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Abstract

In this paper, we are interested in making decisions by combining classifiers pro-
viding uncertain outputs, in the form of sets of probability distributions. More
precisely, each classifier provides lower and upper bounds on the conditional
probabilities of the associated classes. The classifiers are combined by com-
puting the set of unconditional probability distributions compatible with these
bounds, by solving linear optimization problems. When the classifier outputs
are inconsistent, we propose a correcting step that restores this consistency. The
experiments show the interest of our approach for solving multi-class classifica-
tion problems, particularly when information is scarce (i.e., a limited number of
classifiers is available). In this case, modeling the lack of information associated
with classifier outputs gives good results even when they are poorly regularized
or overfit the data.

1. Introduction

Supervised classification aims at training classifiers to identify the class of
future instances. Classically, a training set of n p-dimensional feature vectors
xi ∈ X , i = 1, . . . , n associated with class labels yi ∈ Ω = {ω1, . . . , ωK} is
available. Based on these data, a classifier can be trained to map the input
space X to the label space Ω. Multi-class classification problems with a high
number of classes and non-linear class boundaries usually require complex clas-
sifiers to be solved, which in turn calls for a larger amount of training data and
computational power.

In a number of applications, it is not possible to use such complex models,
due to limitations in terms of data, computational resources, or for the sake of
interpretability. To overcome this issue, ensemble classification techniques may
be used, either by training a set of simpler models who can jointly reproduce
complex behaviors (such as boosting [1] or random forests [2]), or by decompos-
ing the learning problem into simpler sub-problems, solve these sub-problems
separately via specific classifiers, and then combine the results [3, 4, 5].
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Among those latter decomposition-and-combination strategies, the use of
binary classifiers [6, 7] has received particular attention. In this case, each
sub-problem consists in separating two (sets of) classes from each other. For
example, the one-against-all decomposition scheme [8] consists in opposing each
class to all the others; the pairwise strategy [4] (such as pictured in Figure 1
for a 4-class problem), in opposing each class to each other. Both approaches
may be generalized within the theoretical framework of error-correcting output
codes [3]. One can then use any kind of classifier to solve each of the binary
problems (e.g., support vector machines, decision trees, naive Bayes, logistic re-
gression [9, 10], etc). Note, however, that binary classifier combination is known
to be beneficial with respect to direct multiclass approaches when considering
a class of simple classifiers (e.g., combining linear classifiers makes it possible
to compute a non-linear decision boundary). On the other hand, combining so-
phisticated classification algorithms (such as, e.g., kernel SVM, neural networks,
or deep learning [11]) will not significantly increase classification accuracy com-
pared to direct multi-class classification. This phenomenon was pointed out
in [12], and further studied in [8] where the pairwise, one-against-all and di-
rect multi-class schemes were shown to perform similarly when well-regularized
classifiers are combined.

The key issue of how the classifiers should be combined is dependent on
the nature of the classifier outputs [13] and on the decomposition strategy used.
Popular strategies include voting [14, 15], averaging [16, 17], solving an optimiza-
tion problem [18, 19] in case of probabilistic outputs, or adding an additional
step for mapping the classifier outputs into a decision [20, 21, 22]. In this arti-
cle, we focus on such binary classifier combination from a probabilistic point of
view. Each sub-problem consists in training a probabilistic binary classifier Ci
to separate two sets Ai, Bi ⊆ Ω from each other. Given a new instance x, each
sub-classifier Ci then provides a conditional probability estimate

P̂ (Ai|{Ai, Bi}, x) = 1− P̂ (Bi|{Ai, Bi}, x). (1)

Rather than combining the classifiers by using a voting rule, a classical strategy
consists in finding a joint posterior probability distribution p̂(·|x) : Ω→ [0, 1] as
close as possible to the conditional binary probabilities given by Equation (1).
Thus, the result of the combination is a probability distribution which provides
a richer information with respect to the actual class of the instance to classify.

However, combining pairwise probabilistic classifiers usually faces two major
difficulties:

• first, when classifying a new instance, some combined classifiers may pro-
vide irrelevant, noisy information. For instance, In Figure 1, a classifier
trained to separate class “square” ( ) from class “star” ( ) will not provide
any useful information concerning class “diamond” ( ). In the pairwise
decomposition scheme, irrelevant classifiers outnumber the relevant ones
as soon as K ≥ 5. For this reason, some works have considered adding
a correction or selection step in order to reduce the weight of irrelevant
classifiers in the combination strategy [17, 19, 23].

• Also, since the classifiers are trained using partial information, their out-
puts are (almost) always inconsistent (i.e., there does not exist an uncondi-
tional probability distribution which can be conditioned so as to retrieve
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Figure 1: Multi-class problem and pairwise binary decomposition

the classifier outputs). Then, the combination usually requires to de-
termine an unconditional probability distribution which minimizes some
(subjective, arbitrarily chosen) distance to the conditional estimates given
by Equation (1). The complexity of the resulting optimisation procedure
generally depends on the chosen decomposition scheme and distance.

In this work, we consider imprecise classifiers, which provide lower and upper
bounds on the conditional probabilities rather than a single estimation:

[P (Ai|{Ai, Bi}, x), P (Ai|{Ai, Bi}, x)]. (2)

The imprecise probabilistic combination scheme investigated in this paper is
summarized in Figure 2: the individual interval estimates [P (Ai), P (Ai)] are
combined into a joint set P of unconditional probabilities compatible with these
intervals, from which predictions are then made.

Such a strategy offers an original and interesting solution to both the afore-
mentioned issues. Indeed, imprecise probability theory offers decision strategies
allowing for predicting multiple classes when the information is insufficient to
safely make a unique, optimal prediction. Our approach, although versatile, is
more specifically dedicated to classification problems with scarce information
(in which case classifier combination may be preferred to direct multiclass clas-
sification). In such a case, a cautious behavior may be adopted, in particular
regarding instances for which information is scarce or uncertain. Rather than
choosing a single class, an imprecise decision can then be made, opening the
way to subsequently involving a human expert in the process. Such alternative
imprecise decision strategies will also be investigated in this paper.

Besides, form a technical point of view, an unconditional probability dis-
tribution whose conditionings are consistent with such interval-valued classifier
outputs is more likely to exist than in presence of point estimates, as shown by
Example 4 later on. As a matter of fact, the width of the intervals given by
Equation (2) can be used to model the inaccuracy of a classifier, and thus the
degree to which its outputs are to be discredited in the combination process,
larger intervals having less influence on the final output. Should the classifier
outputs still be inconsistent with each other, such an interpretation also opens
the way to new correcting strategies, as we shall discuss in Section 3. In a nut-
shell, resolving conflict then consists in stretching some of the classifier outputs
until consistency is met.
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Figure 2: Proposed decomposition scheme

Some previous works based on various uncertainty theories already explored
combining imprecise classifier outputs, using in particular belief functions and
the associated theory of evidence. Many of these approaches [24, 25, 26, 16]
consist in expressing the classifier outputs on the same domain and using an
aggregation operator. In [19] however, the combination was carried out by re-
trieving an unconditional belief function whose conditionings were as close as
possible to the classifier outputs according to the Euclidean distance. This was
carried out by solving an optimization problem, similarly to the approach pro-
posed by Hastie and Tibshirani [18]. Compared to such works, our proposal
differs in two main different points: it is fully coherent with a robust probabilis-
tic approach, as our final estimate is a set of probabilities; and it can produce
cautious predictions in the form of sets of potential classes when the final infor-
mation given by P is too imprecise. To our knowledge, this is the first proposal
to address the binary decomposition problem with imprecise probabilities. In
summary, we expect it to have the following advantages with respect to previous
methodologies:

• taking into account the scarcity of the training data and the relevance of
a classifier to differentiate two sets of classes Ai and Bi given x (both of
these issues being closely related to each other);

• in presence of inconsistent classifier outputs, providing a cautious estimate
by relaxing the constraints corresponding to these outputs, rather than
violating them.

This paper is an extended version of [27, 28], with added examples, discus-
sions and experiments (in particular, many different decomposition schemes are
investigated). The necessary background concerning imprecise probabilities is
summarized in Section 2, where we also mention some of the existing strategies
to make imprecise decisions (i.e., corresponding to a set of possible classes). In
Section 3, we present our approach for combining classifiers providing imprecise
probabilistic outputs. In particular, we detail our approach to deal with incon-
sistent outputs, based on a specific correction of classifier bounds resulting in a
set of potential unconditional probabilities. The section ends with a summary of
the proposed approach and a discussion regarding its computational complex-
ity. Section 4 is dedicated to comparing our approach to several state-of-the-art
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combination techniques considering precise information. For this purpose, we
consider the four main decomposition schemes in the experimentations (one-vs-
all, one-vs-one, and error-correcting output coding with dense and sparse code
matrices), while our previous papers only considered one-vs-one decomposition.
Eventually, Section 5 presents our conclusions and lists some perspectives of
future work.

2. Imprecise probabilities

Many authors have argued that probability theory alone is not able to repre-
sent faithfully all kinds of uncertainty. In particular, the validity of the classical
probabilistic framework can be questioned when only a small quantity of data
is available, when the information at hand is imprecise, or for the purpose of
modelling source reliability. Imprecise probabilistic approaches [29, 30], which
are close in spirit to robust Bayesian ones [31], were introduced as a general-
ization of probabilities for solving the aforementioned issues. In practice, such
approaches consist in considering a convex subset P of probability distributions
as a model of uncertainty, rather than a single one p.

2.1. Basic definitions

Let Ω = {ω1, . . . , ωK} be a finite set of outcomes (e.g., the possible classes
for a test instance to be classified). A convex probability set P can be defined
by specifying a set of constraints on the probabilities, in the form of expected
lower and upper bounds. Such constraints make it possible to express partial
knowledge of the outcomes (e.g., in the class example, to consider the probability
distributions such that one class is more probable than another).

Let L(Ω) denote the set of all real-valued bounded functions over Ω, and
f : Ω→ R an element of L(Ω). A lower expectation bound E(f) on f defines a
linear constraint on possible probability distributions of the form

E(f) ≤
∑
ω∈Ω

p(ω) · f(ω) = E(f). (3)

Similarly, an upper expectation bound E(f) of E(f) writes

E(f) ≥
∑
ω∈Ω

p(ω) · f(ω).

Note that we can work only with lower expectation bounds, since an upper
bound E(f) on f can always be turned into a lower one:

−E(f) ≤
∑
ω∈Ω

p(ω) · -f(ω),

meaning by duality that −E(f) = E(−f).
Lower expectation bounds E : K → R defined on a finite set of functions

K ⊆ L(Ω) then induce a convex subset of probabilities

P(E) = {p ∈ PΩ|E(f) ≤ E(f) for all f ∈ K}, (4)

where PΩ is the set of all probability distributions over Ω. The set P(E) may
be empty when the constraints are inconsistent, in which case P(E) = ∅.
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Conversely, lower and upper expectations of a new function g ∈ L(Ω) can
be computed from a given (non-empty) set P. Such bounds then correspond to

E(g) = sup
p∈P

E(g) and E(g) = inf
p∈P

E(g). (5)

Note that since the expectation E(g) is a linear function of the probabilities
p(ω), solving Equation (5) comes down to solve a linear program when P(E)
is defined by linear constraints (as in Equation (4) and throughout this paper),
hence can be solved in polynomial time.

Lower and upper probabilities of an event A ⊆ Ω correspond to expectation
bounds over the indicator function 1A (with 1A(ω) = 1 if ω ∈ A, and 0 oth-
erwise). When no confusion is possible, we will denote them P (A) and P (A).
Formally, they are defined as

P (A) = inf
P∈P

P (A) and P (A) = sup
P∈P

P (A). (6)

Example 1. Consider a space Ω = {ω1, ω2, ω3} composed of three elements
corresponding to the possible classes of instances. Confronted with a new in-
stance, the following assessments are provided about the class by an expert or
some (imprecise) classifier:

• the class ω3 is at least twice more probable than ω2: 2p(ω2) ≤ p(ω3);

• the probability of class ω1 is not higher than 0.4: p(ω1) ≤ 0.4.

The first statement can be transformed into 0 ≤ p(ω3) − 2p(ω2): this amounts
to provide the lower expectation E(f1) = 0, where the function f1 is defined
by f1(ω1) = 0, f1(ω2) = −2, f1(ω3) = 1. The second statement says that
E(1{ω1}) = 0.4 ⇔ E(−1{ω1}) = −0.4, which is equivalent to assess that
E(f2) = 0.6, with f2 = 1{ω2,ω3} (here, 1A stands for the indicator function
of the set of classes A ⊆ Ω).

The set P(E) induced by the constraints E defined on K = {f1, f2} is dis-
played in Figure 3. In the figure, each point of the triangle represents a prob-
ability distribution in barycentric coordinates, and the probability mass of an
element is proportional to the distance between the corresponding point and the
edge opposite to this element. See [32] for more details about the simplex repre-
sentation. In the figure, probability distributions are given as vectors.

Given P(E), computing the lower expectation E(g) of a new function g, for
instance g(ω1) = −1, g(ω2) = 2, g(ω3) = 3 comes down to solve

min
p∈P(E)

−1p(ω1) + 2p(ω2) + 3p(ω3).

The minimum is obtained for the distribution p(ω1) = 0.4, p(ω2) = 0.2, p(ω3) =
0.4 (which correspond to an extreme point of P(E)), and E(g) = 0.4 · −1 + 0.2 ·
2 + 0.4 · 3 = 1.2. Note that g was here defined arbitrarily for the sake of the
example; in general, it corresponds to utility values defining a decision criterion
(for instance, in classification, the decision regarding the class of an instance,
or a comparison between two possible classes).

In the sequel, we will repeatedly use a specific type of probability set Pv,
usually called vacuous set, which corresponds to the whole probability simplex,
and thus models complete ignorance about the distribution of interest :

Pv = {p ∈ PΩ}. (7)
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Figure 3: Set P(E) of Example 1

Note that given a function g, the lower and upper expectations of Pv are given
by

Ev(g) = min
ω∈Ω

g(ω) and Ev(g) = max
ω∈Ω

g(ω). (8)

2.2. Resolving inconsistency by discounting

As mentioned in Section 2.1, a set of lower bounds E : K → R may induce an
empty set P(E) = ∅, in which case the constraints defined by E are inconsistent.
One possible way to solve this issue consists in weakening some of the constraints
by decreasing the corresponding lower bounds, so that the resulting credal set
is non-empty. For a given function f , this can be done by considering a so-
called discounting operation, which consists in combining linearly the piece of
knowledge expressed by E(f) with the vacuous set representing total ignorance.
In practice, E(f) is transformed into

Eε(f) = (1− ε)E(f) + εEv(f), (9)

with ε ∈ [0, 1], and where Ev(f) is given by Equation (8). In Equation (9), 1− ε
can be interpreted as the degree of reliability of the initial piece of information;
this latter is retrieved in case of total reliability (ε = 0), while total ignorance
is obtained in the opposite case (ε = 1).

Example 2. Let us continue Example 1, assuming the same information on f1

and f2 but having an additional expert (or classifier) assessing that the proba-
bility of class ω3 is not higher than 0.2: p(ω3) ≤ 0.2. Again, this is equivalent
to provide the lower bound E(f3) = 0.8 for f3 = 1{ω1,ω2}.

However, if we consider K = {f1, f2, f3} with the provided corresponding
lower bounds, then P(E) = ∅, as illustrated in Figure 4: the intersection of the
three regions thus defined is empty. Discounting f3 with a factor ε = 0.75 makes
it possible to solve this issue: in this case, the constraint becomes

E0.75(f3) = 0.25E(f3) + 0.75Ev(f3) = 0.25× 0.8 + 0.75× 0 = 0.2.

As a result, the discounted constraint is no longer conflicting with the two others,
and the credal set is now non-empty.
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Figure 4: Initial and discounted constraints of Example 2

2.3. Decision rules

When the knowledge of the actual class of an instance is described by a
single probability p over Ω, a common decision rule consists in predicting the
most probable class :

ŷ = arg max
ω∈Ω

p(ω), (10)

which corresponds to minimizing the error in a 0/1 cost setting (mistakes cost
1, correct decisions 0). It can also be viewed as choosing the maximal element
according to the preference order � induced by the probability distribution over
Ω, i.e., to state that ωi is preferred to ωj (ωi � ωj) if

p(ωi) > p(ωj)⇔ p(ωi)− p(ωj) > 0. (11)

When the information at hand is described by a set P, imprecise probability
theory offers many ways to extend this classical decision rule [33]. In a nutshell,
two strategies may be considered: we may either choose a single class, or a set
of possible (optimal) classes. We will describe here the maximin rule which is
of the former type, and the maximality rule of the latter.

The maximin decision rule amounts to make the decision ŷ such that

ŷ
def
= arg max

ω∈Ω
p(ω). (12)

Notice the similarity with Equation (10), with p being replaced by its lower
bound. Using this rule thus requires to compute K lower probabilities by solving
K linear systems. Ties can be broken arbitrarily (typically, by picking a class
at random), as in the precise probabilistic case.

The maximality rule follows a pairwise comparison approach: a class is con-
sidered as possible if it is not dominated by any other one. Under the maximality
rule, a class ωi is said to dominate ωj , written ωi �M ωj , if p(ωi) > p(ωj) for all
p ∈ P: that is, if Equation (11) holds for any distribution p. Note that we may
have incomparabilities (simultaneously ωi 6�M ωj and ωj 6�M ωi). In practice,
whether ωi �M ωj stands is determined by solving the optimization problem

inf
p∈P

p(ωi)− p(ωj)

and checking if its solution is strictly positive. The final prediction

Ŷ = {ω ∈ Ω| 6 ∃ω′ s.t. ω′ �M ω} (13)
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comes down to consider all maximal (non-dominated) elements of �M . Conse-

quently, the set Ŷ can include multiple classes and thus be imprecise. Finding
Ŷ requires to solve at most K2 −K linear programs (but usually less, as non-
dominated classes can be discarded from computations as soon as they are
identified). Note that the set of solutions Ŷ thus obtained necessarily contains
the solution ŷ obtained via maximin [33].

Example 3. In Example 1, we have

p(ω1) = 0, p(ω2) = 0, p(ω3) = 0.4,

hence predicting ŷ = ω3 using the maximin strategy. If we use the maximality
rule, the only pair (ωi, ωj) for which pi− pj is strictly positive is (ω3, ω2), since
we have

inf
p∈P

p(ω3)− p(ω2) = 0.2,

reached by the distribution p = (0.4, 0.2, 0.4). This means that only ω2 is domi-

nated (by ω3) according to �M , hence Ŷ = {ω1, ω3}.

3. Combining binary probability intervals

As mentioned in Section 1, using probabilistic decomposition-combination
strategies consists in replacing the direct estimation of the joint posterior prob-
ability p(y|x) of every class y given an instance x by binary, easier-to-get esti-
mations. The main problem is then to recover or to infer information about the
joint probability p(y|x), especially when the binary estimates are inconsistent
with each other.

In this section, we formalize this issue when probability estimates are interval-
valued, and we propose original correction mechanisms for solving inconsisten-
cies.

3.1. Induced joint probability set

Let A (respectively, B) be the set of positive (resp., negative) classes consid-
ered in a binary sub-problem of the decomposition strategy (see Figure 2). Note
that these sets depend on the chosen strategy; the main ones will be reviewed in
Section 4. When evaluating a test instance x, a classical probabilistic classifier
then outputs an estimate of the conditional probability P (A|A ∪ B, x) (with
P (B|A ∪B) = 1− P (A|A ∪B) by duality2).

The quality of such an estimate highly depends on the training data — in
particular their amount and the level of noise. In practice, this point estimate
can be replaced by an interval-valued estimate determining a set of possible
conditional probabilities, by providing a pair of values bounding P (A|A ∪ B).
This interval can reflect, for instance, the estimation uncertainty resulting from
the lack of information, and can be obtained for example via confidence or
credibility intervals over the estimated conditional probability. Let us denote
by αj , βj the bounds provided by the jth classifier (j = 1, . . . , J):

αj ≤ P (Aj |Aj ∪Bj) ≤ βj , (14)

2From now on, we will drop the x in the conditional statements, since the combination
always concerns a unique instance which input features remain the same.
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and by complementation

1− βj ≤ P (Bj |Aj ∪Bj) ≤ 1− αj . (15)

Our approach consists in combining the classifier outputs by computing the
set P of probability distributions over Ω which are compatible with the cor-
responding conditional assessments. For this purpose, we first turn them into
linear constraints over the unconditional probabilities to be determined. More
precisely, assuming that P (Aj ∪Bj) > 0, we transform Equations (14) and (15)
into

αj ≤
P (Aj)

P (Aj ∪Bj)
≤ βj and 1− βj ≤

P (Bj)

P (Aj ∪Bj)
≤ 1− αj .

These two equations can then be transformed into two linear constraints over
the unconditional probabilities:

αj
1− αj

P (Bj) ≤ P (Aj) and P (Ai) ≤
βj

1− βj
P (Bj),

or equivalently

0 ≤ (1− αj)
∑
ωi∈Aj

pi − αj
∑
ωi∈Bj

pi, (16)

0 ≤ βj
∑
ωi∈Bj

pi − (1− βj)
∑
ωi∈Aj

pi, (17)

where pi
def
= p(ωi). Such constraints define the set P of probability distribu-

tions that are compatible with the classifier outputs, as illustrated in Figure 2.
Then, the probability bounds on this set may be retrieved by solving a linear
optimization problem under Constraints (16) and (17), for j = 1, . . . , J .

Note that the number of constraints grows linearly with the number J of
classifiers, while the number of variables is equal to the number K of classes.
As the amount of classifiers usually remains reasonable, the linear optimization
problem can be efficiently solved using modern optimization techniques.

Example 4. Let us assume that N = 3 classifiers provided the following out-
puts:

P ({ω1}|{ω1, ω2}) ∈ [0.1, 0.3],

P ({ω1}|{ω1, ω3}) ∈ [0.2, 0.4],

P ({ω2}|{ω2, ω3}) ∈ [0.6, 0.8].

According to Equations (16)-(17), these constraints on conditional probabilities
may be transformed into the following constraints over the unconditional prob-
abilities p1, p2, and p3:

1/9 p2 ≤ p1 ≤ 3/7 p2, 1/4 p3 ≤ p1 ≤ 2/3 p3, 3/2 p3 ≤ p2 ≤ 4 p3.

The induced set of probability distributions is not empty, since for instance
p1 = 0.1, p2 = 0.6 and p3 = 0.3 is a feasible solution. Getting the min-
imal/maximal probabilities for each class then comes down to solve six opti-
mization problems (i.e., minimizing and maximizing each of the unconditional
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probabilities pi, under the constraints mentioned above), which eventually yields
the following intervals:

p1 ∈ [0.071, 0.207] p2 ∈ [0.477, 0.735] p3 ∈ [0.176, 0.364].

Hence, we can safely classify the instance into ω2, since every selection of
p1, p2, p3 into these intervals would give a higher value to p2: indeed, p2 − p1

and p2 − p3 are always positive, and ω2 �M ω1, ω2 �M ω3. �

Note, however, that the classifier outputs may not be consistent with each
other (see Example 2), for instance when the training sets are disjoint. As men-
tioned in the Introduction, some classifiers may then provide erroneous proba-
bility bounds, in particular when they were not trained to recognize the actual
class of the test instance to be classified. It is then necessary to correct their
outputs, for instance by relaxing the constraints they induce, in order to restore
consistency.

3.2. Correcting inconsistent outputs

Since interval-valued classifier outputs are considered, a natural way to turn
inconsistent outputs into consistent ones consists in widening these intervals
so that their intersection becomes non-empty. In practice, this can be done
through the discounting operation described in Section 2.2. Two approaches
may be considered:

1. the discounting is applied once the conditional (non-linear) constraints are
transformed into (linear) unconditional ones, that is, on Equations (16)-
(17) (unconditional discounting);

2. the conditional constraints (14) themselves are discounted (conditional
discounting).

As will be shown by the following discussion, the first one is preferable from
several points of view.

Unconditional discounting

Consider the unconditional constraints provided by the jth classifier. In
practice, Equations (16)-(17) provide lower expectation bounds equal to zero
for two different functions: Efj,1 = 0 and Efj,2 = 0, with

fj,1(x) =

 1− αj if x ∈ Aj ,
−αj if x ∈ Bj ,

0 else;
and fj,2(x) =

 βj − 1 if x ∈ Aj ,
βj if x ∈ Bj ,
0 else.

Let us apply the discounting procedure given by Equation (9). If we denote
by εj the discounting factor of the classifier, we obtain the following discounted
equations:

εj(−αj) ≤ (1− αj)P (Aj)− αjP (Bj), (18)

εj(βj − 1) ≤ (βj − 1)P (Aj) + βjP (Bj). (19)

A first remark is that when εj = 1, the constraints provided by the jth classifier
become trivial, which is equivalent to state that P (Aj |Aj ∪ Bj) ∈ [0, 1]. This
means that there always exists a set of coefficients {εj}j=1,...,N that makes the
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problem feasible. A second remark is that Equations (18)-(19) are linear in
variables pi and εj , thus still allowing us to use efficient linear programming
techniques.

The issue is to estimate the discounting rates εj , j = 1, . . . , J . We propose to
minimally relax the constraints so that the joint probability set P of Section 3.1
is non-empty: this amounts to make the classifier combination feasible, while
preserving the classifier ouputs as much as possible. In practice, we minimize
the sum of discounting coefficients:

min

J∑
j=1

εj , (20)

under the constraints

K∑
k=1

pk = 1, 0 ≤ pk ≤ 1 for k = 1, . . . ,K, 0 ≤ εj ≤ 1 for j = 1, . . . , J, (21)

and Constraints (18)–(19). The objective function is null if and only if initial
constraints are consistent. Note that this strategy is similar to the ones proposed
to find minimal sets of infeasible constraints in linear programs [34].

Conditional discounting

The alternative consists in applying the discounting strategy to Equation (14);
for the jth classifier, the discounted interval is then

(1− εj)αj ≤ P (Aj |Aj ∪Bj) ≤ εj + (1− εj)βj , j = 1, . . . , J. (22)

This approach, initially proposed in [27], has the advantage of being consistent
with some previous proposals made in other frameworks such as the theory of
evidence [35]. However, this strategy runs into the following issue: the problem

min

J∑
j=1

εj

under the constraints

K∑
k=1

pk = 1, 0 ≤ pk ≤ 1 for all k = 1, . . . ,K, 0 ≤ εj ≤ 1 for all j = 1, . . . , J,

and constraints (22) instead of (18)–(19), is quadratic with indefinite form,
since all the coefficients of the square terms p2

i and ε2j are zero. Its resolution
is consequently much more computationally expensive. This issue remains even
with other functions of the discounting coefficients εj .

To overcome this problem, all discounting factors may be assumed to be
equal [27]: ε1 = · · · = εJ , in which case the optimal value can be easily deter-
mined by using a dichotomic search. As a result, all classifiers are treated or
discounted in the same way, ignoring the fact that only a minority may be in-
consistent with the others, or that some classifiers are more reliable than others.
Therefore, if only one classifier strongly disagrees with all the others (these latter
being consistent with each other), all of them will nevertheless be significantly
discounted. This is less likely to happen when using a specific discounting rate
for each classifier, as Example 5 illustrates.
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Example 5. We consider a set of four classes Ω = {ω1, ω2, ω3, ω4}. Six clas-
sifiers are trained to separate each class ωi from each other ωj (j > i); they
provide the following results:

P ({ωi}|{ωi, ωj}) ∈ [0.6, 1] for all 1 ≤ i < j ≤ 4,

for all pairs 1 ≤ i < j ≤ 4, except for P ({ω1}|{ω1, ω4}) ∈ [0, 0.4]. Thus, all
classifier outputs are consistent with p1 > p2 > p3 > p4, except P ({ω1}|{ω1, ω4})
from which one would conclude p4 > p1. Now, if we were to discount all of them
in the same way, we would obtain as minimal discounting rates εij = 1/6 for each
classifier, with p1 = p2 = p3 = p4 = 1/4 being the only feasible solution. Thus,
in this case, all the information provided by the classifiers is lost, and we are
unable to choose between one of the four classes.

Now, assume that each classifier is discounted using a specific rate; then,
taking ε14 = 1/3 restores consistency (e.g., p1 = 0.5, p2 = 0.31, p3 = 0.2,
p4 = 0.09 is a solution) while still preserving the ordering p1 > p2 > p3 > p4,
thus still allowing us to choose ω1.

3.3. Summary

We summarize here the different steps of our proposed method, and we
provide an insight on their computational complexity. Assume that we have
trained J binary classifiers, where the jth classifier must predict whether the
class of an instance x belongs to subset Aj or Bj ; our strategy involves:

1. collecting the outputs of the classifiers, i.e. the J intervals [αj , βj ] =
[P (Aj |Aj , Bj), P (Aj |Aj , Bj)];

2. solving the linear optimisation problem defined by Equation (20) under
Constraints (18)–(19) and (21), and storing the discounting factors εj .
This linear program, which has a polynomial complexity, has J variables
and 2J + 1 constraints, meaning that its size grows linearly in the number
of classifiers.

3. Computing the final credal set P from which predictions will be made,
which is defined by constraints (18)-(19):

• if a precise classification is desired, the maximin rule is used: for each
class (k = 1, . . . ,K), solve

min
p
pk

under Constraints (18)–(19) (using the εj previously computed) and∑K
k=1 pk = 1, pk ∈ [0, 1] for all k = 1, . . . ,K. The predicted class is

then the one that obtained the highest value. These linear program
have the same constraints, and therefore the same complexity as the
previous, and must be solved K times, a linear number of times in
the number of classes.

• If an imprecise classification is desired, the maximality rule consists
in determining the set of undominated classes: for each pair of classes
(k = 1, . . . ,K, ` = 1, . . . ,K, and ` 6= k), solve

min
p
pk − p`

under Constraints (18)–(19) (again, using the coefficients εj previ-

ously computed) and
∑K
k=1 pk = 1, pk ∈ [0, 1] for all k = 1, . . . ,K.
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Class ω` is then discarded iff the solution is strictly positive. Again,
the associated linear programs have the same constraints, and must
be solved at worst K(K−1)/2 times to get the prediction, thus a
quadratic number of times in the number of classes.

Thus, K(K−1)/2 linear programs must at worst be solved, with a number of
constraints which is linear in the number of classifiers. Using efficient resolution
methods in polynomial complexity, our approach remains tractable as long as
the number of classes remains reasonable (say, a few hundreds at most). The
exact complexity, as well as the possibility to apply specific techniques, highly
depends on the chosen binary decomposition scheme, and given our previous
remark is only relevant for large-scale problems. This issue therefore arising
only for specific applications, we will not deal further with it.

4. Experiments

This section presents experiments showing in which situations our approach
is likely to present some advantages. These experiments are performed for four
decomposition schemes, and compared to classical probabilistic strategies for
combining classifiers. Before giving details about these experiments, we think
useful to remind that the primary goal of imprecise probabilistic methods is not
to systematically perform better than their precise counterparts, but to provide
safeguards against wrong predictions in case of scarce information: thus, we can
expect imprecise probabilistic approaches to be beneficial

• either when precise probabilistic estimates are only based on a limited
amount of data, for example when classifiers are overfitted,

• or when decomposition schemes include fewer classifiers, leading to po-
tential biases in precise probabilistic methods that may be avoided when
considering sets of probabilities.

Although we may also expect imprecise methods to perform well when incon-
sistencies arise — a case that usually happens when the decomposition scheme
involves a high number of classifiers, the fact that we use a minimal correction
strategy of the classifier outputs (see Section 3.2) may limit the effects of using
imprecise approaches in this case. In Section 5, we mention correction strate-
gies where the resulting imprecision is proportional to the amount of conflict;
note that these strategies involve extensive computations, and thus appear to
be impractical in a learning setting.

4.1. Decomposition and combination strategies

Many decomposition and recombination strategies have been proposed in
the literature. We cover four of them in the next sections.

4.1.1. One-versus-all

The most natural way to decompose a multi-class problem into binary ones
consists in creating K binary subproblems so as to separate each class from all
the others. This scheme, known as the one-versus-all (OVA) decomposition, has
been explored in a number of articles. When the classifiers output decisions, the
combination can be carried out according to majority voting, to the maximal
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score [36, 37], or by transforming the outputs into membership functions that
are then pooled using the min operator [38]. Probabilistic or credal outputs can
be combined for instance by averaging [16].

Since the OVA decomposition scheme involves only K classifiers, we can
expect imprecise methods to be particularly beneficial.

4.1.2. One-versus-one

Another popular approach consists in decomposing the original problem by
opposing each class to each other, thus creating (K− 1)K/2 subproblems. This
one-versus-one (OVO) decomposition has received much attention in the liter-
ature. In the case of crisp outputs, the combination strategies include voting
[14, 12, 39, 15, 40] and aggregating membership functions derived from the
outputs [41].

As explained above, probabilistic outputs are interpreted as estimates of
the conditional probabilities P ({ωi}|{ωi, ωj}). Then, a combination strategy
consists in selecting some of the constraints derived from the classifier outputs
to obtain as many equations as unknowns [42]. In [43], closed forms of the
unconditional probability estimates are proposed. However, the most popular
approaches [18, 44] involve solving an optimization problem to compute these
unconditional probabilities from the classifier outputs. The work presented in
[17] advocates training additional classifiers so as to estimate the probability
P ({ωi, ωj}) for each pair of classes; it turns out that after this additional cali-
bration step, solving the optimisation problem amounts to average the uncon-
ditioned pairwise probability estimates.

Since the OVO decomposition involves a large number (K − 1)K/2 of clas-
sifiers as the number of class K increases, we expect our method to be less
interesting in this setting.

4.1.3. Error-correcting output coding

Both the OVA and OVO decomposition schemes have been shown to be
particular cases of a more general strategy known as error-correcting output
codes (ECOC) decomposition [3]. An ECOC decomposition is described by a
code matrix, composed of elements cij ∈ {−1, 0,+1}, in which each row (by
convention) is associated with a class and each column with a classifier. A value
cij = +1 (respectively, cij = −1) indicates that ωi appears in the set of positive
(resp., negative) classes in the training set of the jth classifier. A null value
indicates that the class does not appear in the training set of the classifier.
Code matrices composed exclusively elements cij ∈ {−1, 1} are referred to as
dense matrices, in contrast with matrices containing zeros, called sparse.

Some results [3] relate the classification accuracy to the decomposition ma-
trix. Two distant line vectors (according to some dissimilarity measure) mean
that the corresponding classes are often separated from each other by the set
of classifiers. Similarly, when a column vector (and its complement) is dis-
tinct from another one, this means that the two corresponding classifiers have
different training sets: they are thus likely to be less correlated, potentially im-
proving the classification accuracy by encouraging diversity and avoiding the
redundancy of erroneous estimates. A “good” code matrix should then count
enough columns for the classes to be well separated, but not too much (since
for a fixed number of classes, adding new columns eventually results in creating
identical classifiers).
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The OVA scheme is retrieved for a square code matrix where the diagonal el-
ements are +1 and the others −1; the OVO decomposition, for a K×(K−1)K/2
matrix where each column counts two non-zero elements, one being positive and
the other one being negative (see Figure 5).

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1




+1 +1 +1 0 0 0
−1 0 0 +1 +1 0
0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


Figure 5: Code matrices for the OVA (left) and OVO (right) decomposition schemes, for a
K = 4 class problem.

Classifiers providing crisp outputs can be combined by classifying instances
into the closest class according to the Hamming distance [3]. Various strategies
have been proposed to combine probabilistic classifiers: Passerini et al. [45]
derived a closed form estimate for the posterior probabilities of the classes under
a mild conditional independence assumption. In [46], an iterative algorithm
based on the Kullback-Leibler divergence, similar to that proposed in [18], is
described. Eventually, [47] formalized the problem and proposed an algorithm
based on the same divergence, which was shown to boil down to the algorithm
[18] in the OVO case.

4.1.4. Directed Acyclic Graphs (DAGs)

A variant of the aforementioned strategies consists in recursively eliminating
one class from the set of (remaining) classes [48]: a classifier separates class ω1

from the other ones (Ωr{ω1}), another one separates class ω2 from Ωr{ω1, ω2},
etc. Alternatives consider hierarchical sets of classifiers, each of them reducing
the set of possible classes [49, 50].

The instances are then evaluated in a sequential manner, rather than inde-
pendently by the various classifiers. The choice of the classes to be separated
from the others is known to have a significant influence on the results, and
highly depends on the application and on the data considered. For this reason,
and since our aim is to demonstrate that our approach is versatile and adapts
well to a wide range of situations, such approaches will not be considered here.

4.2. Experimental setup

4.2.1. Datasets

We compared our approach to the existing strategies on various datasets,
briefly described in Table 1. Most of them were obtained from the UCI Machine
Learning Repository, except for the faces dataset, which was obtained from the
CMU-Pittsburgh image database. It consists in 216 images of size 60 × 70,
corresponding to six facial expressions (joy, surprise, sadness, disgust, anger,
fear). Each was obtained by asking a person to mimic a specified expression
(note that according to [51], we used aligned and cropped versions of the images).
The images were then presented to five subjects, who assessed their beliefs for
each of the six expressions; the label for each image was then obtained by voting.

The data were randomly divided into training and test sets, respectively
counting roughly 2/3 and 1/3 of the instances. We retained 2/3 of the whole sample
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dataset #classes #input #samples
name K features
ecoli 8 7 336
faces 6 4200 216
glass 6 9 214
iris 3 4 150

pageblocks 5 10 5473
satimage 6 36 6435
segment 7 19 2310
USPS 10 256 9298
vowel 11 10 990

waveform 3 21 5000
wine 3 13 178
yeast 10 8 1484

Table 1: UCI dataset characteristics

to learn the models, the remaining 1/3 being used for computing error rates. In
order to provide confidence intervals over the classification error, 25 datasets
were thus randomly generated from the original data. The various combination
strategies were evaluated on each of these datasets so as to determine comparable
average error rates.

4.2.2. Base classification algorithm

CART decision trees [52] were used as a base classification technique to
obtain conditional probability estimates P (Aj |Aj , Bj). This algorithm presents
the advantage to provide region-dependent class information and probability
estimates. In order to distinguish between high and low density regions, the
upper and lower probability bounds αj = P (Aj |Aj , Bj) and βj = P (Aj |Aj , Bj)]
were defined as the Bayesian credibility interval bounds obtained using a beta
prior with parameters aj = bj = 3.5 (see [53, p. 261]). This essentially means
that a given leaf must contain seven instances for the likelihood to have the same
weight as the prior. An imprecise classifier output thus takes into account the
level of information in the neighborhood of a test instance, since the interval
width depends on the amount of training samples in the region of the input
space where the test instance is located by the tree.

We remark here that other classifiers such as logistic regression [54] or cal-
ibrated SVMs [55] would be less appropriate, since the width of a confidence
interval is not region-dependent (it depends on the size of the whole training
set). Also for this reason, we expect our strategy to give good results even when
unpruned decision trees are used, since leaves associated with very few training
instances will be characterized by large credibility intervals and thus cautious
classifier outputs. As a consequence, we conducted experiments using both
unpruned and pruned trees (then using cross-validation as pruning strategy).

Note that our aim is here to compare different decomposition strategies, not
to determine the best base classifier for a given problem. For this latter purpose,
recent approaches to decision tree induction [56, 57] may be used; alternatively,
dimensionality reduction techniques [58, 59] can be used so as to improve the set
of considered features and increase the classification performances. Similarly,
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base classifier selection techniques [60] could be used to improve the quality of
the results.

4.2.3. Decomposition and combination schemes

We considered four different decomposition strategies: OVA, OVO, and
ECOC using dense and sparse code matrices. In the ECOC dense case, all
the classes are considered for training each classifier (i.e., the code matrix does
not contain zero elements), which is not the case in the sparse case. Since design-
ing the optimal code matrix is NP-hard [61], we used a rule-of-thumb strategy:
positive and negative classes were randomly chosen with the same probability
— 1/2 in dense matrices, and 1/4 in sparse ones (in which case zero elements
have probability 1/2). In the dense case, 10 log2(K) classifiers were generated,
a number which was raised up to 15 log2(K) in the sparse case.

We compared our approach using maximin to the Bradley-Terry combina-
tion scheme [47] (or [18] in the OVO case), the estimation strategy proposed
by Passerini et al. [45], and the combination procedure proposed by Zadrozny
[46]. The accuracy of the Hamming strategy was also given as a baseline. Fur-
thermore, in the OVO case, we also provided the results obtained via the two
combination strategies described by Wu et al. [44], which are specific to this
decomposition scheme. Note that as we work in a probabilistic setting, we only
compared our approach to other proposals aiming at combining binary condi-
tional probabilities provided by binary classifiers.

4.2.4. Accuracy measures for imprecise predictions

When combining imprecise classifiers using our approach, we considered both
the maximin rule, resulting in precise predictions, and the maximality rule pre-
sented in Section 2 which computes the set of possible classes induced by the
classifier outputs. In this latter case, set accuracy and discounted accuracy were
computed to evaluate the classification accuracy. We recall here that the for-
mer consists in considering the set Ŷ of predicted classes as correct whenever it
contains the actual class, and can thus be interpreted as an optimistic indicator
of the classification accuracy which clearly favors producing sets of classes as
predictions:

set acc. = 1y∈Ŷ .

The latter rule, however, rewards decisions with low cardinality:

disc. acc. =
1

|Ŷ |
1y∈Ŷ ;

it is statistically equivalent to choosing a class at random among the set Ŷ of
predicted classes. In fact, it has been shown by Zaffalon et al. [62] to penalize
set-valued predictions, as it does not reward caution, as is shown by Example 6.
It should be noted that when all predictions are precise, both set and discounted
accuracy reduce to usual accuracy.

Example 6. Let us consider three classes {ω1, ω2, ω3}, and a test sample with

actual class y = ω2. Then, if our prediction is Ŷ = {ω1, ω2}, we have

set acc. = 1
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since ω2 is indeed included in Ŷ , and

disc. acc. = 1/2

since |Ŷ | = 2 (two potential classes were predicted).

4.3. Results

The results obtained using unpruned decision trees for the OVA, dense
ECOC, sparse ECOC and OVO decomposition schemes are given in Tables
2 to 5; those obtained with pruned decision trees in the OVA, dense ECOC,
sparse ECOC and OVO cases are given in Tables 6 to 9. In each case, the
best result was underlined. Furthermore, the result obtained via maximin was
printed in bold if it outperformed the results obtained using any precise prob-
abilistic strategy (and conversely, the result obtained with a precise approach
was printed in bold if it outperformed maximin).

Note that the results obtained using set accuracy and discounted accuracy
were left out of the comparison, since they do not provide a single decision. They
however give an insight into the number and quality of imprecise predictions: a
set-accuracy close to the maximin accuracy suggests that there were only a few
imprecise predictions; conversely, should it be critically lower, would it reflect an
important number of decision indeterminacy. Whether or not these imprecise
predictions allowed to correct mistakes (by including the true class) can be
evaluated by comparing the discounted and maximin accuracy: a significantly
higher value means that imprecision was damaging, while a lower or comparable
value indicates that they were meaningful.

Overall, we can bring the following conclusions out of the results obtained:

• our method for combining imprecise probabilistic classifiers performs bet-
ter than the other approaches in the OVA case, when using unpruned
decision trees, and to a lesser extent in the dense ECOC case (still with
unpruned decision trees). Since this corresponds to the case where we
have the fewer classifiers (which are furthermore likely to be overfitted in
the precise case), this corresponds to our earlier expectations.

• When using pruned decision trees, our method compares favourably to the
other ones in the OVA case (again, most differences being non significant),
but generally performs worse than the best method in the dense, sparse
and OVO cases; it is, however, seldom the worst one.

• The low differences between set accuracy and discounted accuracy in the
OVO, sparse and dense ECOC case for pruned trees confirm that in these
cases, there are very few imprecise predictions, due to the fact that we
have a high number of regularized classifiers and a minimal correction
strategy.

• Quite remarkably, combining unpruned trees via our method almost al-
ways performs better than combining pruned trees (the exceptions being
for the Iris dataset, in the ECOC dense and sparse cases, where the re-
sults are almost identical). In addition, it almost always outperforms (or
at least equals) a precise approach with pruned trees. This can be ex-
plained as follows. The overfitting of unpruned trees, which generally
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degrades generalization performances, is here counterbalanced by the fact
that when a given leaf is associated with very few data, the associated
interval will be large. This is clearly an advantage of our technique, since
pruning a decision tree may deteriorate the classification accuracy in the
case of small datasets (which is exactly the case where our approach is
expected to perform especially well).

In general, we can remark that a high level of imprecision (i.e., a signifi-
cant difference between set accuracy and maximin) generally coincides with a
good performance of our strategy. To confirm this insight, Table 10 provides
some statistics about the instances for which our method provided imprecise
predictions in the OVA case with unpruned trees (Table 2). In addition to the
performance measures of the other tables, we also added the average number of
imprecise predictions and the corresponding average cardinality of P. A first
remark is that if we look at the results of the classical precise methods, the error
rates are critically higher than for the whole training set (e.g., for the Pageblocks
dataset, it increases from 5% to 53.5% for the Bradley-Terry combination strat-
egy, the difference being somehow less critical for the Yeast and Glass datasets).
This confirms that those instances for which we produce imprecise predictions
are difficult to classify with classical approaches.

We can also see that for these imprecise instances, set accuracy is always
remarkably lower than any error rate. Thus, being cautious by making impre-
cise decisions is worth the effort, since it significantly reduces the risk of making
classification errors. Eventually, the results show that the maximin performs
generally much worse than (the ideal measure of) set accuracy, although it
keeps performing better than classical approaches. This suggests that the clas-
sification accuracy obtained via maximin may be further improved, for instance
by considering strategies involving human judgement whenever several classes
are in competition for a given instance. This seems reasonable since the average
number of retained classes is generally low (i.e., between 2 and 3).

5. Conclusions

In this article, we presented an approach to solve multiclass classification
problems by combining imprecise binary classifiers. Each classifier is trained
to separate two sets of classes of the original training set. It is assumed to
provide bounds on the conditional probabilities that an instance belongs to
the sets of considered classes. The classifiers are combined by computing the
set of probability distributions which are consistent with their outputs. The
bounds are first expressed as constraints on the unconditional probabilities of the
classes. Then, the maximality rule can be used to determine the set of plausible
(undominated) classes. Alternativey, should a single decision be made, the
maximin rule returns the class with highest lower probability. Inconsistencies are
resolved by discounting the classifier outputs so as to find at least a probability
distribution which is consistent with the classifier outputs.

We conducted experiments for various decomposition strategies: one-versus-
all, one-versus-one, and error-correcting output codes with dense and sparse
code matrices. The results obtained show that our method performs well when
using unpruned decision trees, and in particular when few information is avail-
able (i.e., few classifiers are combined). This confirms that using an imprecise
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approach is indeed beneficial when information is scarce. In this case, lower-
ing the influence of inaccurate assessments according to this lack of information
makes it possible to increase robustness. This ability to take into account classi-
fier uncertainty makes our approach well-suited to classification problems when
information is scarce.

Future works may either be focused on expanding this first proposal or solv-
ing some of its identified issues. For instance, the credal set obtained by our
method after a correction step (see Section 3.2) will always be fairly precise. An
alternative would be to design methods for which the level of imprecision of a
corrected credal set reflects the inconsistency between the constraints. Quaeghe-
beur [63] proposed an elegant approach for this purpose, which however requires
to solve multi-objective optimization problems. This technique would hence only
be tractable for datasets with a small number of classes. Approximate solutions
would therefore be needed for the case of large datasets. Another issue would be
to investigate decision rules other than the maximin (e.g., maximum entropy),
since this latter performs sometimes poorly compared to the ideal case of set
accuracy. The impact of using other binary classification techniques handling
noisy data [64] should also be assessed, since imprecise probabilistic approaches
may then be useful.

Finally, we might consider adding human feedback to the system when pro-
viding imprecise classification. We may also extend this current work to other
settings where pairwise decomposition strategies are common: such as in mul-
tilabel classification, preference learning or ranking [65]. From a theoretical
perspective, we may investigate related areas involving combining binary infor-
mation, such as multiple hypothesis testing [66].
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[27] Sébastien Destercke and Benjamin Quost. Combining binary classifiers with
imprecise probabilities. In Y. Tang, V.-N. Huynh, and J. Lawry, editors,
Integrated Uncertainty in Knowledge Modelling and Decision Making, vol-
ume 7027 of Lecture Notes in Computer Science, pages 219–230. Springer,
2011.
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Table 2: Error rates (%), unpruned decision trees, OVA

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 8.1 ± 1.0 17.1 ± 0.9 12.1 ± 1.0 19.5 ± 1.6 15.5 ± 1.4 19.5 ± 1.6 17.8 ± 1.5
Faces 44.1 ± 2.5 47.4 ± 2.3 47.0 ± 2.4 65.6 ± 2.5 52.3 ± 2.5 65.6 ± 2.5 60.0 ± 2.6
Glass 23.3 ± 2.0 38.1 ± 2.0 33.4 ± 2.1 49.8 ± 2.2 40.1 ± 2.2 49.8 ± 2.2 48.2 ± 2.0
Iris 3.8 ± 1.3 6.7 ± 1.2 6.1 ± 1.3 7.1 ± 1.4 6.4 ± 1.2 7.1 ± 1.4 6.7 ± 1.3

Pageblocks 2.2 ± 0.2 3.8 ± 0.2 3.4 ± 0.2 5.0 ± 0.2 4.1 ± 0.2 5.0 ± 0.2 4.5 ± 0.2
Satimage 11.6 ± 0.3 14.6 ± 0.3 14.0 ± 0.3 23.3 ± 0.4 17.9 ± 0.4 23.3 ± 0.4 20.6 ± 0.3
Segment 4.2 ± 0.4 5.0 ± 0.4 4.5 ± 0.4 7.4 ± 0.4 5.6 ± 0.4 7.4 ± 0.4 6.7 ± 0.4

USPS 28.5 ± 0.3 30.3 ± 0.3 29.8 ± 0.3 37.7 ± 0.3 32.9 ± 0.3 37.7 ± 0.3 34.7 ± 0.3
Vowel 22.2 ± 1.2 31.8 ± 1.0 26.8 ± 1.3 39.2 ± 1.5 31.4 ± 1.4 39.2 ± 1.5 34.9 ± 1.4

Waveform 21.2 ± 0.4 24.4 ± 0.4 24.3 ± 0.4 39.3 ± 0.4 27.5 ± 0.4 39.3 ± 0.4 34.7 ± 0.4
Wine 7.0 ± 1.3 8.6 ± 1.3 7.9 ± 1.3 16.6 ± 1.8 10.0 ± 1.4 16.6 ± 1.8 14.0 ± 2.0
Yeast 20.1 ± 0.6 44.1 ± 0.8 33.1 ± 1.0 45.7 ± 1.1 38.8 ± 1.2 45.7 ± 1.1 41.2 ± 1.2
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Table 3: Error rates (%), unpruned decision trees, dense code matrix

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 8.7 ± 1.2 10.3 ± 1.1 8.8 ± 1.1 9.9 ± 1.3 9.9 ± 1.2 19.7 ± 1.6 14.4 ± 1.4
Faces 28.9 ± 2.3 28.9 ± 2.3 28.9 ± 2.3 31.3 ± 2.6 31.4 ± 3.0 74.7 ± 1.6 43.6 ± 2.8
Glass 28.2 ± 2.2 29.7 ± 2.1 29.1 ± 2.1 29.0 ± 2.0 28.6 ± 2.3 46.0 ± 2.4 39.5 ± 2.4
Iris 3.8 ± 1.3 6.7 ± 1.2 6.1 ± 1.3 6.4 ± 1.3 6.3 ± 1.2 7.1 ± 1.4 6.7 ± 1.3

Pageblocks 2.5 ± 0.1 3.5 ± 0.2 3.3 ± 0.2 3.5 ± 0.1 3.6 ± 0.1 4.0 ± 0.1 4.1 ± 0.2
Satimage 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.1 ± 0.3 10.3 ± 0.3 19.4 ± 0.3 15.7 ± 0.3
Segment 2.4 ± 0.3 2.4 ± 0.3 2.4 ± 0.3 2.3 ± 0.3 2.3 ± 0.3 6.4 ± 0.5 4.6 ± 0.4

USPS 21.5 ± 0.2 21.5 ± 0.2 21.5 ± 0.2 21.5 ± 0.2 21.6 ± 0.2 41.2 ± 0.3 22.8 ± 0.5
Vowel 12.6 ± 1.0 12.6 ± 1.0 12.6 ± 1.0 9.8 ± 0.9 10.2 ± 0.8 50.6 ± 1.0 23.6 ± 1.2

Waveform 21.2 ± 0.4 24.4 ± 0.4 24.3 ± 0.4 27.9 ± 0.4 27.6 ± 0.4 33.9 ± 0.4 33.9 ± 0.4
Wine 7.0 ± 1.3 8.6 ± 1.3 7.9 ± 1.3 10.7 ± 1.4 10.0 ± 1.6 12.3 ± 1.4 14.8 ± 1.5
Yeast 28.9 ± 0.9 32.0 ± 0.9 29.5 ± 0.9 32.5 ± 0.9 32.4 ± 0.9 49.8 ± 1.0 37.9 ± 0.9
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Table 4: Error rates (%), unpruned decision trees, sparse code matrix

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 10.3 ± 1.3 10.3 ± 1.3 10.3 ± 1.3 9.7 ± 1.0 10.2 ± 1.1 14.9 ± 1.5 11.5 ± 1.5
Faces 30.1 ± 2.7 30.1 ± 2.7 30.1 ± 2.7 30.7 ± 2.7 31.6 ± 2.5 48.9 ± 2.5 35.4 ± 3.0
Glass 30.5 ± 2.1 31.6 ± 2.2 31.3 ± 2.2 29.5 ± 2.3 30.1 ± 1.7 35.0 ± 2.1 31.2 ± 2.2
Iris 3.3 ± 0.8 6.0 ± 0.9 5.6 ± 1.0 6.2 ± 1.1 6.2 ± 1.1 6.2 ± 1.1 6.6 ± 1.4

Pageblocks 3.6 ± 0.2 3.6 ± 0.2 3.6 ± 0.2 3.5 ± 0.1 3.5 ± 0.1 3.6 ± 0.1 3.6 ± 0.1
Satimage 10.6 ± 0.2 10.6 ± 0.2 10.6 ± 0.2 10.8 ± 0.2 12.1 ± 0.3 12.7 ± 0.2 11.6 ± 0.2
Segment 2.7 ± 0.3 2.7 ± 0.3 2.7 ± 0.3 2.8 ± 0.3 2.8 ± 0.2 3.4 ± 0.3 2.8 ± 0.3

USPS 21.7 ± 0.3 21.7 ± 0.3 21.7 ± 0.3 21.7 ± 0.2 23.0 ± 0.4 31.0 ± 0.3 22.4 ± 0.3
Vowel 15.6 ± 0.9 15.6 ± 0.9 15.6 ± 0.9 12.3 ± 0.7 13.2 ± 0.9 28.9 ± 1.0 15.2 ± 1.0

Waveform 19.6 ± 0.4 20.5 ± 0.4 20.5 ± 0.4 21.0 ± 0.4 21.0 ± 0.4 21.3 ± 0.4 30.7 ± 0.4
Wine 6.5 ± 1.2 6.9 ± 1.3 7.1 ± 1.4 6.2 ± 1.5 6.4 ± 1.5 6.4 ± 1.5 10.3 ± 1.7
Yeast 31.9 ± 0.8 32.2 ± 0.8 32.1 ± 0.8 31.4 ± 0.7 31.9 ± 0.6 39.1 ± 0.9 32.4 ± 0.7
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Table 5: Error rates (%), unpruned decision trees, OVO

dataset
set discounted

maximin Bradley-Terry Wu 1 Wu 2 Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 12.1 ± 1.4 12.2 ± 1.4 12.2 ± 1.4 12.3 ± 1.3 11.3 ± 1.4 12.1 ± 1.4 11.7 ± 1.4 11.5 ± 1.3 12.2 ± 1.4
Faces 33.7 ± 2.4 33.9 ± 2.4 33.8 ± 2.4 38.3 ± 2.7 36.5 ± 2.6 38.8 ± 2.4 36.7 ± 2.2 38.9 ± 2.4 38.6 ± 2.8
Glass 25.3 ± 2.0 33.1 ± 1.5 30.4 ± 1.8 29.6 ± 2.0 28.6 ± 2.1 28.1 ± 1.9 27.7 ± 1.7 28.3 ± 2.1 29.4 ± 2.0
Iris 2.8 ± 0.8 6.3 ± 0.9 6.0 ± 1.2 6.2 ± 1.4 6.2 ± 1.4 6.0 ± 1.2 6.2 ± 1.4 6.0 ± 1.2 6.2 ± 1.4

Pageblocks 3.8 ± 0.2 3.9 ± 0.2 3.9 ± 0.2 3.7 ± 0.1 3.7 ± 0.1 3.8 ± 0.1 3.7 ± 0.2 3.7 ± 0.1 3.7 ± 0.1
Satimage 12.9 ± 0.2 12.9 ± 0.2 12.9 ± 0.2 14.6 ± 0.3 14.1 ± 0.2 14.5 ± 0.3 14.0 ± 0.3 14.7 ± 0.2 14.6 ± 0.3
Segment 4.5 ± 0.3 4.5 ± 0.3 4.5 ± 0.3 4.3 ± 0.3 3.8 ± 0.3 4.1 ± 0.3 3.9 ± 0.3 4.3 ± 0.4 4.3 ± 0.4

USPS 24.4 ± 0.2 24.4 ± 0.2 24.4 ± 0.2 26.0 ± 0.2 24.8 ± 0.2 25.5 ± 0.2 24.9 ± 0.2 25.9 ± 0.2 25.9 ± 0.2
Vowel 27.6 ± 1.2 27.8 ± 1.2 27.8 ± 1.2 24.6 ± 1.0 21.6 ± 1.1 23.8 ± 1.2 21.9 ± 1.3 24.5 ± 1.2 24.8 ± 1.0

Waveform 15.8 ± 0.4 23.4 ± 0.3 23.3 ± 0.3 25.0 ± 0.3 24.5 ± 0.3 24.5 ± 0.3 24.5 ± 0.3 24.5 ± 0.3 24.4 ± 0.3
Wine 6.2 ± 1.5 9.6 ± 1.5 7.7 ± 1.5 8.3 ± 1.7 7.6 ± 1.5 7.9 ± 1.7 7.9 ± 1.7 8.1 ± 1.8 7.5 ± 1.6
Yeast 38.0 ± 0.9 38.3 ± 0.9 38.4 ± 0.9 34.0 ± 0.8 33.3 ± 0.8 34.2 ± 0.8 33.1 ± 0.9 34.0 ± 0.9 33.9 ± 0.7
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Table 6: Error rates (%), pruned decision trees, OVA

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 14.2 ± 2.1 18.7 ± 1.9 16.6 ± 1.8 16.8 ± 1.3 19.5 ± 2.3 16.8 ± 1.3 21.3 ± 2.0
Faces 36.0 ± 7.4 58.7 ± 2.7 59.8 ± 3.1 61.3 ± 3.5 61.7 ± 2.7 60.6 ± 3.2 63.1 ± 2.1
Glass 28.5 ± 3.2 40.9 ± 3.0 39.4 ± 3.1 40.6 ± 3.0 51.1 ± 4.8 40.6 ± 3.0 46.3 ± 3.4
Iris 5.2 ± 1.4 6.7 ± 1.3 6.1 ± 1.3 7.0 ± 1.4 6.8 ± 1.3 7.0 ± 1.4 6.7 ± 1.2

Pageblocks 4.8 ± 0.6 4.9 ± 0.6 4.9 ± 0.6 4.9 ± 0.8 4.9 ± 0.6 4.9 ± 0.8 5.5 ± 0.7
Satimage 27.2 ± 2.9 27.2 ± 2.9 27.2 ± 2.9 19.8 ± 0.5 25.2 ± 2.4 19.8 ± 0.5 25.1 ± 1.7
Segment 5.8 ± 0.5 6.2 ± 0.5 6.0 ± 0.5 5.7 ± 0.4 6.2 ± 0.4 5.7 ± 0.4 7.2 ± 0.5

USPS 39.4 ± 1.2 39.5 ± 1.2 39.5 ± 1.2 34.9 ± 0.9 38.4 ± 1.0 34.9 ± 0.9 37.8 ± 0.9
Vowel 30.5 ± 1.9 36.4 ± 1.6 33.5 ± 1.9 35.2 ± 1.3 37.1 ± 1.7 35.2 ± 1.4 38.9 ± 1.7

Waveform 39.8 ± 2.5 40.6 ± 2.6 40.7 ± 2.6 32.9 ± 2.7 39.4 ± 3.3 32.9 ± 2.7 40.6 ± 3.3
Wine 11.0 ± 2.1 11.7 ± 2.0 11.3 ± 2.1 12.7 ± 2.1 11.7 ± 1.7 12.7 ± 2.1 14.8 ± 2.0
Yeast 43.0 ± 2.5 54.4 ± 2.9 53.3 ± 3.1 51.1 ± 4.0 62.8 ± 3.9 51.1 ± 4.0 51.3 ± 4.0
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Table 7: Error rates (%), pruned decision trees, dense code matrix

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 11.6 ± 0.9 11.6 ± 0.9 11.6 ± 0.9 9.9 ± 1.2 10.1 ± 1.3 17.2 ± 1.3 13.5 ± 1.5
Faces 42.5 ± 3.2 42.5 ± 3.2 42.5 ± 3.2 37.4 ± 2.4 43.8 ± 3.7 43.4 ± 2.3 38.3 ± 2.6
Glass 33.8 ± 1.8 33.8 ± 1.8 33.8 ± 1.8 31.0 ± 2.3 32.1 ± 2.2 37.0 ± 2.8 33.0 ± 2.3
Iris 5.4 ± 1.6 6.7 ± 1.4 6.4 ± 1.4 5.9 ± 1.2 6.3 ± 1.2 6.3 ± 1.2 6.5 ± 1.2

Pageblocks 4.1 ± 0.4 4.1 ± 0.4 4.1 ± 0.4 4.0 ± 0.3 4.2 ± 0.4 3.9 ± 0.3 4.5 ± 0.3
Satimage 15.5 ± 0.2 15.5 ± 0.2 15.5 ± 0.2 15.4 ± 0.3 15.5 ± 0.3 14.9 ± 0.3 17.0 ± 0.3
Segment 3.2 ± 0.2 3.2 ± 0.2 3.2 ± 0.2 2.9 ± 0.2 2.9 ± 0.3 5.0 ± 0.4 5.2 ± 0.3

USPS 24.2 ± 0.3 24.2 ± 0.3 24.2 ± 0.3 24.0 ± 0.3 24.2 ± 0.3 24.8 ± 0.3 22.4 ± 0.7
Vowel 14.5 ± 0.9 14.5 ± 0.9 14.5 ± 0.9 10.8 ± 0.7 11.2 ± 0.7 47.9 ± 1.5 21.8 ± 1.0

Waveform 41.2 ± 2.9 41.3 ± 2.9 41.3 ± 2.9 32.9 ± 3.3 39.2 ± 3.4 32.9 ± 3.3 41.7 ± 4.0
Wine 10.4 ± 1.6 11.3 ± 1.6 11.1 ± 1.6 10.2 ± 1.8 10.8 ± 1.3 11.2 ± 2.0 15.5 ± 1.8
Yeast 40.3 ± 1.9 40.3 ± 1.9 40.3 ± 1.9 32.7 ± 0.9 35.8 ± 1.5 47.9 ± 1.0 36.0 ± 1.2
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Table 8: Error rates (%), pruned decision trees, sparse code matrix

dataset
set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 13.4 ± 1.9 13.4 ± 1.9 13.4 ± 1.9 10.6 ± 1.3 12.9 ± 1.6 11.3 ± 1.3 10.5 ± 1.1
Faces 31.8 ± 2.4 31.8 ± 2.4 31.8 ± 2.4 30.2 ± 2.5 30.9 ± 2.3 36.6 ± 2.4 34.8 ± 2.4
Glass 34.2 ± 2.3 34.2 ± 2.3 34.2 ± 2.3 29.7 ± 1.9 32.6 ± 3.4 30.9 ± 1.9 30.1 ± 1.7
Iris 5.0 ± 1.0 5.7 ± 1.0 5.5 ± 1.0 5.6 ± 1.0 5.6 ± 1.0 5.8 ± 1.1 6.2 ± 1.3

Pageblocks 3.8 ± 0.3 3.8 ± 0.3 3.8 ± 0.3 3.9 ± 0.3 4.5 ± 0.7 4.0 ± 0.6 4.0 ± 0.3
Satimage 15.0 ± 0.4 15.0 ± 0.4 15.0 ± 0.4 14.7 ± 0.4 15.0 ± 0.4 14.3 ± 0.3 15.4 ± 0.4
Segment 3.5 ± 0.3 3.5 ± 0.3 3.5 ± 0.3 2.8 ± 0.3 3.8 ± 0.4 3.1 ± 0.3 3.6 ± 0.4

USPS 24.0 ± 0.3 24.0 ± 0.3 24.0 ± 0.3 23.6 ± 0.3 25.4 ± 0.3 24.6 ± 0.3 23.6 ± 0.3
Vowel 17.5 ± 1.0 17.5 ± 1.0 17.5 ± 1.0 13.3 ± 0.8 14.0 ± 0.9 24.5 ± 1.2 15.4 ± 0.9

Waveform 28.6 ± 1.8 29.0 ± 1.9 28.9 ± 1.9 25.4 ± 1.2 29.1 ± 2.3 25.1 ± 1.2 31.2 ± 2.8
Wine 6.9 ± 1.4 7.6 ± 1.5 7.9 ± 1.9 6.8 ± 1.6 7.1 ± 1.6 7.1 ± 1.5 13.2 ± 3.6
Yeast 39.8 ± 1.7 39.8 ± 1.7 39.8 ± 1.7 34.1 ± 0.8 40.4 ± 1.6 41.7 ± 1.3 34.3 ± 0.8

33



Table 9: Error rates (%), pruned decision trees, OVO

dataset
set discounted

maximin Bradley-Terry Wu 1 Wu 2 Hamming Passerini Zadrozny
accuracy accuracy

Ecoli 13.6 ± 1.7 13.6 ± 1.7 13.6 ± 1.7 13.2 ± 1.6 13.5 ± 1.6 13.7 ± 1.6 13.6 ± 1.5 13.2 ± 1.6 13.2 ± 1.6
Faces 33.9 ± 2.4 34.3 ± 2.3 34.4 ± 2.4 36.7 ± 2.2 36.4 ± 2.6 38.1 ± 2.6 37.4 ± 2.6 38.3 ± 2.4 36.8 ± 2.3
Glass 29.3 ± 2.8 37.1 ± 3.1 35.7 ± 3.7 34.5 ± 3.4 34.9 ± 3.3 34.2 ± 3.7 35.5 ± 3.8 34.1 ± 3.5 34.5 ± 3.4
Iris 3.4 ± 0.9 6.1 ± 1.0 5.8 ± 1.2 6.1 ± 1.4 6.1 ± 1.4 5.8 ± 1.2 6.0 ± 1.3 5.8 ± 1.2 6.1 ± 1.4

Pageblocks 4.1 ± 0.3 4.1 ± 0.3 4.1 ± 0.3 3.9 ± 0.2 3.9 ± 0.2 3.9 ± 0.2 4.0 ± 0.3 3.9 ± 0.2 3.9 ± 0.2
Satimage 16.3 ± 0.5 16.3 ± 0.5 16.3 ± 0.5 15.7 ± 0.4 15.7 ± 0.4 15.7 ± 0.4 16.1 ± 0.5 15.8 ± 0.4 15.7 ± 0.4
Segment 4.8 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 4.4 ± 0.4 4.4 ± 0.4 4.4 ± 0.4 4.5 ± 0.4 4.4 ± 0.4 4.4 ± 0.4

USPS 25.9 ± 0.3 25.9 ± 0.3 25.9 ± 0.3 25.7 ± 0.3 25.9 ± 0.3 26.0 ± 0.3 26.3 ± 0.3 26.3 ± 0.3 25.7 ± 0.3
Vowel 29.1 ± 1.2 29.2 ± 1.1 29.2 ± 1.1 23.6 ± 1.2 23.4 ± 1.1 24.1 ± 1.1 23.8 ± 1.1 23.7 ± 1.2 23.7 ± 1.3

Waveform 30.4 ± 1.2 30.5 ± 1.2 30.5 ± 1.2 28.8 ± 1.3 28.7 ± 1.3 28.6 ± 1.4 29.5 ± 1.5 28.7 ± 1.3 28.8 ± 1.3
Wine 7.0 ± 1.7 9.7 ± 1.5 8.0 ± 1.7 8.1 ± 1.6 7.7 ± 1.5 7.9 ± 1.5 8.1 ± 1.7 8.0 ± 1.6 7.7 ± 1.5
Yeast 45.8 ± 1.9 45.8 ± 2.0 45.8 ± 1.9 40.8 ± 1.8 40.6 ± 1.8 40.8 ± 2.2 42.7 ± 2.4 40.5 ± 1.8 40.8 ± 1.8
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Table 10: Error rates (%), imprecisely classified instances, unpruned decision trees, OVA

dataset
nb. impr. nb. retained set discounted

maximin Bradley-Terry Hamming Passerini Zadrozny
instances classes accuracy accuracy

Ecoli 18.3 2.5 6.1 60.5 30.2 45.1 37.6 45.1 42.0
Faces 6.5 2.1 29.0 66.3 61.7 85.2 64.8 85.2 75.9
Glass 20.7 2.5 12.0 62.8 46.6 65.2 53.6 65.2 64.0
Iris 2.8 2.0 0.0 50.0 39.4 42.3 42.3 42.3 40.8

Pageblocks 57.0 2.2 3.4 54.6 40.4 53.5 44.9 53.5 50.2
Satimage 126.5 2.4 9.7 59.7 50.3 73.0 59.0 73.0 66.6
Segment 12.6 2.1 4.1 53.5 24.1 42.9 32.7 42.9 35.9

USPS 290.7 2.8 67.3 86.6 81.9 91.2 86.7 91.2 89.3
Vowel 62.1 2.8 14.3 65.2 38.5 56.2 47.9 56.2 52.3

Waveform 107.4 2.0 0.0 50.3 48.3 74.5 54.7 74.5 67.7
Wine 1.9 2.0 0.0 50.0 29.2 45.8 25.0 45.8 39.6
Yeast 212.8 3.0 10.3 66.3 40.6 53.9 47.9 53.9 50.6
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