Geometric and probabilistic results for the observability of the wave equation - Archive ouverte HAL
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2022

Geometric and probabilistic results for the observability of the wave equation

Résumé

Given any measurable subset $\omega$ of a closed Riemannian manifold and given any $T>0$, we define $\ell^T(\omega)\in[0,1]$ as the smallest average time over $[0,T]$ spent by all geodesic rays in $\omega$. Our first main result, which is of geometric nature, states that, under regularity assumptions, $1/2$ is the maximal possible discrepancy of $\ell^T$ when taking the closure. Our second main result is of probabilistic nature: considering a regular checkerboard on the flat two-dimensional torus made of $n^2$ square white cells, constructing random subsets $\omega_\varepsilon^n$ by darkening cells randomly with a probability $\varepsilon$, we prove that the random law $\ell^T(\omega_\varepsilon^n)$ converges in probability to $\varepsilon$ as $n\rightarrow+\infty$. We discuss the consequences in terms of observability of the wave equation.
Fichier principal
Vignette du fichier
g2.pdf (715.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01652890 , version 1 (30-11-2017)
hal-01652890 , version 2 (05-12-2019)
hal-01652890 , version 3 (16-02-2022)

Identifiants

Citer

Emmanuel Humbert, Yannick Privat, Emmanuel Trélat. Geometric and probabilistic results for the observability of the wave equation. Journal de l'École polytechnique — Mathématiques, 2022, Tome 9, pp.431--461. ⟨10.5802/jep.186⟩. ⟨hal-01652890v3⟩
785 Consultations
252 Téléchargements

Altmetric

Partager

More