the anticanonical sheaf with Weil divisor

−KX =
∑

Y ∈IG(X)

Y +
∑

D∈D
mDD

where the mD are positive integers with an explicit description in terms of the
colored data. Furthermore, the B-weight of the section is the sum of α ∈ Φ+ such
that g−α does not stabilize the open B-orbit in X.

Consider now a horosymmetric varietyX . If one considers the subvariety X̂ ⊂ X
which consists of all the orbits of codimension strictly less than two in X , it is a
smooth variety with a well defined anticanonical line bundle, and this anticanonical
line bundle admits a B-semi-invariant section s with weight λ whose divisor is
the divisor −KX above. In our horosymmetric situation, the weight λ is equal
to
∑

α∈ΦQu∪Φ+
s
α. Indeed, if α ∈ ΦQu then g−α does not even stabilize the open

B-orbit in G/P , and if α ∈ ΦL, then g−α stabilizes the open B-orbit in L/L∩H if
and only if it belongs to Φσ.
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We may reason as if λ|Ts =
∑

α∈ΦQu∪Φ+
s
α ◦ P is induced by an element of

X(T/T ∩ H), up to passing to K−k

X̂
for some positive integer k if necessary. Let

h ∈ C(X̂) be a B-semi-invariant function with weight −
∑

α∈ΦQu∪Φ+
s
α ◦ P . Then

hs is the special section of K−1

X̂
. Its B-weight is

∑

α∈ΦQu∪Φ+
s
α ◦H. Note that this

is equal to
∑

α∈ΦQu
α ◦H since

∑

α∈Φ+
s
α ◦ P =

∑

α∈Φ+
s
α. The special divisor Dac

of K−1

X̂
is thus

Dac =
∑

Y ∈IG
X



1−
∑

α∈ΦQu∪Φ+
s

α ◦ P(µY )



Y

+
∑

D∈D



mD −
∑

α∈ΦQu∪Φ+
s

α ◦ P(ρ(D))



D.

Note that X̂ is a global parabolic induction with respect to the morphism

f : X̂ → G/P extending the natural morphism G/H → G/P . We accordingly
decompose the anticanonical line bundle as K−1

X̂
= K−1

f ⊗ f∗K−1
G/P . By definition,

the special section is the product of special sections of these naturally linearized
line bundles and the divisor Dac on X̂ is the sum of their respective divisors Dac

f

and Dac
P . The special section of f∗K−1

G/P is obviously Q-semi-invariant, with weight

precisely equal to
∑

α∈ΦQu
α ◦ H. As a consequence, the special section of K−1

f is

G-invariant. The special section of K−1

X̂
is thus Q-semi-invariant. It follows from

this discussion that the coefficients of colors coming from L/L ∩H must vanish.
By normality of X , the special divisors Dac

f of K−1
f and Dac

P of f∗K−1
G/P , defined

on X̂ , extend to X as Weil divisors and Dac = Dac
f +Dac

P holds on X . We further
have explicitly

Dac
f =

∑

Y ∈IG
X



1−
∑

α∈ΦQu∪Φ+
s

α ◦ P(µY )



Y

and

Dac
P =

∑

α∈ΦQu∩S



mDα −
∑

β∈ΦQu∪Φ+
s

β ◦ P(ρ(Dα))



Dα.

5.5. Examples.

Example 5.16. We consider again the variety X = P1 × P1 equipped with the
diagonal action of SL2. The line bundles on X are the O(k,m) for k,m ∈ Z. They
admit natural SL2 × SL2-linearization hence also a natural linearization under the
diagonal action. There are two colors D+ and D− with same image ¯α1,2

∨ via
the color map, the fan of X is the negative Weyl chamber, a single ray generated
by −ᾱ∨

1,2 corresponding to the orbit Y = diag(P1). The line bundle correspond-

ing to D+ is, say, O(1, 0) and O(0, 1) corresponds to D−, while the line bundle
corresponding to Y is obviously O(1, 1).

The special divisor corresponding to O(k,m) is k+m
2 Y + k−m

2 (D+ − D−), its

moment polytope is the set of all tα1,2 for |k−m|
2 ≤ t ≤ k+m

2 . It is the same as the

special polytope. The toric polytope is the set of all tα1,2 for |t| ≤ k+m
2 .
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Example 5.17. Consider the wonderful compactification X of Type AIII(2, m >
4), under the action of SLm. Since this group is simple and simply connected, all
line bundles admit a unique linearization. It follows from [Bri89] that the Picard
group of X is the free abelian group generated by the three colors D+

1 , D−
1 and

D2 whose images under the color map are ρ(D±
1 ) = ᾱ∨

2,m−1 and ρ(D2) = ᾱ∨
1,2.

The two G-invariant prime divisors Y1, corresponding to the ray generated by µ1 =
−ᾱ∨

1,m−1 and Y2, corresponding to the ray generated by µ2 = −ᾱ∨
1,m write in this

basis as Y1 = D+
1 + D−

1 − D2 and Y2 = 2D2 − D+
1 − D−

1 . Given a line bundle
corresponding to the divisor k+1 D

+
1 + k−1 D

−
1 + k2D2, the corresponding special

divisor is b1Y1 + b2Y2 + b±(D+
1 +D−

1 ) where b1 = k+1 + k−1 + k2, b2 =
k+
1 +k−

1

2 + k2

and b± =
k+
1 −k−

1

2 .

Assume b± = 0. The polytope ∆t is the convex hull of the images by W̄ of the
point b2ᾱ1,2+ b1ᾱ2,3, provided it is in the positive restricted Weyl chamber, that is
2b2 ≥ b1 and b1 ≥ b2. Note that Brion’s ampleness criterion translates here as the
fact that this point is in the interior of the positive restricted Weyl chamber. The
polytope ∆+ = ∆ is the intersection of ∆t with the positive chamber. See Figure 4
in Section 7 for drawings of the moment polytopes. If b± is non-zero, then we must
intersect with another half-plane to get the polytope.

6. Metrics on line bundles

We will now use the objects introduced in the previous section to study Her-
mitian metrics on G-linearized line bundles. Given a Hermitian metric q on L,
recall that its local potentials are the functions ψ : y 7→ − ln |s(y)|2 where s is
a local trivialization of L. We allow for now singular Hermitian metrics, that is
the local potentials are only required to be locally integrable. The metric is called
locally bounded/continuous/smooth if and only if its local potentials are. It is
called non-negatively curved (in the sense of currents) if the local potentials are
plurisubharmonic functions and positively curved if its local potentials are strictly
plurisubharmonic.

6.1. Asymptotic behavior of toric potentials.

Proposition 6.1. Let G/H ⊂ X be a complete horosymmetric variety, and L a
G-linearized line bundle on X, with special function vL. Let q be a K-invariant
locally bounded metric on L with toric potential u. Then the function

x 7→ u(x)− 2vtL(x)

is bounded on as.

The proof will use the process of discoloration, which allows to reduce to the
case of a toroidal variety.

Definition 6.2. Let (X, x) be an embedding of G/H with colored fan FX . Then
the discoloration (X ′, x′) of (X, x) is the embedding of G/H whose colored fan FX′

is obtained by taking the collection of all colored cones of the form (C ∩ V , ∅) for
(C,R) ∈ FX and their faces.

The discoloration (X ′, x′) of (X, x) is equipped with a G-equivariant birational
proper morphism d′ : X ′ → X sending x′ to x. The simplest example of discol-
oration is given by the blow up of P2 at 0, seen as a horospherical variety under
the action of SL2.
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Proof of Proposition 6.1. Note that the toric potential is defined only up to an
additive scalar, but this does not affect the statement. The choice of toric potential
is determined by the choice of a non zero element ξ ∈ LeH . We fix such a choice
here.

Since the special function of Lm is mvL and the toric potential of q⊗m is mu,
replacing L by a power of L will not affect the result. For example we can already
assume that L admits a special section.

Consider the pullback L′ of L under the discoloration morphism d′ : X ′ → X ,
equipped with the metric d′∗q. The special function vL′ coincides with the special
function vL [Pas17, Proof of Lemma 5.3]. Furthermore, by Proposition 5.5 and
up to replacing L by a power of itself, the restriction of L′ to the toric subvariety
Z ′ ⊂ X ′ is a T/T ∩H-linearized line bundle with divisor

∑

F∈IT/T∩H (Z′)

vtL(µF )F.

Consider the Batyrev-Tschinkel metric associated to this line bundle [Mai00, Section
3.3]. It is a compact torus invariant, continuous metric on L′|Z′ with toric potential
uBT : x 7→ −2 ln | exps(x) · ξ|BT equal to

x 7→ 2vtL(x).

Beware that here exps denotes the exponential map for the Lie group T/T ∩ H ,
which does not coincide with the exponential map for G. Here however, since the
T/T∩H-linearization of L′|Z′ was obtained via factorization of the Ts-linearization,
we have exps(x) · ξ = exp(x) · ξ. We then have

(u − uBT )(x) = −2 ln
| exp(x) · ξ|BT

| exp(x) · ξ|q
.

Since the Batyrev-Tschinkel metric is continuous and the metric q is locally bounded,
we obtain that the above function is globally bounded, hence the statement. �

6.2. Positive metrics on globally generated line bundles. In this section, X
is a horosymmetric variety and L is a globally generated and big line bundle on X .

Proposition 6.3. Let q be a non-negatively curved, K-invariant, locally bounded
Hermitian metric on L with toric potential u. Assume in addition that its restriction
to L|G/H is smooth and positively curved. Then

(1) u is a smooth, strictly convex, W̄ -invariant function,
(2) there exists a constant C such that w−2∆t − C ≤ u ≤ w−2∆t + u(0),
(3) a 7→ dau defines a diffeomorphism from as onto Int(−2∆t),
(4) a 7→ dau defines a diffeomorphism from Int(a+s ) onto Int(−(2∆t ∩ C̄+)).

Proof. Without loss of generality, we may assume that X is toroidal via the dis-
coloration procedure. Then the first property directly follows from restriction to
the toric subvariety. The second property is a translation of Proposition 6.1, with
the additional input that by convexity and since w−2∆t is piecewise linear, we can
take u(0) as constant on one side. Then the third property is a consequence of the
second, and the fourth follows by W̄ -invariance. �

Remark 6.4. Note that the open dense orbit is contained in the ample locus of
any big line bundle on X , hence there are Hermitian metrics as in the statement of
Proposition 6.3.
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The convex conjugate u∗ : a∗s → R ∪ {+∞} of u is the convex function defined
by

u∗(p) = sup
y∈as

(p(y)− u(y)).

If u is the toric potential of a metric q as in Proposition 6.3, then u∗ is W̄ -invariant
and u∗ = +∞ on a∗s \ −2∆t. Furthermore, we have u∗(p) = p(a) − u(a) whenever
p = dau ∈ Int(−2∆t).

6.3. Metric induced on a facet. Let L be a G-linearized line bundle on a
horosymmetric embedding (X, x) of G/H . Assume that L admits a special sec-
tion s and write the special divisor as DL =

∑

Y nY Y +
∑

D nDD. For every facet
Y of X , let µY ∈ Y(Ts) denote the indivisible generator of the ray corresponding
to Y in the colored fan of X , denote by EY ⊂ X the corresponding elementary
embedding and let xY = limz→0 µY (z) · x.

For each facet Y , we choose a complement aY of RµY in as as in Section 4.3,
corresponding to a torus Ts,Y . Note that the torus Ts,Y is a maximal split torus
for the involution associated to Y as in Section 4.3.

Let h be a Hermitian metric on L and assume that it is smooth on the elementary
embedding EY . Denote by ψ : bH 7→ −2 ln |s(bH)|h the potential of h with respect
to the special section s.

There exists a unique λ ∈ X(T/(T ∩H)TY )⊗Q such that λ(µY ) = −nY . Up to
taking a tensor power of L, we may thus find a rational B-semi-invariant function
f ∈ C(X) such that ordY (f) = −nY and f(x) = 1. Let sλ = fs denote a B-semi-
invariant section obtained by multiplying the section s by f . Then the section sλ
does not vanish identically on Y , and its restriction to Y is further a special section
for L|Y . The potential ψλ of h with respect to sλ is defined on the whole EY and
satisfies, for b ∈ B, ψλ(bH) = ψ(bH)− 2 lnλ(b).

The toric potential of h is u(a) = ψ(exp(a) · x) and the toric potential of the
restriction of h to L|Y is the function uY defined by uY (b) = ψλ(exp(b) · xY ) for
b ∈ aY . Let us also define the function uλ on as by uλ(a) = ψλ(exp(a) · x) =
u(a)− 2λ(a). Note that dauλ = dau− 2λ and that dkuλ = dku for k ≥ 2.

Proposition 6.5. For any integer k ∈ N, for any sequence of real numbers (tj)
such that lim tj = −∞, and for any sequence (bj) of elements of aY such that
lim bj = b ∈ aY , we have

lim dktjµY +bjuλ(b1, . . . , bk) = dkbuY (b1, . . . , bk)

and, assuming k ≥ 1 and j < k,

lim dktjµY +bjuλ(µY , . . . , µY , b1, . . . , bj) = 0.

Proof. These statements are essentially direct consequences of the use of log coor-
dinates near a divisor. The first statement follows directly from the smoothness of
h, hence of ψλ, once one remarks that uλ(tjµY + bj) = ψλ(exp(tjµY + bj) · x) and
uY (b) = ψλ(exp(b) · x) by definition.

For the second limit, fix for clarity a basis l1, . . . , lr−1 of aY , so that together
with µY it yields an identification of the toric subvariety Z with (C∗)r−1×C. Under
this identification, the vector field lj corresponds to ∂/∂ ln |zj |, and µY to ∂/∂ ln |zr|
which is not defined on the divisor zr = 0. On the other hand, the vector field

∂

∂|zr|
=

1

|zr|

∂

∂ ln |zr|
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extends to the whole toric subvariety. Again by smoothness,

lim dkexp(tjµY +bj)·xψλ(∂/∂|zr|, . . . , ∂/∂|zr|, b1, . . . , bj)

is well defined and finite for any vector fields bk that extend to the divisor zr = 0.
Translating in terms of the function uλ yields the result since |zr|r−j converges to
zero. �

Assume now that h is positively curved on the elementary embedding EY ⊂ X .
Then we may consider the convex conjugates u∗, u∗λ and u∗Y .

Proposition 6.6. Let b ∈ aY . Then at p = dbuY we have

u∗Y (p) = u∗λ(p) = u∗(p+ 2λ).

Proof. The second inequality follows from elementary properties of the convex con-
jugate. For the other equality, we have

u∗Y (dbuY ) = dbuY (b)− uY (b)

= lim dtjµY +bjuλ(tjµY + bj)− uλ(tjµY + bj)

for any sequences such that lim tj = −∞ and lim bj = b by Proposition 6.5

= limu∗λ(dtjµY +bjuλ).

Note that the convex conjugate u∗λ is not a priori continuous up to the boundary,
hence it is not enough to conclude. On the other hand, if we choose t ∈ R we have

u∗λ(dbuY ) = lim
s→1

u∗λ(sdbuY + (1− s)dtµY +buλ).

We may find ts and bs such that sdbuY + (1 − s)dtµY +buλ = dtsµY +bsuλ. The
fact that lims→1 dtsµY +bsuλ = dbuY ensures that lim ts = −∞ and that lim bs = b
(it certainly ensures that bs is bounded, then considering converging subsequences
yields the limit since uY is smooth and strictly convex), hence the statement. �

It is clear from the point of view of the toric subvariety Z that the domain of u∗Y
is the toric polytope −2∆t

Y + 2λ of the restriction of L to Y , translated, which is
the facet of −2∆t + 2λ whose outer normal is µY . Concerning moment polytopes,
we have:

Proposition 6.7 ([Bri]). The moment polytope of L|Y is the codimension one face
of ∆+ whose outer normal in the affine space χ+MR is −µY .

The special polytope ∆Y of L|Y is then ∆+
Y − χ − λ and we have χY = χ + λ

under the usual identifications.

6.4. Volume of a polarized horosymmetric variety. Before applying the re-
sults from this section combined with our computation of the Monge-Ampère oper-
ator to get an integration formula on horosymmetric varieties, we recall the formula
for the degree of a line bundle on a horosymmetric variety. It is a consequence of
a general result of Brion, who proved the formula for any spherical variety. Let
̟ = 1/2

∑

α∈Φ+ α denote the half sum of positive roots.

Proposition 6.8 (Particular case of [Bri89, Théorème 4.1]). Let X be a projective
horosymmetric variety, and L be a G-linearized ample line line bundle on X. Then

Ln = n!

∫

∆+
L

∏

Φ+\E

κ(α, p)

κ(α,̟)
dp
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where E is the set of roots α ∈ Φ+ that are orthogonal to ∆+
L with respect to κ and

dp is the Lebesgue measure on the affine span of ∆+
L , normalized by the translated

lattice χ+ X(T/T ∩H).

In the case of horosymmetric varieties, the set E is exactly Φ+ ∩ Φσ
L. We will

use the notation

PDH(p) =
∏

ΦQu∪Φ+
s

κ(α, p)

κ(α,̟)
=

∏

ΦQu∪Φ+
s

κ(α, α)

2κ(α,̟)
p(α∨)

6.5. Integration on horosymmetric varieties. Let L be a globally generated
and big G-linearized line bundle on a horosymmetric variety X . We assume in this
subsection that h is a locally bounded, non-negatively curved metric on L, smooth
and positive on the restriction of L to G/H . We denote by ω its curvature current.
Assume furthermore that χ vanishes on [l, l].

Let ψ denote a K-invariant function on X , integrable with respect to ωn, and
continuous on G/H . To simplify notations, we denote by ψ(a) the image by ψ of
exp(a)H for a ∈ as. Let ∆′ denote the polytope −2∆t ∩ C̄−.

Proposition 6.9. Let dq denote the Lebesgue measure on the affine span of ∆+,
normalized by the lattice χ + M, let dp denote the Lebesgue measure on M ⊗ R

normalized by M. Then there exist a constant C′
H , independent of h and ψ, such

that
∫

X

ψωn =
C′

H

2n

∫

∆′

ψ(dpu
∗)PDH(2χ− p)dp

= C′
H

∫

χ+∆t∩C̄+

ψ(d2χ−2qu
∗)PDH(q)dq.

Proof. Since ωn puts no mass on X \G/H , we may first note that
∫

X

ψωn =

∫

G/H

ψωn

Then by K-invariance and Proposition 3.7, this is equal to

CH

∫

−a
+
s

ψ(a)JH(a)
ωn

dVH
(exp(a)H)da.

Now by definition of JH and Corollary 3.13, this is equal to

CH

∫

−a
+
s

n!

22r+|ΦQu |ψ(a)
∏

α∈ΦQu

(2χ− dau)(α
∨)

∏

β∈Φ+
s

(−dau)(β
∨) det(d2u)(a)da

We then use the change of variables 2p = dau and thanks to Proposition 6.3 we
obtain
∫

X

ψωn = CH

∫

(−∆t)∩C̄−

n!2|Φ
+
s |−rψ(d2pu

∗)
∏

α∈ΦQu

(χ− p)(α∨)
∏

β∈Φ+
s

(−p)(β∨)dp

where dp is for the moment a Lebesgue measure independent of ψ. Actually by
considering a constant ψ, hence the volume of L, we see that the Lebesgue measure
is further independent of the choice of q.
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The assumption that χ vanishes on [l, l] ensures that χ(β∨) = 0 for all β ∈ Φ+
s ,

hence using the change of variables q = χ− p, we get
∫

X

ψωn = n!2|Φ
+
s |−rCH

∫

χ−(−∆t)∩C̄−

ψ(d2χ−2qu
∗)

∏

α∈ΦQu∪Φ+
s

q(α∨)dq.

Taking the constant C′
H to be the covolume of the lattice X(T/T ∩ H) under dp

times the constant

n!22|Φ
+
s |+|ΦQu |−rCH

∏

α∈ΦQu∪Φ+
s

κ(α,̟)

κ(α, α)

we obtain the result. �

Corollary 6.10. Assume that Lm admits a global Q-semi-invariant section for
some m > 0. Then the constant C′

H in Proposition 6.9 is equal to n!(2π)n and the
integration is over ∆+ in the second equality.

Proof. It follows from applying Proposition 6.9 to the constant function ψ = 1
(2π)n ,

using Corollary 5.14 to check that the integration is over ∆+, and comparing with
Brion’s formula for the degree of a line bundle (Proposition 6.8). �

7. Mabuchi Functional and coercivity criterion

7.1. Setting. We fix in this section a Q-line bundle L on an n-dimensional smooth
horosymmetric variety X . We assume that there exists a positive integer m such
that Lm is an ample line bundle, with a fixed G-linearization, and that it admits a
global holomorphic Q-semi-invariant section. Let ∆+ denote the moment polytope
of L, and ∆′ = −2(∆+−χ) where χ is the isotropy character of L. As a consequence
of Corollary 5.14, we may fix a point λ0 in the relative interior of ∆+ ∩ X(T/T ∩
[L,L])⊗R. The point 2(χ−λ0) is then in the interior of ∆′∩X(Ts/Ts∩ [L,L])⊗R.

We will make the following additional assumptions:

(T) the horosymmetric variety X is toroidal, and whenever a facet of ∆+ in-
tersects a Weyl wall, either the facet is fully contained in the wall or its
normal belongs to the wall, furthermore, ∆+ intersects only walls defined
by roots in ΦL,

(R) for any restricted Weyl wall, there are at least two roots in Φ+
s that vanish

on this Weyl wall.

Unlike the assumption that L is trivial on the symmetric fibers, these assump-
tions are very likely not meaningful. We use these to provide a rather general
application of the setting we developed for Kähler geometry on horosymmetric va-
rieties in a paper with reasonable length. We have no claim of giving the most
general statement, and expect that at least assumption (R) can be removed with-
out too much difficulties. Once this is achieved, removing assumption (T) should
require an analysis similar to that given by Li-Zhou-Zhu in [LZZ18] to treat non-
toroidal group compactifications. Finally, removing the assumption that L is trivial
on the symmetric fibers appears to be a much more challenging problem in view of
the expression of the curvature form, as convex conjugacy in this generality seems
to be a bit less helpful.

Note that these assumptions are satisfied in a large variety of situations. We
expect that the second part of assumption (T), in terms of the moment polytope,
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is actually implied by the assumption that X is toroidal. This is true at least for
symmetric varieties and horospherical varieties. Assumption (R) is satisfied for
example when the symmetric fiber is of group type, of type AIII(r, n > 2r), of
type AII(p), but unfortunately not when the symmetric fiber is of type AI(m). It
is obviously satisfied if the variety X is horospherical.

Recall that we fixed an anticanonical Q-divisor Dac with a decomposition Dac =
Dac

f + Dac
P in Section 5.4 such that O(Dac

P ) = f∗K−1
G/P on the complement X̂ of

codimension ≥ 2 orbits, and Dac
f =

∑

Y nY Y where

nY = 1−
∑

α∈ΦQu∪Φ+
s

α ◦ P(µY ).

Let Θ be a G-stable Q-divisor on X with simple normal crossing support. Write
Θ =

∑

cY Y and set

nY,Θ = −cY + 1−
∑

α∈ΦQu∪Φ+
s

α ◦ P(µY ).

We assume all coefficients cY satisfy cY < 1. Recall that we denote
∑

α∈ΦQu
α ◦H

by χac and this is the isotropy character associated to the anticanonical line bundle
on G/H .

Fix a smooth K-invariant positive reference metric href on L, and denote its
curvature form by ωref . Let rPSHK(X,ωref) denote the space of smoothK-invariant

strictly ωref-plurisubharmonic potentials on X . The functions in rPSHK(X,ωref)
are in one-to-one correspondence with smooth positive Hermitian metrics on L.
We denote by hφ the metric corresponding to φ ∈ rPSHK(X,ωref) and we write
ωφ = ωref+i∂∂̄φ for the curvature of hφ, which depends on φ only up to an additive
constant.

To any φ ∈ rPSHK(X,ωref) is associated a toric potential u: the toric potential
of hφ. Note that under our assumptions (X is smooth and toroidal) and by Propo-
sition 4.17, X admits a smooth toric submanifold Z, and u is the toric potential of
the restriction of hφ to the restricted ample Q-line bundle L|Z , hence the convex
potential u∗ of u satisfies the Guillemin-Abreu regularity conditions in terms of the
polytope −∆t.

7.2. Scalar curvature. The scalar curvature S of a smooth Kähler form ω is
defined by the formula

S =
nRic(ω) ∧ ωn−1

ωn

Note that Ric(ω) is the curvature form of the metric on K−1
X corresponding to

the volume form ωn, whose toric potential we denote by ũ. Assuming that ω is
the curvature form of a metric on L, one can determine this toric potential using
Theorem 3.10. Using the liberty to choose the multiplicative constant for the section
defining the toric potential (a multiple of the dual of

∧

♦ γ♦), we may assume that,

ũ(a) = − ln det d2au−
∑

α∈ΦQu∪Φ+
s

ln((2χ− dau)(α
∨))

+
∑

β∈Φ+
s

ln sinh(−2β(a))−
∑

α∈ΦQu

2α(a),

for a ∈ −a+s .



KÄHLER GEOMETRY OF HOROSYMMETRIC VARIETIES 49

We will, for the rest of the section, fix a choice of orthonormal basis (lj)j of as
(with respect to some fixed scalar product whose corresponding Lebesgue measure
is normalized by M) and corresponding dual basis (l∗j ) of a∗s. Write α∨,j for the

coordinates of α∨. We use the notations dau =
∑

j uj(a)l
∗
j , (u

j,k) for the inverse

matrix of (uj,k), etc. To simplify notations, summation symbols will sometimes be
omitted in which case we sum over repeated indices in a given term. For example

ũ = − ln det(ul,m)−
∑

α∈ΦQu∪Φ+
s

ln((2χl − ul)α
∨,l) + IH

where IH(a) =
∑

β∈Φ+
s
ln sinh(−2β(a))−

∑

α∈ΦQu
2α(a). Set p = dau and consider

both a and p as variables in the dual spaces as and a∗s. Finally, let P ′
DH(p) =

PDH(2χ− p).

Proposition 7.1. The scalar curvature at exp(a)H is equal to

− u∗,i,ji,j (p) +
(

− 2u∗,i,jj (p) + (IH)i(a)
)P ′

DH,i

P ′
DH

(p) + u∗i,j(p)IH,i,j(a)

− u∗,i,j(p)
P ′
DH,i,j

P ′
DH

(p) +
∑

α∈ΦQu

2χac(α∨)

(2χ− p)(α∨)

Proof. We compute, using Jacobi’s formula,

ũj = −ul,mum,l,j −
∑

α∈ΦQu∪Φ+
s

−ul,jα∨,l

(2χ− ul)α∨,l
+ IH,j .

Using the variable p = dau and convex conjugate, we have dpu
∗ = a, d2au =

(d2pu
∗)−1 and thus u∗,i,jj (p) = uk,j(a)uj,k,i(a). We may then give another expression

of ũj :

ũj(a) = −u∗,j,ii (p)−
∑

α∈ΦQu∪Φ+
s

−u∗,l,j(p)α∨,l

(2χ− p)(α∨)
+ IH,j(dpu

∗).

then

ũj,k(a) = −u∗,j,ii,s (p)u∗,s,k(p)−
∑

α∈ΦQu∪Φ+
s

(

−u∗,l,jα∨,l

(2χ− p)(α∨)

)

s

(p)u∗,s,k(p)

+ IH,j,k(a).

We now compute for a ∈ −a+s ,

nRic(ωφ) ∧ ω
n−1
φ

ωn
φ

= Tr((ũl,m(a))(ul,m(a))) +
∑

α∈ΦQu∪Φ+
s

−ũl(a)α∨,l

(2χ− p)(α∨)

+
∑

α∈ΦQu

2χac(α∨)

(2χ− p)(α∨)
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which, by using the previous expressions, is equal to

− u∗,i,ji,j +
∑

α∈ΦQu∪Φ+
s

2
u∗,i,jj α∨,i

(2χ− p)(α∨)
−

∑

α,β∈ΦQu∪Φ+
s

u∗,i,jα∨,iβ∨,j

(2χ− p)(α∨)(2χ− p)(β∨)

−
∑

α∈ΦQu∪Φ+
s

u∗,i,jα∨,iα∨,j

((2χ− p)(α∨))2
+ u∗i,j(IH)i,j(a)

−
∑

α∈ΦQu∪Φ+
s

(IH)i(a)α
∨,i

(2χ− p)(α∨)
+

∑

α∈ΦQu

2χac(α∨)

(2χ− p)(α∨)

Recall that P ′
DH(p) = PDH(2χ− p), and note that

P ′
DH,i(p) = P ′

DH(p)
∑

α

−α∨,i

(2χ− p)(α∨)

and

P ′
DH,i,j(p) = P ′

DH(p)





∑

α,β

α∨,iβ∨,j

(2χ− p)(α∨)(2χ− p)(β∨)
+
∑

α

α∨,iα∨,j

(2χ− p)(α∨)2



 .

Plugging this into the last expression of the scalar curvature yields the result. �

Remark 7.2. The computation of the scalar curvature here is only on the homo-
geneous space, hence holds under weaker hypothesis than in the setting: we only
need to assume that L is a line bundle on G/H whose restriction to the symmetric
fiber is trivial, and that h is a smooth and positive metric on L.

Remark 7.3. When G/H is horospherical, IH is linear hence IH,i,j = 0 and IH,i

is constant. We can then write the formula in the more concise form

−W−1(Wu∗,i,j)i,j + f

where W = P ′
DH and f(p) = IH,i

P ′
DH,i

P ′
DH

(p) +
∑

α∈ΦQu

2χac(α∨)
(2χ−p)(α∨) which provides a

generalization of Donaldson and Nyberg’s formula [Don08] and [Nyb].

7.3. The functionals.

7.3.1. The J-functional. The J-functional is defined (up to a constant) on the space

rPSHK(X,ωref) by its variations as follows: if φt is a smooth path in rPSHK(X,ωref)
between the origin and φ, then

J(φ) =

∫ 1

0

∫

X

φ̇t
ωn
ref − ωn

φt

(2π)nLn
dt.

Proposition 7.4. Let u denote the toric potential of hφ. Then
∣

∣

∣

∣

J(φ) − u(0)−
n!

Ln

∫

∆+

u∗(2χ− 2q)PDH(q)dq

∣

∣

∣

∣

is bounded independently of φ.

Proof. We have

J(φ) =

∫

X

φ
ωn
ref

(2π)nLn
−

∫ 1

0

∫

X

φ̇t
ωn
φt

(2π)nLn
dt.
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The definition of convex conjugate yields u̇∗t (dau) = −u̇t(a) hence by Proposi-
tion 6.9 and Corollary 6.10, we have

∫ 1

0

∫

X

φ̇tω
n
φt
dt = −

∫ 1

0

C′
H

∫

χ+∆t∩C̄+

u̇∗t (2χ− 2q)PDH(q)dq

= −C′
H

∫

χ+∆t∩C̄+

(u∗ − u∗ref)(2χ− 2q)PDH(q)dq

= −(2π)nn!

∫

∆+

(u∗ − u∗ref)(2χ− 2q)PDH(q)dq

On the other hand, it follows from classical results [GZ05, Proposition 2.7] that

∣

∣

∣

∣

1

(2π)nLn

∫

X

φωn
ref − sup

X
(φ)

∣

∣

∣

∣

is bounded independently of φ ∈ rPSHK(X,ωref ). We have

• supX(φ) = supas
(u− uref),

• w−2∆t − C1 ≤ uref ≤ w−2∆t + uref(0) for some constant C1 by Proposi-
tion 6.3, and

• supas
u− w−2∆t = u(0) by convexity,

hence
∣

∣

∣

∣

∫

X

φωn
ref − (2π)nLnu(0)

∣

∣

∣

∣

is bounded independently of φ. �

7.3.2. Mabuchi functional. Denote by S̄ the average scalar curvature, defined as

S̄ =

∫

X
nRic(ω) ∧ ωn−1

∫

X ωn
.

The (log)-Mabuchi functional MabΘ relative to Θ is defined also by integration
along smooth path: MabΘ(φ) is equal to

∫ 1

0

{

∫

X

φ̇t(S̄Θωφt − nRic(ωφt)) ∧
ωn−1
φt

(2πL)n
+ 2πn

∑

Y

cY

∫

Y

φ̇t
ωn−1
φt

(2πL)n

}

dt

where S̄Θ = S̄ − n
∑

Y cY L|
n−1
Y /Ln.

Let ∆̃+
Y denote the bounded cone with vertex λ0 and base ∆+

Y . Note that in

general ∆+ 6=
⋃

Y ∆̃+
Y . It is however the case under assumption (T), that is if we

assume that X is toroidal. We set ΛY = (nY − cY )/vL(µY ).
Recall that we treat several quantities as variables: a ∈ −a+s , p ∈ ∆′ = −2∆t ∩

C̄− and q ∈ ∆+, with the change of variables formula p = dau (hence a = dpu
∗),

and p = 2χ− 2q.



52 THIBAUT DELCROIX

Theorem 7.5. Under assumption (T), up to the choice of a normalizing additive
constant, Ln

n! MabΘ(φ) is equal to

∑

Y

ΛY

∫

∆̃+
Y

(

nu∗(p)− u∗(p)
∑ χ(α∨)

q(α∨)
+ dpu

∗(p)
)

PDH(q)dq

+

∫

∆+

u∗(p)
(

∑ χac(α∨)

q(α∨)
− S̄Θ

)

PDH(q)dq −

∫

∆+

IH(a)PDH(q)dq

−

∫

∆+

ln det(u∗i,j)(p)PDH(q)dq

Proof. The summands
∫ 1

0

∫

X

φ̇tS̄Θω
n
φt
dt/(2πL)n

and
∫ 1

0

2πn
∑

Y

cY

∫

Y

φ̇tω
n−1
φt

dt/(2πL)n

may be dealt with as in the computation for J , yielding respectively

S̄Θ
n!

Ln

∫

∆+

(u∗ref − u∗)(2χ− 2q)PDH(q)dq

and
∑

Y

cY
n!

Ln

∫

∆+
Y

(u∗ref − u∗)(2χ− 2q)PDH(q)dqY .

The harder part is
∫ 1

0

∫

X

−nφ̇tRic(ωφt) ∧ ω
n−1
φt

/(2πL)ndt.

Using the integration formula as well as the formula for the scalar curvature, we
have

I :=

∫

X

−nφ̇tRic(ωφt) ∧ ω
n−1
φt

=

∫

X

−nφ̇t
Ric(ωφt) ∧ ω

n−1
φt

ωn
φt

ωn
φt

=
C′

H

2n

∫

∆′

u̇∗t

(

− u∗,i,jt,i,j P
′
DH − 2u∗,i,jt,j P ′

DH,i − u∗,i,jt P ′
DH,i,j

+ u∗t,i,jIH,i,j(a)P
′
DH + IH,i(a)P

′
DH,i +

∑

α∈ΦQu

2χac(α∨)

(2χ− p)(α∨)
P ′
DH

)

dp

where the variable, if omitted, is p = dau.
Apart from the last term, the situation is analogous to Li-Zhou-Zhu [LZZ18]

hence we may follow the same steps. However note that translation by χ in the
Duistermaat-Heckman polynomial will sometimes introduce extra terms. Denote
by ν the unit outer normal to ∂∆′. On a codimension one face corresponding to a
facet Y of X , ν is a positive multiple of µY .

We will apply several times the divergence theorem as follows, without writing
the details every time. For 0 < s < 1, let ∆′

s denote the bounded cone with vertex
2(χ − λ0) and base the dilation by s of the boundary s∂∆′. We may apply the
divergence theorem on ∆′

s to smooth functions on the interior of −2∆t, then take
the limit as s → 1, applying dominated convergence and using the appropriate
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convergence result. We let dσ denote the area measure on all boundaries (note that
on ∆Y it is a multiple of dpY in general).

It follows from Proposition 6.5 applied both to the metric h with toric potential
u and to the metric induced on the anticanonical line bundle with toric potential
ũ that for p ∈ ∆′

Y and any i,

lim
s→1

ui,j(dspu
∗)νj = 0

and

lim
s→1

ũj(dspu
∗)(µY )j = nY .

Recall that

ũj(a) = −u∗,j,ii (p)−
∑

α∈ΦQu∪Φ+
s

−u∗,l,j(p)α∨,l

(2χ− p)(α∨)
+ IH,j(dpu

∗).

Note that the standard way to obtain the above limits is by checking that they
hold on the standard Guillemin-Abreu potential, then check that it extends to all
smooth potentials. We use Proposition 6.5 to stress that it boils down to a very
elementary consequence of the use of log coordinates near a divisor.

We deduce from these facts, and the fact that P ′
DH vanishes on restricted Weyl

walls, that

lim
s→1

∫

∂∆′
s

u̇∗t (−u
∗,i,j
t,j + IH,i(a))νiP

′
DHdσ =

∑

Y

∫

∆′
Y

2nY
ν

µY
u̇∗tP

′
DHdσ

where ∆′
Y denotes the facet of ∆′ whose outer normal is µY .

A first application of the divergence theorem then yields, by passing to the limit,
that the above quantity is equal to

∫

∆′

(

u̇∗t (−u
∗,i,j
t,j + IH,i(a))P

′
DH

)

i
dp.

We may compute
(

u̇∗t (−u
∗,i,j
t,j + IH,i(a))P

′
DH

)

i
=− u̇∗t,iu

∗,i,j
t,j P ′

DH + u̇∗t,iIH,i(a)P
′
DH

− u̇∗tu
∗,i,j
t,i,jP

′
DH + u̇∗tu

∗
j,iIH,i,j(a)P

′
DH

− u̇∗tu
∗,i,j
t,j P ′

DH,i + u̇∗t IH,i(a)P
′
DH,i

and

u̇∗t,iIH,i(a)P
′
DH =

d

dt
(IH(a)P ′

DH).

Consider now the vector field (u̇∗t,iP
′
DH−u̇∗tP

′
DH,i)u

∗,i,j
t . Applying the divergence

theorem to this vector field yields

0 =

∫

∆′

(u̇∗t,i,ju
∗,i,j
t P ′

DH + u̇∗t,iu
∗,i,j
t,j P ′

DH − u̇∗tu
∗,i,j
t,j P ′

DH,i − u̇∗tu
∗,i,j
t P ′

DH,i,j)dp

Note here that

u̇∗t,i,ju
∗,i,j
t =

d

dt
(ln det(u∗t,i,j)).

From these two applications of the divergence theorem and the expression of the
scalar curvature, we deduce by taking the sum that I is C′

H/2
n times the derivative
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with respect to t of

∑

Y

∫

∆′
Y

2nY
ν

µY
u∗tP

′
DHdσ −

∫

∆′

IH(a)P ′
DHdp−

∫

∆′

ln det(u∗t,i,j)P
′
DHdp

+

∫

∆′

u∗t
∑

α∈ΦQu

2χac(α∨)

(2χ− p)(α∨)
P ′
DHdp

hence the value of the above expression at t = 1 is the corresponding term of the
Mabuchi functional, up to a constant independent of φ.

We finally use the divergence theorem one last time, applied to the vector field
u∗tpiP

′
DH to obtain, for every Y ,
∫

∆′
Y

piνiu
∗
tP

′
DHdσ =

∫

∆̃′
Y

(u∗tP
′
DH,ipi + ru∗tP

′
DH + u∗t,ipiP

′
DH)dp

=

∫

∆̃′
Y

(nu∗t − u∗t
∑

α

2χiα
∨,i

(2χ− p)(α∨)
+ u∗t,ipi)P

′
DHdp

Since 2nY
ν
µY

= nY

vL(µY )p(ν) and dpY = p(ν)
vL(µY )dσ, where dpY is the image of the

measure dqY under translation by −χ then dilation by 2. This allows to transform
the remaining integrals on ∆′

Y or ∆+
Y to integrals on ∆+, after the change of variable

from p to q. Putting everything together gives the result. �

Remark 7.6. As a corollary of the proof, by applying the same steps, we can
compute S̄Θ. We obtain

S̄Θ =
∑

Y

∫

∆̃+
Y

(nΛY PDH(q) + dqPDH(χac − ΛY χ))dq
/

∫

∆+

PDH(q)dq.

7.4. Action of Z(L)0. Following Donaldson [Don02], let us write the Mabuchi

functional as the sum of a linear and a non-linear part MabΘ = MablΘ +MabnlΘ by
setting

Ln

n!
MablΘ(φ) =

∑

Y

ΛY

∫

∆̃+
Y

(nu∗(p)− u∗(p)
∑ χ(α∨)

q(α∨)
+ dpu

∗(p))PDH(q)dq

+

∫

∆+

u∗(p)(
∑ χac(α∨)

q(α∨)
− S̄Θ)PDHdq +

∫

∆+

4ρH(a)PDH(q)dq

where 2ρH =
∑

α∈ΦQu∪Φ+
s
α ◦ P . We will use the notation M l(u∗) to denote the

above as a function of u∗, where u∗ is the convex conjugate of the toric potential
of hφ. Similarly, we use the notation Mnl(u∗) = Ln

n! MabΘ(φ) −M l(u∗).

Remark 7.7. In the last step of the proof of Theorem 7.5, if we apply the diver-
gence theorem to the vector field 4u∗P ′

DHρH instead of u∗t piP
′
DH , and recalling that

nY = 1− 2ρH(µY ), we obtain another expression of the linear part of the Mabuchi

functional Ln

n! MablΘ(φ):

M l(u∗) =
∑

Y

1− cY
vL(µY )

∫

∆′
Y

p(ν)u∗(p)P ′
DH(p)dσ −

∫

∆+

dpP
′
DH(4ρH)u∗(p)dp

+

∫

∆+

u∗(p)(
∑ χac(α∨)

q(α∨)
− S̄Θ)PDHdq.
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7.4.1. Invariance of Mabuchi functional and log-Futaki invariant. Consider the con-
nected center Z(L)0 of L. It acts on the right on G/H and the action extends to
X . The induced action on K-invariant singular Hermitian metrics on L stabilizes
the set rPSHK(X,ωref). More precisely, for b ∈ as ∩ z(l), and h a K-invariant, non-
negatively curved singular Hermitian metric on L with toric potential u, the toric
potential of the image by exp(b) of h is a 7→ u(a + b). This translates on convex
conjugates as replacing u∗ by u∗b = u∗ − b. Note that it is enough to consider only
elements of as ∩ z(l) since Z(L)0 = T ∩ Z(L)0, and T ∩ H as well as T ∩ K act
trivially. Since du∗b = du∗ − b, α(b) = 0 for α ∈ ΦL, χ(b) = 0 and d2u∗b = d2u∗, we
have the following proposition.

Proposition 7.8. The Mabuchi functional is invariant under the action of Z(L)0

on the right if and only if

0 =
∑

Y

∫

∆̃+
Y

−2q(b)
(

((n+ 1)ΛY − S̄Θ)PDH(q) + dqPDH(χac − ΛY χ)
)

dq

+

∫

∆+

2
∑

α∈ΦQu

α(b)PDH(q)dq

for all b ∈ as ∩ z(l).

The expression in the above statement could naturally be interpreted as a log
Calabi-Futaki invariant.

7.4.2. Normalization of potentials. The action of Z(L)0 allows on the other hand
to normalize the psh potentials, as follows. Given φ ∈ rPSH(X,ωref), we may add
a constant and use the action of an element of Z(L)0 to obtain another potential

φ̂ ∈ rPSH(X,ωref), such that if û is the corresponding toric potential, and û∗ its
convex conjugate, we have min−2∆t û∗ = û∗(2(χ− λ0)) = 0.

7.5. Coercivity criterion.

7.5.1. Statement of the criterion and examples.

Definition 7.9. The Mabuchi functional is coercive modulo the action of Z(L)0

if there exists positive constants ǫ and C such that for any φ ∈ rPSHK(X,ωref ),
there exists g ∈ Z(L)0 such that

MabΘ(φ) ≥ ǫJ(g · φ)− C.

Consider the function FL defined piecewise by

FL(q) = (n+ 1)ΛY − S̄Θ +
∑ (χac − ΛY χ)(α

∨)

q(α∨)

for q in the unbounded cone with vertex λ0 − χ and generated by ∆̃+
Y . Note that

FλL(q) =
1
λFL(q). The Mabuchi functional for the line bundle L is coercive if and

only if it is coercive for any positive rational multiple of L. As an application of
this remark, if FL > 0, we may choose the multiple λL in such a way that

∫

∆+

PDHdq =
∑

Y

∫

∆̃+
Y

FλL(q)PDH(q)dq.
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Figure 4. Moment polytopes for type AIII(2, 5)

•
ᾱ1,3 = (1, 0)

ᾱ2,3

(1, b)

( 1+b
2 , 1+b

2 )

(0, 0)

∆̃+
Y2

∆̃+
Y1

We now replace L by its multiple to assume the equality above is satisfied with
λ = 1. We then define a barycenter of ∆+ by:

bar =
∑

Y

∫

∆̃+
Y

qFL(q)PDH(q)dq/

∫

∆+

PDHdq.

Theorem 7.10. Assume the following:

• FL > 0,
• (minY ΛY )(bar−χ)−2ρH is in the relative interior of the dual cone of a+s ,
• assumptions (T) and (R) are satisfied.

Then the Mabuchi functional is coercive modulo the action of Z(L)0.

Example 7.11. We have determined in previous examples everything that is nec-
essary to check when the criterion apply for the example of the wonderful com-
pactification X of, say, the symmetric space of type AIII(2, 5). We consider the
ample Cartier divisors (1 + b)Y1 + Y2 for 0 < b < 1 rational, and corresponding
uniquely G-linearized Q-line bundles. They run over all ample divisors on X that
are trivial on the open orbit, up to rational multiple. We illustrate in Figure 4 the
corresponding polytopes and subdivision by ∆̃+

Y1
and ∆̃+

Y2
. Then it is easy, with

computer assistance, to check when the criterion is satisfied in terms of b, and we
obtain bounds b− ≃ 0.31 and b+ ≃ 0.54 such that when b− < b < b+, the Mabuchi
functional (for L = O((1 + b)Y1 + Y2) and Θ = 0) is coercive modulo the action of
Z(L)0.

Remark 7.12. The two first assumptions imply readily, from the last section, that
the Mabuchi functional is invariant under the action of Z(L)0.

If L = K−1
X,Θ then ΛY = 1 for all Y , S̄Θ = n, and χ = χac (up to changing the

linearization of L by a character of G). Furthermore,

χac + 2ρH =
∑

α∈ΦQu∪Φ+
s

α ◦ H +
∑

α∈ΦQu∪Φ+
s

α ◦ P =
∑

α∈ΦQu∪Φ+
s

α.

We then have the corollary:

Corollary 7.13. If L = K−1
X,Θ then the Mabuchi functional is coercive modulo

the action of Z(L)0 if assumptions (T) and (R) are satisfied and the translated
barycenter bar−

∑

α∈ΦQu∪Φ+
s
α is in the relative interior of the dual cone of a+s .

Remark 7.14. This generalizes the criterion for existence of Kähler-Einstein met-
rics obtained in [Del16] in the sufficient direction. In fact the condition is also
necessary in this case, as would follow from a computation of log-Donaldson-Futaki
invariants along special equivariant test configurations for example.
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Remark 7.15. In the case of group compactifications, assumption (R) is automat-
ically satisfied, and we may use [LZZ18] in the later stages of the proof to remove
assumption (T).

We prove Theorem 7.10 in the following subsections so unless otherwise stated
we make the assumptions as in the statement.

7.5.2. Inequality for MablΘ. Assume u∗ = û∗ is normalized as in Section 7.4.2.
Note the following elementary lemma, following directly from the convexity and
normalization of û∗. Recall that dσ denotes the area measure induced by the
Lebesgue measure with respect to a fixed scalar product on a∗s.

Lemma 7.16. Assume u∗ is normalized, then
∫

∆′

u∗(p)P ′
DH(p)dp ≤ C∂

∫

∂∆′

u∗P ′
DH(p)dσ

for some constant C∂ independent of u∗.

Proposition 7.17. Under the assumptions of Theorem 7.10, there exists a positive
constant Cl such that for any normalized u∗,

M l(u∗) ≥ Cl

∫

∂∆′

u∗P ′
DH(p)dσ.

Proof. Suppose there exists a sequence of normalized u∗j such that

∫

∂∆′

u∗jP
′
DH(p)dσ = 1

and M l(u) decreases to 0. By a compactness theorem proved by Donaldson [Don08,
Section 5.2], we may assume that u∗j converges locally uniformly on −2∆t to a
convex function v∞, still satisfying v∞(2(χ− λ0)) = min v∞ = 0.

Let p0 = 2χ− 2bar. By convexity of u∗ we have dpu
∗(p− p0) ≥ u∗(p)− u∗(p0),

hence

Ml(u∗) ≥
∑

Y

∫

∆̃′
Y

FL(q)(u
∗(p)− u∗(p0)− dp0u

∗(p− p0))P
′
DH(p)dp

+
∑

Y

∫

∆̃′
Y

dpu
∗(ΛY p0 + 4ρH)P ′

DH(p)dp

+
∑

Y

∫

∆̃′
Y

FL(q)dp0u
∗(p− p0)P

′
DH(p)dp

+
∑

Y

∫

∆̃′
Y

(

nΛY − S̄Θ +
∑ (χac − ΛY χ)(α

∨)

q(α∨)

)

u∗(p0)P
′
DH(p)dp

The last summand vanishes by the expression of S̄Θ obtained in Remark 7.6.
The third summand, on the other hand, vanishes by definition of p0. The second
term is non-negative by the assumptions of Theorem 7.10 and the first term is
non-negative by convexity of u∗.

Then the fact that M l(uj) converges to zero implies that v∞ is an affine function
by the first term, and that its linear part is given by an element of Y(Ts/[L,L])⊗R
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by the second term. Since v∞ is normalized and 2(χ − λ0) is in the interior of
Y(Ts/[L,L])⊗ R ∩∆′, this means that v∞ = 0. As a consequence, we have

∫

∆′

u∗j (p)P
′
DH(p)dp → 0.

Let δ = minY (1 − cY )/vL(µY ), it is positive by assumption. By the expression
of M l given in Remark 7.7, and using again that u∗j converges to 0, we obtain

lim inf
j

M l(u∗j ) ≥ δ > 0,

which provides a contradiction hence proves the proposition. �

Remark 7.18. Assumption (R) was not used at all here.

7.5.3. Proof of coercivity. The strategy to transfer the coercivity result on the linear
part to the full functional now follows a general strategy already used by Donaldson
in [Don02].

First note that −IH(a)− 4ρH(a) ≥ 0 for a ∈ −a+s , so that

Mnl(u∗) ≥ −

∫

∆+

ln det(u∗i,j)(p)P
′
DHdp.

Let ǫ > 0 be a fixed positive number, to be determined later. Working for the
moment on the integrand, we have

ln det(u∗i,j) = ln det(ǫu∗i,j)− r ln ǫ,

then by concavity of − ln det applied to the segment between u∗ref,i,j and ǫu∗i,j we
have

− ln det(u∗i,j) ≥ −ǫu∗,i,jref u∗i,j − u∗,i,jref u∗ref,i,j − ln detu∗ref,i,j − r ln ǫ

We thus have, for some positive constant Ca,

Mnl(u∗) ≥ −Ca(ln ǫ+ 1)− ǫ

∫

∆+

u∗,i,jref u∗i,jP
′
DH

We now use a variant of Donaldson’s integration by parts [Don02, Lemma 3.3.5].
Namely, we apply the divergence theorem to the vector field

u∗,i,jref,iu
∗P ′

DH − u∗,i,jref u∗iP
′
DH + u∗,i,jref u∗P ′

DH,i

to obtain
∑

Y

∫

∆′
Y

u∗P ′
DHdσ =

∫

∆′

(

u∗u∗,i,jref,i,jP
′
DH + u∗2u∗,i,jref,jP

′
DH,i

+ u∗u∗,i,jref P ′
DH,i,j − u∗,i,jref u∗i,jP

′
DH

)

dp.

There is no difficulty for the computation on the right hand side. For the left hand
side on the other hand, we used several ingredients:

• we used assumption (R) to check that P ′
DH,j vanishes on restricted Weyl

walls,
• we used again Proposition 6.5,
• we used the fact that u∗,i,jref u∗i νj converges to zero on the facets of the poly-

tope, which is proved by Donaldson in the proof of [Don02, Lemma 3.3.5].
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It is not hard to check that the term u∗,i,jref,i,jP
′
DH + 2u∗,i,jref,jP

′
DH,i + u∗,i,jref P ′

DH,i,j is
bounded, so we obtain, for some positive constants Cb and Cc,

Mnl(u∗) ≥ −Ca(ln ǫ+ 1)− ǫCb

∫

∂∆′

u∗P ′
DH(p)dσ − ǫCc

∫

∆′

u∗dp

Assumption (T) finally allows us to use Corollary A.4 to obtain, for some positive
constant Cd,

Mnl(u∗) ≥ −Ca(ln ǫ+ 1)− ǫCb

∫

∂∆′

u∗P ′
DH(p)dσ − ǫCcCd

∫

∆′

u∗P ′
DHdp

Putting everything together we have

M(u∗) ≥M l(u∗)− ǫ(CcCd

∫

∆′

u∗(p)P ′
DH(p)dp+ Cb

∫

∂∆′

u∗(p)dp)− Ca(ln ǫ+ 1)

≥ ǫ

∫

∆′

u∗P ′
DH +M l(u∗)− ǫ

(

(CcCd + 1)

∫

∆′

u∗P ′
DH

+ Cb

∫

∂∆′

u∗(p)dp
)

− Ca(ln ǫ+ 1)

≥ ǫ

∫

∆′

u∗P ′
DH +M l(u∗)− ǫ((CcCd + 1)C∂Cl + CbCl)M

l(u∗)

− Ca(ln ǫ+ 1)

≥ ǫ

∫

∆′

u∗P ′
DH − Ca(ln ǫ+ 1),

by choosing ǫ = ((CcCd + 1)C∂Cl + CbCl)
−1.

Proof of Theorem 7.10. Let φ ∈ rPSHK(X,ωref), let φ̂ = g · φ+ C be the normal-
ization of φ, obtained via the action of some g ∈ Z(L)0 and addition of a constant,
then since the assumptions imply that the Mabuchi functional is invariant under

the action of Z(L)0, we have Mab(φ) = Mab(φ̂). By Proposition 7.4, since the toric

potential of a normalized φ̂ satisfies û(0) = 0, we have
∫

∆′ û
∗P ′

DH ≥ Ln

n! J(φ̂) − C
for some constant C independent of φ. Hence we have

MabΘ(φ) =
n!

Ln
M(û∗)

≥ ǫ
n!

Ln

∫

∆′

û∗P ′
DH −

n!

Ln
Ca(ln ǫ+ 1)

≥ ǫJ(φ̂)− C′

for some constant C′ independent of φ. �

Appendix A. Integration away from the walls

For this appendix we work on a finite dimensional Euclidean vector space (V, 〈, 〉).
Given R ⊂ V , s ≤ t ∈ R ∩ {±∞}, we set

Σ(R, s, t) = {x ; ∀α ∈ R, s ≤ 〈α, x〉 ≤ t}.

Let S denote a finite set of unit vectors in V , such that each α ∈ R is the interior
pointing unit normal vector to a facet of the cone Σ(S, 0,∞) (in particular, we
implicitly assume that the cone is of the same dimension as V ). Let ∆ denote a
convex body contained in the cone Σ(S, 0,∞). We introduce two assumptions, to
be used in later statements. The first one concerns ∆ and S:
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Assumption A.1. The convex body ∆ satisfies ∆∩σ(S, 0, 0) 6= ∅ and there exists
ǫ > 0 such that for any α ∈ S

∆ ∩ Σ({α}, 0, ǫ) =
(

(∆ ∩ α⊥)× [0, ǫ]α
)

∩ Σ(S, 0,∞)

(note that the decomposition on the right-hand side is with respect to the orthogonal
decomposition V = α⊥ ⊕ Rα).

The second assumption is an assumption on functions w : ∆ → R:

Assumption A.2. The function w : ∆ → R is non-negative, convex and for any
subset R ⊂ S, for any p ∈ Σ(R, 0, 0), the directional derivative of w at p is non-
negative for any direction ξ ∈ Σ ∩ Vect(R).

Let dp denote a Lebesgue measure on V . The goal of this appendix is to provide
a proof to the following general version of [LZZ18, Lemma 4.6]. Apart from pre-
sentation, the proof is identical to the original, we include it as a courtesy to the
reader and since the version we use in the core of the article does not follow from
the statement of [LZZ18, Lemma 4.6].

Proposition A.3. Assume (S,∆) satisfy Assumption A.1, then there exists ǫ > 0
and C > 0 such that for any w : ∆ → R satisfying Assumption A.2,

∫

∆

wdp ≤ C

∫

∆∩Σ(S,ǫ,∞)

wdp

Note that the assumptions are obviously satisfied if S is the set of simple roots
of a restricted root system, ∆ is the polytope associated to a polarized horosym-
metric variety satisfying assumption (T) as in Section 7 and w is the restriction
of the convex conjugate of a normalized toric potential (which is invariant under
the restricted Weyl group hence satisfy Assumption A.2). The statement used in
the core of the article is rather the following direct consequence, applied to the
Duistermaat-Heckman polynomial.

Corollary A.4. Assume (S,∆) satisfy Assumption A.1, and assume g : ∆ → R is
such that for any ǫ > 0, inf∆∩Σ(S,ǫ,∞) g > 0, then there exists C > 0 such that for
any w : ∆ → R satisfying Assumption A.2,

∫

∆

wdp ≤ C

∫

∆

wgdp

Proof of Proposition A.3. The proof goes by (strong) induction on the cardinality
of S and relies on two ingredients. The first and main ingredient is a decomposition
of ∆ into several parts using Assumption A.1, such that the induction hypothesis
applies to all but one. The second ingredient is an elementary use of convexity and
Assumption A.2 to deal with the remaining part.

Note already that the initialization is trivial: if S is empty, then the statement
is also empty. We now describe the decomposition of ∆. Let S denote the set of
all subsets R of S satisfying ∆ ∩ σ(R, 0, 0) 6= ∅. It contains S itself by assumption.
Fix an ǫ > 0 small enough so that Assumption A.1 holds with this value of ǫ. Set

∆S := ∆ ∩Σ(S, 0, ǫ/2)

then in the orthogonal decomposition V = Σ(S, 0, 0) ⊕ Vect(S), Assumption A.1
shows that

∆S = (∆ ∩ Σ(S, 0, 0))× (Σ(S, 0, ǫ/2) ∩ Vect(S)).
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We can then define, by induction, the subsets ∆R for R ∈ S by setting

∆R := (∆ \
⋃

R⊂R′

∆R′) ∩ Σ(R, 0, ǫ/2).

Each (R,∆R) satisfies Assumption A.1 and the cardinality of R is smaller than that
of S when R 6= S, so by induction hypothesis we may find an ǫ0 > 0 and C0 > 0
such that

∫

∆\∆S

udp ≤ C0

∫

(∆\∆S)∩Σ(S,ǫ0,∞)

udp.

Finally, we treat the case of ∆S . Let F denote the set

F = {x ∈ Vect(S) ∩ Σ(S, 0, ǫ); ∃α ∈ S, 〈α, x〉 = ǫ}

Then we have
∫

∆S

wdp =

∫

∆∩Σ(S,0,0)

∫

Σ(S,0,ǫ/2)∩Vect(S)

w(x, y)dydx

=

∫

∆∩Σ(S,0,0)

∫ 1/2

0

∫

F

w(tf, y)dσdtdy

where dσ denotes the area measure. By Assumption A.2, the last expression is

≤

∫

∆∩Σ(S,0,0)

∫ 1

1/2

∫

F

w(tf, y)dσdtdy

≤

∫

∆∅

wdp

This finishes the proof. �

Appendix B. Properness on invariant potentials and existence of

constant scalar curvature metrics

Let X be a complex projective manifold, and let be L an ample line bundle on
X . Assume (X,L) is equipped with two actions:

• the action of a compact Lie group acting K, and
• the action of a connected real Lie group N which normalizes the action of
K, that is for any n ∈ N , k ∈ K, there exists k′ ∈ K such that k · (n · x) =
n · (k′ · x).

Recall that we defined in Section 7.3.1 and Section 7.3.2 the functionals J and
Mab (in this appendix, Θ is empty) on the space of smooth and invariant Kähler

potentials rPSHK(X,ωref) for a fixed reference metric ωref ∈ c1(L). Recall that the
values of Mab and J depend only on the Kähler metric ωφ = ωref + i∂∂̄φ defined
by φ. In particular it makes sense to define J(n · φi) for n ∈ N without fixing a
normalization of the potentials.

Definition B.1. The functional Mab is proper modulo N on smooth K-invariant
potentials if

• it is bounded from below on smooth K-invariant potentials, and
• any sequence (φi) of smooth K-invariant potentials such that infn∈N J(n ·
φi) → ∞ must satisfy Mab(φi) → ∞.
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A few remarks are in order before moving on:
i) Properness with respect to J , as defined here, is equivalent to properness

with respect to Mabuchi’s L1 distance d1 in restriction to potentials normalized by
vanishing of the Aubin-Mabuchi functional thanks to [DR17, Proposition 5.5].

ii) It is standard that boundedness from below of the Mabuchi functional on
smooth K-invariant potentials implies N -invariance of the Mabuchi functional by
linearity on the families of metrics induced by real one-parameter subgroups of
the connected group N (see e.g. [CC18b, Lemma 3.3], the restriction to invariant
potentials makes no difference here).

iii) Our definition of coercivity (Definition 7.9) implies properness modulo Z(G)0

on smooth K-invariant potentials of the Mabuchi functional in the setting of the
article.

A close examination of Chen and Cheng’s arguments in [CC18b] allows to obtain
the following statement.

Theorem B.2. Assume the Mabuchi functional Mab is proper modulo N on smooth
K-invariant Kähler potentials, then there exists a constant scalar curvature metric
in c1(L).

Proof. Starting from a K-invariant reference metric ω0 (which exists by averaging)
we consider the continuity path of twisted constant scalar curvature equations, for
t ∈ [0, 1]

t(Sφ − S̄) = (1− t)(trωφ
ω0 − n).

By [CC18a, Corollary 4.5] and [BDL17, Theorem 4.7] a solution to the above equa-
tion is unique as long as t < 1. Since ω0 is K-invariant, it implies that any solution
for t < 1 is K-invariant. This simple remark allows to apply [CC18a, Theorem 4.1]
and [CC18b, Lemma 3.6] in restriction to invariant potentials to obtain solutions
for any t < 1.

Let now ti denote a sequence of elements of [0, 1] increasing to 1. Let φ̃i denote
the corresponding solutions. By [CC18b, Lemma 3.7], the Mabuchi functional is

uniformly bounded along the solutions φ̃i. Properness modulo N on invariant
potentials then implies

sup
i

inf
n∈N

J(n · φ̃i) <∞.

The conclusion of the theorem then follows directly from [CC18b, Proposition 3.9].
�

Appendix C. Properness on invariant potentials and existence of

log-Kähler-Einstein metrics

Let (X,Θ) denote a log Fano klt pair, and assume thatX is smooth, for simplicity
in dealing with smooth Kähler metrics. Assume as in the previous appendix that
X is equipped with two actions, both stabilizing each component of Θ:

• the action of a compact Lie group acting K,
• and the action of a connected real Lie group N which normalizes the action

of K, that is for any n ∈ N , k ∈ K, there exists k′ ∈ K such that k ·(n ·x) =
n · (k′ · x).

In order to follow more closely [BBE+16], we introduce some notations closer
to theirs. We fix a reference metric ωref in c1(X)− Θ. Let E1 denote the space of
finite energy potentials with respect to ωref as defined in [BBE+16, Section 1.4]. It
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maps bijectively to the space T1 of finite energy currents via the map φ 7→ ωφ =
ωref + i∂∂̄φ and T1 maps to the space M1 of finite energy probability measures
via the map ω 7→ V −1ωn where V denotes the volume of (X,L). We further let
φ 7→ MA(φ) = V −1ωn

φ denote the composition of the two maps, and let ω 7→ φω
denote the inverse map from T1 to E1.

Let µref denote the adapted measure of the pair (X,Θ) [BBE+16, Definition 3.1].
Another finite energy probability measure associated to a current ω is obtained
as the probability measure µω corresponding to the measure defined by e−φωµref

[BBE+16, Lemma 3.4].

Definition C.1. [BBE+16, Definition 3.5] A finite energy current ω is a (weak)
log-Kähler-Einstein metric on the pair (X,Θ) if V −1ωn = µω.

We will use the following functionals on E1

E(φ) =
1

n+ 1

n
∑

j=0

V −1

∫

X

φωj
φ ∧ ωn−j

ref L(φ) = − log

∫

X

e−φµref .

On M1, we will use the functionals

E∗(µ) = sup
φ∈E1

(

E(φ) −

∫

X

φµ

)

H(µ) =

∫

X

log(µ/µref)µ.

The Mabuchi functional M and the Ding functional D are defined on T1 by

M(ω) = (H − E∗)(V −1ωn) D(ω) = (L− E)(φω)

We say analogously as before that the functional M is proper modulo N on smooth
K-invariant Kähler metrics if it is bounded from below on smooth K-invariant
Kähler metrics and if any sequence (ωi) of smooth K-invariant metrics such that
infn∈N J(n · φωi) → ∞ satisfies M(ωi) → ∞.

The definition of the (log) Mabuchi functional used in Section 7.3.2 differs from
the one above in general, but the difference is bounded independently of the metric
[BHJ16, p.24, proof of Theorem 4.2], so our definition of coercivity for the log
Mabuchi functional implies properness of M modulo Z(G)0 on smooth K-invariant
Kähler metrics.

Recall that E1, T1 and M1 are homeomorphic using the previously defined bijec-
tions. For a sequence (ωi) in T1, strong convergence translates as weak convergence
of ωi to some ω∞, together with convergence of J(φωi) to J(φω∞

).

Theorem C.2. Assume M is proper modulo N on smooth K-invariant Kähler
metrics in c1(X) − Θ, then there exists a log-Kähler-Einstein metric on the pair
(X,Θ).

Proof. Step 1: Properness provides a candidate log-Kähler-Einstein metric. In-
deed, the first item of the properness assumption on M implies that it is bounded
from below on smooth K-invariant metrics. Let ωi denote a sequence of smooth
K-invariant metrics such that M(ωi) converges to the infimum of M on smooth
K-invariant metrics. By the second item of the properness assumption and N -
invariance, we may as well replace the ωi by niωi (for a sequence of ni ∈ N),
so that J(φωi) is bounded. It then follows from the comparison between J and
E∗ [BBE+16, (1.10)] that E∗ is bounded on the set {V −1ωn

i }i. Since M and E∗

are bounded, it follows that the entropy H is bounded on the set {V −1ωn
i }i. By

[BBE+16, Theorem 2.17] we can thus replace the sequence (ωi) by a subsequence
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strongly converging to some ω∞ ∈ T1. Note that since all ωi are K-invariant, the
same is true for the limit ω∞.

Step 2: The candidate ω∞ is a minimizer of M in T K
1 . This claim follows from

the fact that the Mabuchi functional on T K
1 is the greatest lower semicontinuous

extension of its restriction to smoothK-invariant metrics (with respect to the strong
topology). Since E∗ is continuous, it suffices to consider the entropy H . It is lower
semicontinuous and the fact that it is the greatest extension of its restriction to
smooth K-invariant metrics is proved in [BDL17, Lemma 3.1]. In [BDL17], this
result is actually proved without the K-invariance property, but the construction
preserves K-invariance, thanks to density of K-invariant smooth functions on X in
K-invariant L1-functions on X , and uniqueness in the Calabi-Yau Theorem.

Step 3: The Ding functional D is also minimized at ω∞ in T K
1 . Here we use and

imitate [BBE+16, Lemma 4.4]. Recall that M ≥ D on T1 [BBE+16, Lemma 4.4.i)].
It is thus enough to prove M(ω∞) ≤ D(ω) on T K

1 . Since ω∞ is a minimizer in T K
1 ,

we have M(ω∞) ≤ (H − E∗)(µ) for any µ ∈ MK
1 . Let ω ∈ T K

1 , we have

D(ω) = L(φω)− E(φω)

= H(µω) +

∫

X

φµω − E(φω) by [BBE+16, Section 4.1]

≥ M(ω∞) + E∗(µω) +

∫

X

φµω − E(φω) since µω is K-invariant

≥ M(ω∞)

where the last steps holds by definition of E∗.
Step 4: A minimizer of D in T K

1 is a log-Kähler-Einstein metric. To prove
this claim, we follow the proof of ii) ⇒ i) in [BBE+16, Theorem 4.8]. The only
modification is an argument to pass from K-invariant test functions to arbitrary
test functions. Let v ∈ C0(X)K be a continuous K-invariant function on X . Let
φt denote the ωref -psh envelope of the function φω∞

+ tv, then it is a function in
EK
1 and the proof of [BBE+16, Theorem 4.8] shows, by differentiating the Ding

functional along t 7→ φt on both sides of 0, that

∫

X

vµω∞
= V −1

∫

X

vωn
∞

Given an arbitrary v ∈ C0(X), we may apply Fubini’s Theorem to the average of
v with respect to the invariant probability measure dk on K to obtain

0 =

∫

X

(∫

K

k · vdk

)

(µω∞
− V −1ωn

∞)

=

∫

K

(∫

X

(k · v)(µω∞
− V −1ωn

∞)

)

dk

=

∫

K

(∫

X

v(µω∞
− V −1ωn

∞)

)

dk by K-invariance of ω∞

=

∫

X

v(µω∞
− V −1ωn

∞)

As a conclusion, ω∞ is a log-Kähler-Einstein metric on the pair (X,Θ). �
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