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A sufficient condition for observability of waves by

measurable subsets

Emmanuel Humbert∗ Yannick Privat† Emmanuel Trélat‡

Abstract

We consider the wave equation on a closed Riemannian manifold (M, g). Given a measur-
able subset ω of M and given T > 0, we establish that, if the metric g is of class C2 and if ω is
regular enough, if the average time over [0, T ] of geodesic rays crossing ω is greater than 1/2
then the Geometric Control Condition is satisfied and thus the wave equation is observable on
(ω, T ). Our proof relies on measuring the discrepancy of this average time in ω with respect
to ω̊. We show that our assumptions are essentially sharp.

1 Introduction and main result

Let (M, g) be a closed connected Riemannian manifold. Let T > 0 be arbitrary. We consider the
wave equation

∂tty −4gy = 0 in (0, T )×M, (1)

where4g is the Laplace-Beltrami operator on M for the metric g. Let ω be an arbitrary measurable
subset of M . We denote by vg the canonical Riemannian volume. We define the observability
constant CT (ω) > 0 as the largest possible nonnegative constant such that∫ T

0

∫
ω

|y(t, x)|2 dvg(x) dt > C

∫
Ω

(
|y(0, x)|2 + |∂ty(0, x)|2

)
dvg(x) (2)

for any solution y of (1), that is,

CT (ω) = inf

{∫ T

0

∫
ω

|y(t, x)|2 dvg(x) dt | ‖(y(0, ·), ∂ty(0, ·))‖L2(M)×H−1(M) = 1

}
.

When CT (ω) > 0, the wave equation (1) is said to be observable on ω in time T , and when
CT (ω) = 0 we say that observability does not hold for (ω, T ).

It is well known that, for ω open, observability holds if the pair (ω, T ) satisfies the Geometric
Control Condition in M (in short, GCC; see [1, 8]), stipulating that every geodesic ray that
propagates in Ω should intersect ω within time T .
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Denoting by Γ the set of geodesic rays, that is, the set of projections onto M of Riemannian
geodesic curves in the co-sphere bundle S∗M , given any T > 0 and any Lebesgue measurable
subset ω of M , we define

gT2 (ω) = inf
γ∈Γ

1

T

∫ T

0

χω(γ(t)) dt. (3)

Here, χω is the characteristic function of ω, defined by χω(x) = 1 if x ∈ ω and χω(x) = 0 if
x ∈M \ ω. When ω is open, GCC reads:

gT2 (ω) > 0,

which is, as recalled above, a sufficient condition for observability. It is also well known that
this condition is not necessary: indeed, taking M = S2, the unit sphere in IR3 endowed with
the restriction of the Euclidean structure, and taking ω the open Northern hemisphere, we have
gT2 (ω) = 0 for every T > 0 but CT (ω) > 0 for every T > π. The latter fact has been established
in [7] by an explicit computation exploiting symmetries of solutions. This failure of the functional
gT2 to capture the observability property is due to the existence, here, of a very particular geodesic
ray which is grazing the open set ω: the equator.

In more general, the existence of such grazing rays, which are rays having a contact of infinite
order with ∂ω = ω \ ω̊ and may involve an arc entirely contained in ∂ω, adds a serious difficulty
to the analysis of observability (see [1]).

It is noticeable that, if one replaces the characteristic function χω of ω, in the integral at the
left-hand side of (2) as well as in the definition (3) of the functional g2, by a continuous function a,
this difficulty disappears and the condition gT2 (a) > 0 becomes a necessary and sufficient condition
for observability of (1) on ω in time T (see [4]).

For general measurable subsets ω ⊂M , the situation has remained widely open for a long time.
Recent advances have been made, which we can summarize as follows. It has been established in
[6] that, given any ω measurable, observability holds if and only if αT (ω) > 0. The quantity αT (ω),
defined as the limit of highfrequency observability constants, is however not easy to compute and
we have, in general, the inequality gT2 (ω̊) 6 αT (ω) 6 gT2 (ω). In particular, the condition gT2 (ω) > 0
becomes a necessary and sufficient condition for observability as soon as there are no grazing rays.

It has also been shown in [6] that the limit as T → +∞ of CT (ω)
T is the minimum of two quantities,

one of them being gT2 (ω) and the other being of a spectral nature. In [3, 5], the authors consider
domains ω that have the shape of a checkerboard, on M that is of dimension 2. They establish
a generalized geometric control condition in terms of an ODE on S∗M , meaning roughly that all
rays should meet, within time T , the interior of one of the polygons or follow for some time one of
the sides of a polygon and there exists s > 0 such that all neighbor rays are in the interior of one
of the polygons during a time greater than s.

Our main result is the following.

Theorem 1. Let T > 0 be arbitrary and let ω be a measurable subset of M . We make the following
assumptions:

(i) the metric g is at least of class C2;

(ii) ω is an embedded C1 submanifold of M with boundary if n > 3 and is piecewise C1 if n = 2;

Then

gT2 (ω) 6
1

2

(
gT2 (ω̊) + 1

)
. (4)
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Remark 1. Assumption (ii) may be weakened as follows:

• If M is of dimension 2, it suffices to assume that ω is piecewise C1. More precisely, we assume
that ω is a C1 stratified submanifold of M (in the sense of Whitney).

• In any dimension, the following much more general assumption is enough: given any grazing
ray γ, for almost every t ∈ [0, T ] such that γ(t) ∈ ∂ω, the subdifferential at γ(t) of ∂ω∩γ(·)⊥
is a singleton. This is the case under the (much stronger) assumption that ω be geodesically
convex.

Corollary 1. Under the assumptions of Theorem 1, if gT2 (ω) > 1/2 then gT2 (ω̊) > 0 and thus the
wave equation (1) is observable on ω in time T .

Corollary 1 is a consequence of the usual fact that, since ω̊ is open, the condition gT2 (ω̊) > 0
implies observability for (ω̊, T ), and thus CT (ω) > CT (ω̊) > 0.

Comments. It is interesting to note that the assumptions made in Theorem 1 are essentially
sharp. Remarks are in order.

• The inequality (4) gives a quantitative measure of the discrepancy that can happen for gT2
when we take the closure of a measurable subset ω of observation or, conversely, when we
pass to the interior (this is the sense of Corollary 1). The inequality is sharp, as shown by
the following example.

Take M = S2 and ω the open Northern hemisphere. Then gT2 (ω) = 0 for every T > 0 and
gT2 (ω) = 1/2 for every T > π. Hence, here, (4) is an equality.

As a variant, take ω which is the union of the open Northern hemisphere and of a Southern
spherical cap, i.e., a portion of the open Southern hemisphere limited by a given latitude
−ε < 0. Then we have as well gT2 (ω) = 0 for every T and gT2 (ω) = 1/2 for every T > π.

Note that, taking ε = 0 (i.e., ω is the unit sphere M = S2 minus the equator), we have
gT2 (ω) = 0 and gT2 (ω) = 1 for every T > 0 and thus (4) fails. But here, ω is not an embedded
C1 submanifold of M with boundary: Assumption (ii) (which implies local separation be-
tween ω̊ and M \ ω) is not satisfied. More generally, the result does not apply to any subset
ω that is M minus a countable number of rays.

• The result fails in general if ∂ω is piecewise C1 only, on a manifold M is of dimension n > 3.
Here is a counterexample.

Let γ be a geodesic ray. If T > 0 is small enough, it has no conjugate point. In a local
chart of coordinates, we have γ(t) = (t, 0, . . . , 0) (see the proof of Theorem 1). Now, using
this local chart we define a subset ω of M as follows: the section of ∂ω with the vertical
hyperplane γ(·)⊥ is locally equal to this entire hyperplane minus a cone of vertex γ(t) with
small angle 2πε > 0, less than π/4 for instance (see Figure 1). Now, we assume that, as
t > 0 increases, these sections rotate with such a speed that, along [0, T ], the entire vertical
hyperplane is scanned by the section with ω. If the speed of rotation is exactly T/2π then it
can be proved that gT2 (ω̊) = 0 and gT2 (ω) = 1− ε.
This example shows that Assumption (ii), or its generalization given in Remark 1, cannot be
weakened too much. The idea here is to consider a subset ω such that the section of ∂ω with
the vertical hyperplane γ(·)⊥ has locally the shape of the hypograph of an absolute value,
which is rotating along γ(·).
Similar examples can as well be designed with checkerboard-shaped domains ω, thus under-
lining that in [3, 5] it was important to consider checkerboards in dimension 2.
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∂ω ∩ γ(·)⊥

γ(0)

γ(t)

γ(T )

∂ω ∩ γ(·)⊥
∂ω ∩ γ(·)⊥

Figure 1: Locally around γ(t), ∂ω ∩ γ(t)⊥ is the complement of the hatched area.

• The result is wrong if the metric g is not C2. A counterexample is the following.

γ(·) ω

Figure 2: M is pill-shaped and ω is the complement of the hatched area.

Let M be a pill-shaped two-dimensional manifold given by the union of a cylinder of finite
length, at the extremities of which we glue two hemispheres (domain also obtained by rotating
a 2D stadium in IR3 around its longest symmetry axis; or, take the unit sphere in IR3, cut it
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at the equator, separate the two hemispheres and glue them with, inbetween, a cylinder of
arbitrary length), and endow it with the induced Euclidean metric (see Figure 2). Then the
metric is not C2 at the gluing circles. Now, take ω defined as the union of the open cylinder
with two open spherical caps (i.e., the union of the two hemispheres of which we remove
latitudes between 0 and some ε > 0). Then gT2 (ω) = 0 for every T > 0, because ω does not
contain the rays consisting of the circles at the extremities of the cylinder. In contrast, gT2 (ω)
may be arbitrarily close to 1 as T is large enough and ε is small enough, and thus (4) fails.
This is because any ray of M spending a time π in M \ ω spends then much time over the
cylinder.

This shows that Assumption (i) is sharp. In the above example, the metric is only C1,1.

To conclude, note that Corollary 1 does not apply to the (limit) case where M = S2 and ω is
the open Northern hemisphere. It does not apply, too, to the case where M is the two-dimensional
torus and ω is an appropriate (half-covering) open checkerboard on it, as in [3, 5]. Indeed, in these
two cases, we have gT2 (ω) = 0 for every T > 0 but CT (ω) > 0 (i.e., we have observability) for T
large enough. This is due to the fact that trapped rays are the weak limit of Gaussian beams that
oscillate on both side of the limit ray, spreading on one side and on the other a sufficient amount
of energy so that indeed observability holds true. In full generality, having information on the
way that semi-classical measures, supported on a grazing ray, can be approached by highfrequency
wave packets such as Gaussian beams, is a difficult question. In the case of the sphere, symmetry
arguments give the answer (see [7]). In the case of the torus, a much more involved analysis is
required, based on second microlocalization arguments (see [3, 5]).

Anyway, our result can as well be applied for instance to any kind of checkerboard domain ω
on the two-dimensional torus, as soon as the measure of ω is large enough so that gT2 (ω) > 1/2.

Our proof, given in Section 2 hereafter, does not use any microlocal analysis but only elementary
arguments of Riemannian geometry. It essentially relies on Lemma 2, in which we establish that,
given a grazing ray (i.e., a ray propagating in ∂ω), thanks to our assumption on ω we can always
construct neighbor rays, one of which being inside ω and the other being outside of ω for all times.

2 Proof of Theorem 1

Without loss of generality, we take ω ⊂M open. We will use several well known facts of Riemannian
geometry, for which we refer, e.g., to [2].

Lemma 1. There exists γ ∈ Γ such that gT2 (ω) = 1
T

∫ T
0
χω(γ(t)) dt, i.e., the infimum in the

definition (3) of gT2 (ω) is reached.

Proof. Let (γk)k∈IN be a sequence of rays such that 1
T

∫ T
0
χω(γk(t)) dt → gT2 (ω). By compactness

of geodesics, γk(·) converges uniformly to some ray γ(·) on [0, T ].
Let t ∈ [0, T ] be arbitrary. If γ(t) ∈ ω then for k large enough we have γk(t) ∈ ω, and thus

1 = χω(γ(t)) 6 χω(γk(t)) = 1. If γ(t) ∈ M \ ω then 0 = χω(γ(t)) 6 χω(γk(t)) for any k. In all
cases, we have obtained the inequality

χω(γ(t)) 6 lim inf
k→+∞

χω(γk(t))

for every t ∈ [0, T ].
By the Fatou lemma, we infer that

gT2 (ω) 6
1

T

∫ T

0

χω(γ(t)) dt 6
1

T

∫ T

0

lim inf
k→+∞

χω(γk(t)) dt 6 lim inf
k→+∞

1

T

∫ T

0

χω(γk(t)) dt = gT2 (ω).
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The lemma follows.

If the ray γ given by Lemma 1 is not grazing, i.e., if
∫ T

0
χ∂ω(γ(t)) dt = 0, then

∫ T
0
χω(γ(t)) dt =∫ T

0
χω(γ(t)) dt and thus gT2 (ω) 6 1

T

∫ T
0
χω(γ(t)) dt 6 gT2 (ω) and hence gT2 (ω) = gT2 (ω). So in this

case there is nothing to prove.

In what follows we assume that the ray γ given by Lemma 1 is grazing, i.e.,
∫ T

0
χ∂ω(γ(t)) dt > 0.

Assume that γ(t) = π ◦ ϕt(x0, ξ0) with x0 ∈ M and ξ0 ∈ S∗x0
M . Here, S∗x0

M denotes the unit
cotangent bundle at x0 (i.e., ‖ξ0‖g? = 1), ϕt is the geodesic flow on S∗M and π : S∗M → M is
the canonical projection.

Lemma 2. There exists a continuous path of points s 7→ xs ∈ M , passing through x0 at s = 0,
such that, setting γs(t) = π ◦ ϕt(xs, ξ0), we have

lim
s→0

(χω(γs(t)) + χω(γ−s(t))) = 1 (5)

for almost every t ∈ [0, T ] such that γ(t) ∈ ∂ω.

Proof. To prove this fact, we assume that, in a local chart, γ(t) = (t, 0, . . . , 0). This is true
at least in a neighborhood of x0 = γ(0) = 0, and this holds true along γ(·) as long as there
is no conjugate point. We also assume that, in this chart, any other geodesic ray starting at
(0, x0

2, . . . , x
0
n) in a neighborhood of γ(0) = (0, . . . , 0) is given by (t, x0

2, . . . , x
0
n) (projection onto

M of the extremal field). This classical construction of the so-called extremal field can actually
be done on any subinterval of [0, T ] along which there is no conjugate point. Note that the set of
conjugate times along [0, T ] is of Lebesgue measure zero1. Let us search an appropriate (n − 1)-
tuple (x0

2, . . . , x
0
n) ∈ IRn−1 \ {0} such that the family of points xs = (0, sx0

2, . . . , sx
0
n), s ∈ (−1, 1),

gives (5). Note that the geodesic ray starting at xs is γs(t) = (t, sx0
2, . . . , sx

0
n) in the local chart.

In what follows, we set N = ∂ω = ω \ ω̊ = ω \ ω (ω is open). By assumption, ω is an
embedded C1 submanifold of M with boundary and one has dimN = dimM − 1. By assumption,
in a neighborhood U of any point of N , the set N ∩ U is a codimension-one hypersurface of M ,
written as F = 0 with F : U → IR of class C1, which is separating ω and M \ ω in the sense that
ω ∩ U = {F < 0}, N = {F = 0} and M \ ω = {F > 0}.

It suffices to prove that, for almost every time t at which γ0(t) = γ(t) ∈ N and γ̇(t) ∈ Tγ(t)N ,
the points γs(t) and γ−s(t) are on different sides with respect to the (locally) separating manifold
N for s small enough.

This is obvious when γ is transverse to N . We set Ω = {t ∈ [0, T ] | γ(t) ∈ N, γ̇(t) ∈ Tγ(t)N}.
It is a closed subset of [0, T ]. Let t ∈ Ω. In the local chart the tangent space Tγ(t)N is an hyperplane

of IRn containing the line IR(1, 0, . . . , 0). Its projection onto {0}×IRn−1 (the hyperplane orthogonal
to the line γ(·)) is an hyperplane of {0} × IRn−1, of normal vector (0, v(t)) with v(t) ∈ IRn−1 of
Euclidean norm 1. Since only the direction of v(t) is important, we assume that v(t) ∈ Pn−2(IR),
the projective space.

We claim that:

There exists V ∈ Pn−2(IR) such that 〈V, v(t)〉 6= 0 for almost every t ∈ Ω.

With this result, setting V = (x0
2, . . . , x

0
n), the points xs defined above give the lemma.

Let us now prove the claim. We define A = {(t, V ) ∈ Ω × Pn−2(IR) | 〈V, v(t)〉 = 0}. By
definition, given (t, V ) ∈ Ω×Pn−2(IR) we have χA(t, V ) = 1 when V ∈ v(t)⊥. Since v(t)⊥∩Pn−2(IR)

1This is a general fact in Riemannian geometry. Indeed, a conjugate time is a time at which a non-zero Jacobi
field vanishes. Since Jacobi fields are solutions of a second-order ordinary differential equation, such times must be
isolated, for otherwise the Jacobi field would vanish at the second order and thus would be identically zero.
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is of codimension one in Pn−2(IR), we have
∫
Pn−2(IR)

χA(t, V ) dHn−2 = 0 for every t ∈ Ω, where we

have endowed Pn−2(IR) with the Hausdorff measure Hn−2. Therefore, by the Fubini theorem,

0 =

∫
Ω

∫
Pn−2(IR)

χA(t, V ) dHn−2 dt =

∫
Pn−2(IR)

∫
Ω

χA(t, V ) dt dHn−2

and thus
∫

Ω
χA(t, V ) dt = 0 for almost every V ∈ Pn−2(IR). Fixing such a V , it follows that

χA(t, V ) = 0 for almost every t ∈ Ω, and the claim is proved.

In view of proving Remark 1, note that the argument above still works in dimension 2 with ω
piecewise C1 (but not in dimension greater than or equal to 3: see the counterexample given in
Section 1). In more general, in any dimension, the argument above still works if ω is such that,
for almost every time t, the subdifferential at γ(t) of ∂ω ∩ γ(·)⊥ is a singleton.

At this step, we have embedded the ray γ given by Lemma 1 into a family of rays γs which
enjoy a kind of transversality property with respect to N = ∂ω. Let us consider the partition
[0, T ] = A1 ∪A2 ∪A3 into three disjoint measurable sets, with

A1 = {t ∈ [0, T ] | γ(t) ∈ ω},
A2 = {t ∈ [0, T ] | γ(t) ∈M \ ω},
A3 = {t ∈ [0, T ] | γ(t) ∈ ∂ω}.

Since γs(·) converges uniformly to γ(·) as s→ 0 and since ω and M \ ω are open, we have:

• lims→0 (χω(γs(t)) + χω(γ−s(t))) = 2 for every t ∈ A1;

• lims→0 (χω(γs(t)) + χω(γ−s(t))) = 0 for every t ∈ A2;

• lims→0 (χω(γs(t)) + χω(γ−s(t))) = 1 for almost every t ∈ A3 (by Lemma 2).

By the Lebesgue dominated convergence theorem, we infer that

lim
s→0

∫ T

0

(χω(γs(t)) + χω(γ−s(t))) dt = 2|A1|+ |A3|.

Now, on the one part, by the first step we have 1
T |A1| = 1

T

∫ T
0
χω(γ(t)) = gT2 (ω). On the other

part, since A1 and A3 are disjoint we have 1
T (|A1|+ |A3|) 6 1. Hence

lim
s→0

1

T

∫ T

0

(χω(γs(t)) + χω(γ−s(t))) dt 6 gT2 (ω) + 1.

Since gT2 (ω) 6 1
T

∫ T
0
χω(γ±s(t))dt for every s by definition, we infer that 2gT2 (ω) 6 gT2 (ω) + 1. The

theorem is proved.
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