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The context of this work is the well studied dissemination of information in large scale distributed networks

through pairwise interactions. This problem, originally called rumor mongering, and then rumor spreading

has mainly been investigated in the synchronous model. This model relies on the assumption that all the

nodes of the network act in synchrony, that is, at each round of the protocol, each node is allowed to contact

a random neighbor. In this paper, we drop this assumption under the argument that it is not realistic in

large scale systems. We thus consider the asynchronous variant, where at random times, nodes successively

interact by pairs exchanging their information on the rumor. In a previous paper, we performed a study of

the total number of interactions needed for all the nodes of the network to discover the rumor. While most of

the existing results involve huge constants that do not allow us to compare different protocols, we provided

a thorough analysis of the distribution of this total number of interactions together with its asymptotic

behavior. In this paper we extend this discrete-time analysis by solving a conjecture proposed previously

and we consider the continuous-time case, where a Poisson process is associated to each node to determine

the instants at which interactions occur. The rumor spreading time is thus more realistic since it is the real

time needed for all the nodes of the network to discover the rumor. Once again, as most of the existing

results involve huge constants, we provide tight bound and equivalent of the complementary distribution of

the rumor spreading time. We also give the exact asymptotic behavior of the complementary distribution of

the rumor spreading time around its expected value when the number of nodes tends to infinity.

Key words : rumor spreading time, pairwise interactions, Poisson process, Markov chain, analytic

performance evaluation

1. Introduction

Randomized rumor spreading is an important mechanism that allows the dissemination of

information in large and complex networks through pairwise interactions. This mechanism

initially proposed by Demers et al. (1987) for the update of a database replicated at

different sites, has then been adopted in many applications ranging from resource discovery

as in Harchol-Balter et al. (1999), data-aggregation as in Kempe et al. (2003), complex

1



distributed applications as in Censor-Hillel et al. (2012), or virus propagation in computer

networks as in Berger et al. (2005), to mention just a few.

A lot of attention has been devoted to the design and study of randomized rumor spread-

ing algorithms. Initially, some rumor is placed on one of the nodes of a given network,

and this rumor is propagated to all the nodes of the network through pairwise interactions

between nodes. One of the important questions raised by these protocols is the spreading

time, that is time it needs for the rumor to be known by all the nodes of the network.

Several models have been considered to answer this question. The most studied one is

the synchronous push-pull model, also called the synchronous random phone call model.

This model assumes that all the nodes of the network act in synchrony, which allows the

algorithms designed in this model to divide time in synchronized rounds. During each

synchronized round, each node i of the network selects at random one of its neighbor j

and either sends to j the rumor if i knows it (push operation) or gets the rumor from j

if j knows the rumor (pull operation). In the synchronous model, the spreading time of

a rumor is defined as the number of synchronous rounds necessary for all the nodes to

know the rumor. In one of the first papers dealing with the push operation only, Frieze

and Grimmet (1985) proved that when the underlying graph is complete, the ratio of the

number of rounds over log2(n) converges in probability to 1 + ln(2) when the number n of

nodes in the graph tends to infinity.

Further results have been established (see for example Pittel (1987), Karp et al. (2000)

and the references therein), the most recent ones resulting from the observation that the

rumor spreading time is closely related to the conductance of the graph of the network,

see Giakkoupis (2011). Investigations have also been done in different topologies of the

network as in Chierichetti et al. (2011), Daum et al. (2016), Fountoulakis and Panagiotou

(2013), Panagiotou et al. (2015), in the presence of link or nodes failures as in Feige et al.

(1990), in dynamic graphs as in Clementi et al. (2015) and spreading with node expansion

as in Giakkoupis (2014).

In distributed networks, and in particular in large scale distributed systems, assuming

that all nodes act synchronously is unrealistic. Several authors have recently dropped this

assumption by considering an asynchronous model. In the discrete-time case, Acan et al.

(2015) study the rumor spreading time for any graph topology. They show that both the

average and guaranteed spreading time are Ω(n ln(n)), where n is the number of nodes



in the network. Angluin et al. (2008) analyze the spreading time of a rumor by only

considering the push operation (which they call the one-way epidemic operation), and show

that with high probability, a rumor injected at some node requires O(n ln(n)) interactions

to be spread to all the nodes of the network. This result is interesting, nevertheless the

constants arising in the complexity are not determined. In the continuous-time case, Ganesh

(2015) considers the propagation of a rumor when there are n independent unit rate Poisson

processes, one associated with each node. At a time when there is a jump of the Poisson

process associated with node i, this node becomes active, and chooses another node j

uniformly at random with which to communicate. Ganesh (2015) analyzes the mean and

the variance of the spreading time of the rumor on general graphs and Panagiotou and

Speidel (2016) proposes a thorough study for spreading a rumor on particular Erdös-Rényi

random graphs.

In the present paper we consider the rumor spreading time in the asynchronous push-

pull model for both the discrete and continuous time cases. This model provides minimal

assumptions on the computational power of the nodes.

In the discrete-time case, nodes interact by pairs at random and if at least one node

possesses the rumor, the other one also gets informed of it. In this case, the spreading time

is defined by the number of interactions needed for all the nodes of the network to learn

the rumor. In the continuous-time case, as suggested by Ganesh (2015), a Poisson process

is associated with each node and at a jump occurrence of Poisson process of a node, this

node contacts randomly a neighbor to interact with it as in the discrete-time case, i.e. to

get informed of the rumor if one of these two nodes possesses the rumor. The n Poisson

processes are suppose to be independent with the same rate.

In Mocquard et al. (2016) we analyzed the rumor spreading time in the discrete-time

asynchronous push-pull model. In the present paper we extend the results obtained in

Mocquard et al. (2016) in two ways. First, we prove the conjecture formulated therein and

second, we deal with the continuous-time asynchronous push-pull model.

The remainder of this paper is organized as follows. Section 2 presents the main results

obtained in Mocquard et al. (2016) in the discrete time model needed to solve the

continuous-time model. We also prove in this section the conjecture formulated in Moc-

quard et al. (2016). More precisely, if Tn denotes the total number of interactions needed

for all the n nodes to get the rumor then, limn−→∞P{Tn >E(Tn)} ≈ 0.448429663727, where



E(Tn) = (n− 1)Hn−1 and Hk is the harmonic series truncated at step k. In Section 3, we

consider the continuous time model. A Poisson process is associated with each node and

each jump of these independent Poisson processes correspond to an interaction between

two different nodes. In this model, the time needed for all the n nodes to get the rumor

is denoted by Θn. We first give simple expressions of the expected value and variance of

Θn. Then we give an explicit expression of its distribution and we obtain a simple bound

of its complementary distribution which is proved to also be an equivalent of its tail. It is

also shown that this bound is much more tight than already known bounds. Finally, we

give the limiting distribution of the ratio Θn/E(Θn) when the number n of nodes tends to

infinity. Finally, Section 4 concludes the paper.

2. The discrete time case

We recall in this section the main results obtained in Mocquard et al. (2016) needed to

deal with the continuous time case. We also prove the conjecture formulated in Mocquard

et al. (2016)

In the discrete time case, the total number of interactions needed so that all the n nodes

get the rumor is denoted by Tn. We suppose without any loss of generality that among

the n nodes, a single one initially knows the rumour. The case where the number of initial

nodes possessing the rumor is greater than one has been considered in Mocquard et al.

(2016). A value 0 or 1 is associated with each node. A node with value 1 means that this

node knows the rumor and a node with value 0 means that it is not aware of the rumor.

For every t ≥ 0, we denote by C
(i)
t the value (0 or 1) of node i at time t. At time 0, all

the C
(i)
0 are equal to 0 except one which is equal to 1 and which corresponds to the node

initially knowing the rumor.

At each discrete instant t, two distinct indexes i and j are successively chosen among

the set of nodes 1, . . . , n randomly. We denote by Xt the random variable representing this

choice and we suppose that this choice is uniform, i.e we suppose that

P{Xt = (i, j)}=
1

n(n− 1)
1{i 6=j}.

Once the couple (i, j) is chosen at time t≥ 1, we have

C
(i)
t =C

(j)
t = max{C(i)

t−1,C
(j)
t−1} and C

(m)
t =C

(m)
t−1 for m 6= i, j.



The random variable Tn, defined by

Tn = inf{t≥ 0 |C(i)
t = 1, for every i= 1, . . . , n},

represents the number of interactions needed for all the nodes in the network to know the

rumor.

We introduce the discrete-time stochastic process Y = {Yt, t ≥ 0} with state space

{1, . . . , n} defined, for all t≥ 0, by

Yt =
∣∣∣{i |C(i)

t = 1
}∣∣∣ .

The random variable Yt represents the number of nodes knowing the rumor at time t. The

stochastic process Y is then a homogeneous Markov chain with n states, states 1, . . . , n−1

being transient and state n absorbing. The random variable Tn can then be written as

Tn = inf{t≥ 0 | Yt = n}.

It is well-known, see for instance Sericola (2013), that the distribution of Tn is given, for

every k≥ 0, by

P{Tn >k}= αQk
1, (1)

where α is the row vector containing the initial probabilities of states 1, . . . , n− 1, that is

αi = P{Y0 = i} = 1{i=1}, Q is the matrix obtained containing the transition probabilities

between transient states, that is, as shown in Mocquard et al. (2016),

Qi,i = 1− 2i(n− i)
n(n− 1)

for i= 1, · · · , n− 1 and Qi,i+1 =
2i(n− i)
n(n− 1)

, for i= 1, · · · , n− 2 (2)

and 1 is the column vector of dimension n− 1 with all its entries equal to 1.

For i= 0, . . . , n, we introduce the notation

pi =
2i(n− i)
n(n− 1)

and we denote by Hk the harmonic series defined by H0 = 0 and Hk =
∑k

`=1 1/`, for k≥ 1.

If we denote by Si, for i= 1, . . . , n− 1, the total time spent by the Markov chain Y in

state i, then Si has a geometric distribution with parameter pi and we have

Tn =
n−1∑
i=1

Si.



2.1. Analysis of the spreading time

The mean time E(Tn) needed so that all the nodes get the rumor is then given by

E(Tn) = α(I −Q)−1
1, (3)

where I is the identity matrix. Its explicit value has been obtained in Mocquard et al.

(2016). It is given, for every n≥ 1, by

E(Tn) = (n− 1)Hn−1. (4)

An explicit expression of the distribution of Tn, for n ≥ 2, has been obtained in the

following theorem wich will used to deal with the continuous-time case.

Theorem 1. For every n≥ 1, k≥ 0, we have

P{Tn >k}=

bn/2c∑
j=1

(cn−1,j(1− pj) + kdn−1,j) (1− pj)k−1,

where the coefficients cn−1,j and dn−1,j, which do not depend on k, are given, for j =

1, . . . , n− 1, recursively by

c1,j = 1{j=1} and d1,j = 0

and for i∈ {2, . . . , n− 1} by

ci,j =
pici−1,j

pi− pj
− pidi−1,j

(pi− pj)2
for i 6= j,n− j,

di,j =
pidi−1,j

pi− pj
for i 6= j,n− j,

ci,i = 1−
bn/2c∑
j=1,j 6=i

ci,j for i≤ bn/2c,

ci,n−i = 1−
bn/2c∑

j=1,j 6=n−i

ci,j for i > bn/2c,

di,i = pici−1,i for i≤ bn/2c,

di,n−i = pici−1,n−i for i > bn/2c.

Proof. See Mocquard et al. (2016).



2.2. Bounds and asymptotic analysis of the distribution of Tn

The following bound and equivalent of the complementary distribution of Tn will be used

in the continuous-time case to obtain similar bound and equivalent.

Theorem 2. For all n≥ 2 and k≥ 1 we have

P{Tn >k} ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

,

P{Tn >k} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Proof. See Mocquard et al. (2016).

Recall that E(Tn) = (n− 1)Hn−1, where Hk is the harmonic series. We proved in Moc-

quard et al. (2016) that for all real c≥ 0, we have

lim
n→∞

P{Tn > cE(Tn)}=

0 if c > 1

1 if c < 1.
(5)

For c = 1, this result was formulated in Mocquard et al. (2016) as a conjecture. We are

now able to give a proof of it.

Theorem 3.

lim
n−→∞

P{Tn >E(Tn)}= 1− 2e−γK1

(
2e−γ

)
≈ 0.448429663727.

where γ is the Euler’s constant given by γ = limn−→∞(Hn− ln(n))≈ 0.5772156649 and K1

is the modified Bessel function of the second kind of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt.

Proof. See Appendix A.

Relation (5) shows that for large values of n (n−→∞) and for all ε > 0, we have Tn ≤

(1 + ε)E(Tn) with probability 1, Tn > (1− ε)E(Tn) with probability 1. Moreover Theorem

3 shows that for large values of n (n−→∞), we have Tn >E(Tn) with probability 0.44843

and thus Tn =E(Tn) with probability 0.55157.



3. The continuous time case

As in the discrete time case, we suppose without any loss of generality that among the n

nodes, a single one initially knows the rumour and a value 0 or 1 is associated with each

node. A node with value 1 means that this node knows the rumor and a node with value

0 means that it is not aware of the rumor. For every t≥ 0, we denote by C
(i)
t the value (0

or 1) of node i at time t. At time 0, all the C
(i)
0 are equal to 0 except one which is equal

to 1 and which corresponds to the node initially knowing the rumor.

In the continuous time case, a Poisson process is associated with each node. These n

Poisson processes are independent and have the same rate λ> 0. When the Poisson process

associated with node i has a jump, this node chooses another node j randomly, with a

given distribution to interact with node i. This is equivalent to consider a single Poisson

process with rate nλ at the jumps of which two distinct nodes are randomly chosen to

interact with a given distribution. Then as in the discrete time case, the two nodes change

their value with the maximum value of each node. Again, we want to evaluate the time

needed to spread the rumor that is the time needed so that all the nodes get value 1.

We denote by (τ`)`≥0 the successive jumps of the Poisson process with rate nλ, with

τ0 = 0. Then once the couple (i, j) is chosen at time τ`, we have

C
(i)
t =C

(j)
t = max{C(i)

τ`−1
,C(j)

τ`−1
} and C

(m)
t =C(m)

τ`−1
for m 6= i, j and t∈ [τ`, τ`+1).

For every `≥ 1, we denote by X` the random variable representing this choice at time

τ` and we suppose that this choice is uniform, i.e. we suppose that, for all `≥ 1, we have

P{X` = (i, j)}=
1

n(n− 1)
1{i 6=j}.

We consider the random variable Θn defined by

Θn = inf{t≥ 0 |C(i)
t = 1, for every i= 1, . . . , n},

which represents the time needed for all the nodes in the network to know the rumor.

We introduce the continuous-time stochastic process Z = {Zt, t ∈R+} with state space

{1, . . . , n} defined, for all t≥ 0, by

Zt =
∣∣∣{i∈ {1, . . . , n} |C(i)

t = 1
}∣∣∣ .



The random variable Zt represents the number of nodes knowing the rumor at time t. The

stochastic process Z is then a homogeneous Markov chain with transition rate matrix B.

The non zero entries of matrix B are given, for i= 1, . . . , n, byBi,i = −nλpi,

Bi,i+1 = nλpi, for i 6= n.

Indeed, when Zt = i, the next node is activated with rate nλ. In order for process Z

to reach state i + 1 from state i, this activated node, say node `, either possesses the

rumor (probability i/n) and the node contacted by `, say m, does not possess the rumor

(probability (n− i)/(n− 1)) or node ` does not possess the rumor (probability (n− i)/n)

and it contacts node m which possesses the rumor (probability i/(n−1)). This means that,

for i= 1, . . . , n− 1, the rate Bi,i+1 is given by

Bi,i+1 = nλ
2i(n− i)
n(n− 1)

= nλpi.

The states 1, . . . , n− 1 of Z are transient and state n is absorbing. The random variable

Θn can then be written as

Θn = inf{t≥ 0 |Zt = n}.

It is well-known, see for instance Sericola (2013), that the distribution of Θn is given, for

every t≥ 0, by

P{Θn > t}= αeRt1, (6)

where α is the row vector containing the initial probabilities of states 1, . . . , n− 1, that

is αi =P{Z0 = i}= 1{i=1}, R is the sub-matrix obtained from B by deleting the row and

the column corresponding to absorbing state n and 1 is the column vector of dimension

n− 1 with all its entries equal to 1. For every i= 1, . . . , n− 1 we denote by Ui the sojourn

time of process Z in state i, that is the time during which the system counts exactly i

nodes knowing the rumor. The random variables Ui are independent and exponentially

distributed with rate µi = nλpi and we have

Θn =

n−1∑
i=1

Ui.



3.1. Expectation and variance of Θn

The expected value and the variance of Θn were obtained by Ganesh (2015) in the push

model case. We extend these results to the push-pull model in the following two lemmas.

Lemma 1. For all n≥ 2, we have

E(Θn) =
(n− 1)Hn−1

nλ
and E(Θn) ∼

n−→∞

ln(n)

λ
.

Proof. We have

E(Θn) =
n−1∑
i=1

E(Ui) =
1

nλ

n−1∑
i=1

1

pi
=

1

nλ
E(Tn) =

(n− 1)Hn−1

nλ
.

The rest of the proof is evident since Hn−1 ∼
n−→∞

ln(n).

Lemma 2. For all n≥ 2, we have

Var(Θn) =
(n− 1)2

2n2λ2

(
n−1∑
i=1

1

i2
+

2Hn−1

n

)
≤ 1

λ2

(
π2

12
+
Hn−1

n

)
and lim

n−→∞
Var(Θn) =

π2

12λ2
.

Proof. The random variables U` being independent, we have

Var(Θn) =
n−1∑
i=1

Var(Ui) =
1

n2λ2

n−1∑
i=1

1

p2
i

=
(n− 1)2

4λ2

n−1∑
i=1

1

i2(n− i)2

=
(n− 1)2

4n2λ2

n−1∑
i=1

(
1

i
+

1

n− i

)2

=
(n− 1)2

4n2λ2

(
2
n−1∑
i=1

1

i2
+

4Hn−1

n

)

≤ 1

λ2

(
π2

12
+
Hn−1

n

)
.

The rest of the proof is evident since Hn−1 ∼
n−→∞

ln(n).

3.2. Explicit expression of the distribution of Θn

The distribution of Θn, for n≥ 2, which is given by Relation (6) can be easily computed

as follows. We make use of the uniformization technique, see for instance Sericola (2013).

We introduce the uniformized Markov chain associated with the Markov chain Z which is

characterized by its uniformization rate ν and by its transition probability matrix G. The

uniformization rate ν must satisfy ν ≥maxi=1,...,n(−Bi,i) and matrix G is related to the

infinitesimal generator R by

G= In +B/ν,



where In denotes the identity matrix of order n. We denote by Nt the number of transitions

occurring during the interval [0, t]. The process Nt is a Poisson process with rate ν and

since B = −ν(In −G), we have R = −ν(In−1 − P ), where P is the sub-matrix obtained

from G by deleting the row and the column corresponding to absorbing state n. Relation

(6) can then be written as

P{Θn > t}= αeRt1=

∞∑
k=0

e−νt
(νt)k

k!
αP k

1.

It is easily checked that

max
i=1,...,n

(−Ri,i) = max
i=1,...,n

(nλpi)≤ nλ.

By taking ν = nλ, we get, from Relation (2), P =Q and thus, using (1), this leads to

P{Θn > t}=
∞∑
k=0

e−nλt
(nλt)k

k!
P{Tn >k}=

∞∑
k=0

e−nλt
(nλt)k

k!
αQk

1. (7)

Using this expression we obtain the following explicit expression of the distribution of Θn.

Theorem 4. For every n≥ 1, t≥ 0, we have

P{Θn > t}=

bn/2c∑
j=1

(cn−1,j +nλtdn−1,j)e
−nλpjt,

where the coefficients cn−1,j and dn−1,j are given in Theorem 1.

Proof. From Theorem 1, we have for every n≥ 1 and k≥ 0,

P{Tn >k}=

bn/2c∑
j=1

(cn−1,j(1− pj) + kdn−1,j) (1− pj)k−1,

where the coefficients cn−1,j and dn−1,j are given in Theorem 1. Using now Relation (7), we

obtain

P{Θn > t}=

∞∑
k=0

e−nλt
(nλt)k

k!

bn/2c∑
j=1

cn−1,j(1− pj)k +

bn/2c∑
j=1

kdn−1,j(1− pj)k−1


=

bn/2c∑
j=1

cn−1,je
−nλpjt +nλt

bn/2c∑
j=1

dn−1,je
−nλpjt,

which completes the proof.



3.3. Bounds and tail behavior of the distribution of Θn

We obtain in this section a very simple bound of the complementary distribution of Θn

and we show that this bound is also an equivalent of its tail. This bound and equivalent

of the quantity P{Θn > t} are derived from Theorem 2.

Theorem 5. For all n≥ 3 and t≥ 0 we have

P{Θn > t} ≤
[
2(n− 2)2λt+

n

n− 2

]
e−2λt,

P{Θn > t} ∼
t−→∞

[
2(n− 2)2λt+

n

n− 2

]
e−2λt.

Note that for n= 2, we have Θ2 =U1 which is exponentially distributed with rate µ1 = 2λ

and thus P{Θ2 > t}= e−2λt.

Proof. From Theorem 2, we have for n≥ 2 and k≥ 1,

P{Tn >k} ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Since P{Tn > 0}= 1, this leads to

P{Θn > t}=
∞∑
k=0

e−nλt
(nλt)k

k!
P{Tn >k}

≤ e−nλt +
∞∑
k=1

e−nλt
(nλt)k

k!

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

= e−nλt +
∞∑
k=1

e−nλt
(nλt)k

k!

(
1− 2

n

)k−1

+ 2(n− 2)2λt
∞∑
k=1

e−nλt
((n− 2)λt)k−1

(k− 1)!

= e−nλt +
ne−nλt

(
e(n−2)λt− 1

)
n− 2

+ 2(n− 2)2λte−nλte(n−2)λt

=

[
2(n− 2)2λt+

n

n− 2

]
e−2λt− 2

n− 2
e−nλt

≤
[
2(n− 2)2λt+

n

n− 2

]
e−2λt.

which completes the first part of the proof.

On the one hand since p1 < pj for j = 2, . . . , bn/2c, we have, from Theorem 1,

P{Tn >k} ∼
k−→∞

dn−1,1k

(
1− 2

n

)k−1

.

On the other hand, from Theorem 2, we have

P{Tn >k} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.



These two results imply that

dn−1,1 =
2(n− 2)2

n
.

In the same way, from Theorem 4, we get

P{Θn > t} ∼
t−→∞

dn−1,1nλte
−nλp1t = 2(n− 2)2λte−2λt ∼

t−→∞

[
2(n− 2)2λt+

n

n− 2

]
e−2λt,

which completes the proof.

We give in the following two different bounds for the quantity P{Θn > cE(Θn)}, with

c≥ 1. These bounds will be compared and used to obtain the limiting behaviour of this

quantity when the number n of nodes goes to infinity.

Recalling that E(Θn) = (n− 1)Hn−1/(nλ), a first bound is obtained by an immediate

application of Theorem 5.1 of Janson (2014), which leads, for all n ≥ 3 and for all real

number c≥ 1, to

P{Θn > cE(Θn)} ≤ 1

c
exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
. (8)

Note that the right-hand side term is equal to 1 when c= 1.

Applying Theorem 5 at point cE(Θn), we obtain the following second bound.

P{Θn > cE(Θn)} ≤
[
2(n− 2)2λcE(Θn) +

n

n− 2

]
e−2λcE(Θn)

=

[
2c(n− 2)2(n− 1)Hn−1

n
+

n

n− 2

]
exp

(
−2c(n− 1)Hn−1

n

)
.

From now on we denote this bound by ϕ(c,n) and in the same way, we denote by ψ(c,n)

the bound of P{Θn > cE(Θn)} obtained in (8). We then have, for n≥ 3 and c≥ 1,

ϕ(c,n) =

[
2c(n− 2)2(n− 1)Hn−1

n
+

n

n− 2

]
exp

(
−2c(n− 1)Hn−1

n

)
,

ψ(c,n) =
1

c
exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
.

These two bounds are compared in the next theorem.

Theorem 6. For every n≥ 5, there exists a unique c∗ ≥ 1 such that ϕ(c∗, n) = ψ(c∗, n)

and we have ϕ(c,n)>ψ(c,n) for all 1≤ c < c∗

ϕ(c,n)<ψ(c,n) for all c > c∗.
(9)

Furthermore,

lim
c−→∞

ϕ(c,n)

ψ(c,n)
= 0.



Proof. Let us introduce the quantities

An =
(n− 1)Hn−1

n
,Bn = 2(n− 2)2An and Cn =

n

n− 2
.

We then have

ϕ(c,n)

ψ(c,n)
=
(
Bnc

2 +Cnc
)
e−2An(1+ln(c)) =

(
Bnc

2−2An +Cnc
1−2An

)
e−2An.

It is easily checked that the sequence An is strictly increasing and that A3 = 1. It follows

that for n≥ 5, we have An > 1 and so

1− 2An < 2− 2An < 0.

This implies that for every n≥ 5, the function ϕ(c,n)/ψ(c,n) is strictly decreasing with c

on [1,+∞) and that

lim
c−→∞

ϕ(c,n)

ψ(c,n)
= 0.

Consider now the sequences xn and yn defined for n≥ 5, by

xn =
ϕ(1, n)

ψ(1, n)
= (Bn +Cn)e−2An and yn =

2e−2(n− 2)2An

(n− 1)2
.

The sequence An being increasing, it is easily checked that sequence yn is increasing too.

Moreover, we have

xn ≥Bne
−2(1+ln (n−1)) =

e−2Bn

(n− 1)2
=

2e−2(n− 2)2An

(n− 1)2
= yn.

A simple computation shows that we have y34 > 1. The sequence yn being increasing,

we obtain yn > 1 for every n ≥ 34. It follows that we also have xn > 1 for all n ≥ 34. A

numerical computation gives xn > 1 for n = 5, . . . ,33 which means that for all n ≥ 5, we

have xn = ϕ(1, n)/ψ(1, n)> 1. The function ϕ(c,n)/ψ(c,n) being strictly decreasing with

c on [1,+∞), we deduce that there exists a unique solution, called c∗, to the equation

ϕ(c,n)/ψ(c,n) = 1 and (9) follows.

This theorem shows that our bound ϕ(c,n) is much more tight than the one obtained

using the result of Janson (2014), which has been denoted by ψ(c,n), for c > c∗, not only

because the ratio ϕ(c,n)/ψ(c,n) decreases with c and tends to 0 when c tends to infinity,



Table 1 Values of c∗ for different network sizes n.

n 10 102 103 104 105 106 107 108 109

c∗ 1.253 1.163 1.128 1.109 1.095 1.085 1.078 1.071 1.066

but also because for every value of n, the value of c∗ is very close to 1 as shown in Table 1.

Moreover, from Theorem 5, our bound is optimal in the sense that

P{Θn > cE(Θn)} ∼
c−→∞

ϕ(c,n).

Table 2 and Figure 1 illustrate, for a network composed of n= 1000 nodes, the behavior

of the bounds ϕ(c,1000) and ψ(c,1000), as a function of c, compared to the exact value

of complementary distribution function of Θ1000 at point cE(Θ1000), computed using The-

orem 4. Table 2 illustrates clearly the result of Theorem 5. Indeed the values of our bound

ϕ(c,1000) are very close to the real value of the complementary distribution function, while

the values of ψ(c,1000) tend to move away from this real value even for small values of

c. Note that when c= 1 both bounds are useless and the real value P{Θ1000 >E(Θ1000)}
is very close to the limit obtained in Theorem 9 of next section. Figure 1 shows the large

gap between the bounds ϕ(c,1000) and ψ(c,1000) when c is greater than c∗ whose value

is c∗ = 1.12819634. Moreover this large gap increases when n increases since the value of

c∗ decreases to 1 when n increases, as shown in Table 1.

Table 2 Values of P{Θ1000 > cE(Θ1000)}, ϕ(c,1000) and ψ(c,1000) for different values of c.

c 1 1.2 1.4 1.6 1.8 2

P{Θ1000 > cE(Θ1000)} 0.446 0.063 0.005 3.9× 10−4 2.6× 10−5 1.6× 10−6

ϕ(c,1000) ≥ 1 0.288 0.017 9.7× 10−4 5.5× 10−5 3× 10−6

ψ(c,1000) 1.0 0.634 0.276 0.089 0.023 0.005

3.4. Asymptotic analysis of the distribution of Θn

We analyze in this section the behavior of the complementary distribution of Θn at point

cE(Θn) when the number n of nodes in the network tends to infinity, in function of the

value of c.

We prove in the following theorem that the bounds ϕ(c,n) and ψ(c,n), obtained from

Theorem 5 and Relation (8) respectively with t= cE(Tn), both tend to 0 when n goes to

infinity.
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Figure 1 Bounds ψ(c,1000), ϕ(c,1000) and real value of P{Θ1000 > cE(Θ1000} as a function of c. The point at

which the bounds are equal is c∗ = 1.12819634.

Theorem 7. For all real number c > 1, we have

lim
n−→∞

ϕ(c,n) = 0 and lim
n−→∞

ψ(c,n) = 0.

Proof. It is easily checked that

ϕ(c,n) ∼
n−→∞

2cn2 ln(n)

n2c

which tends to 0 when n tends to infinity. Concerning ψ(c,n) we have

ψ(c,n) ∼
n−→∞

1

c
e− ln(n)(c−1−ln(c)).

For c > 1 we have c− 1− ln(c)> 0 which implies that ψ(c,n) tends to 0 when n tends to

infinity.

Theorem 8. For all real c≥ 0, we have

lim
n→∞

P{Θn > cE(Θn)}=

0 if c > 1

1 if c < 1.



Proof. From Theorem 7, both bounds ϕ(c,n) and ψ(c,n) of P{Θn > cE(Θn)} tend to

0 when n tends to infinity, for c > 1. So using either ϕ(c,n) or ψ(c,n) we deduce that

lim
n−→∞

P{Θn > cE(Θn)}= 0 for all c > 1.

In the case where c < 1, Theorem 5.1 of Janson (2014) leads to

P{Θn > cE(Θn)} ≥ 1− exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
.

Since c− 1− ln(c)> 0 for all c∈ [0,1), the right-hand side term of this inequality tends

to 1 when n−→∞. Thus, limn−→∞P{Θn > cE(Θn)}= 1 when c < 1.

The following theorem considers the case c= 1. Note that the result is identical to the

one of Theorem 3 in the discrete time case.

Theorem 9.

lim
n−→∞

P{Θn >E(Θn)}= 1− 2e−γK1

(
2e−γ

)
≈ 0.448429663727.

where γ is the Euler’s constant given by γ = limn−→∞(Hn− ln(n))≈ 0.5772156649 and K1

is the modified Bessel function of the second kind of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt.

Proof. See Appendix B.

Remark. Some possible extensions of this work are the following.

1. We have supposed that the initial number of nodes knowing the rumor is equal to 1.

The case where this number is equal to `, with ` ≥ 2, has been dealt with in Mocquard

et al. (2016) in the discrete time case. This extension to the continuous time case is almost

straightforward since it suffices to redefine the random variable Θn as Θn =U` + · · ·Un.

2. Instead of considering the total time needed for all the nodes to obtain the rumor,

one could be interested in the total time needed for a fixed percentage, say ρ, of the nodes

to obtain the rumor. In that case the random variable Θn to consider should be redefined

as Θn = U1 + · · ·Udρne. Of course this extension could also be combined with the first one

above.



3. The instants at which the interactions between nodes occur have been modeled by

a Poisson process. This could be generalized by considering, instead of a Poisson process,

a Phase-type renewal process which preserves the Markov property and can approximate

every point process.

Acknowledgement. We would like to thank Professor Philippe Carmona for his expert

advice concerning the proof of Theorem 3.

4. Conclusion

In this paper we have provided a thorough analysis of the rumor spreading time in the

asynchronous push-pull model in the continuous time case by completing and extending the

results already obtained in the discrete time case. Such a precise analysis is a step towards

the design of more complex such as, for instance, the leader election in large distributed

systems. Our analysis concerning the tail distribution of the rumor spreading time and its

limiting behavior when the number of nodes goes to infinity has never been done in such

detail before. It shows that the evaluation of the first moment of the rumor spreading time

is far from sufficient to provide a global control of the system.
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Appendix A: Proofs in the discrete time case

We give in this appendix the proof of Theorem 3 which concerns the discrete time case.

In order to prove Theorem 3, we first need a technical Lemma. The random variables Si are independent

and geometrically distributed with parameter pi = 2i(n− i)/(n(n− 1)), but since the pi depend on n, we

rename the random variables Si as Sn,i and the parameters pi as pn,i. The spreading time Tn thus writes as

Tn = Sn,1 + · · ·+Sn,n−1.

We use the notation Xn
L−−→ X to express that the sequence of random variables (Xn) converges in

distribution (or in law) towards the random variable X when n tends to infinity.

Lemma 3. Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and

let W be defined by

W =

∞∑
i=1

Zi− 1

2i
.

We then have
Tn−E(Tn)

n

L−−→W (1) +W (2)

where W 1 and W 2 are i.i.d. with the same distribution as W .

Proof. For each fixed i, we have limn−→∞ pn,i = 0. It follows that for every x≥ 0, we have

P{pn,iSn,i >x}=P{Sn,i >x/pn,i}= (1− pn,i)bx/pn,ic,

which tends to e−x when n tends to infinity, since pn,i tends to 0. If Zi is a random variable exponentially dis-

tributed with rate 1, we have shown that pn,iSn,i
L−−→Zi. Moreover since the (Sn,i)i=1,...,n−1 are independent,

the (Zi)i≥1 are also independent.

Observing now that for each fixed i, we have limn−→∞ npn,i = 2i and defining Rn,i = Sn,i −E(Sn,i) we

obtain, since E(Sn,i) = 1/pn,i,

Rn,i
n

=
Sn,i−E(Sn,i)

n
=
pn,iSn,i− 1

npn,i

L−−→ Zi− 1

2i
. (10)

Suppose that n= 2k+ 1. We then have

T2k+1−E(T2k+1) =
1

2k+ 1

(
k∑
i=1

R2k+1,i +

k∑
i=1

R2k+1,2k+1−i

)
= Vk +V k, (11)

where

Vk =
1

2k+ 1

k∑
i=1

R2k+1,i and V k =
1

2k+ 1

k∑
i=1

R2k+1,2k+1−i.

The random variables Vk and V k are independent and they also have the same distribution. Indeed, since

pn,i = pn,n−i the variables Rn,i and Rn,n−i have the same distribution.



The rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem

3.1.14 of Stroock (2010). We introduce the notation

Wm,k =
1

2k+ 1

m−1∑
i=1

R2k+1,i.

Using the fact that E(Rn,i) = 0 and that the Rn,i are independent, we have

E((Vk−Wm,k)
2) =E

[ 1

2k+ 1

k∑
i=m

R2k+1,i

]2= Var

(
1

2k+ 1

k∑
i=m

R2k+1,i

)

=
1

(2k+ 1)2

k∑
i=m

Var(R2k+1,i) =
1

(2k+ 1)2

k∑
i=m

Var(S2k+1,i)

=
1

(2k+ 1)2

k∑
i=m

1− p2k+1,i

p22k+1,i

≤ 1

(2k+ 1)2

k∑
i=m

1

p22k+1,i

.

Recalling that p2k+1,i = 2i(2k+ 1− i)/(2k(2k+ 1)), we obtain

E((Vk−Wm,k)
2)≤ k2

k∑
i=m

1

i2(2k+ 1− i)2
.

In this sum we have 2k+ 1− i≥ k. This leads to

E((Vk−Wm,k)
2)≤

k∑
i=m

1

i2
.

We then have

lim
m−→∞

lim sup
k−→∞

E((Vk−Wm,k)
2)≤ lim

m−→∞

∞∑
i=m

1

i2
= 0.

Using now the Markov inequality, we obtain, for all ε > 0,

P{|Vk−Wm,k| ≥ ε}=P{(Vk−Wm,k)
2 ≥ ε2} ≤ E((Vk−Wm,k)

2)

ε2
.

Putting together these results, we have shown that for all ε > 0, we have

lim
m−→∞

lim sup
k−→∞

P{|Vk−Wm,k| ≥ ε}= 0 (12)

Let us introduce the notation

Wm =

m−1∑
i=1

Zi− 1

2i
.

Using (10) and the fact that the Rn,i are independent, we have

Wm,k
L−−→Wm as k−→∞. (13)

The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of Stroock (2010) are properties

(10) and (13). We can thus conclude that

Vk
L−−→W as k−→∞.

Similarly, we have

V k
L−−→W as k−→∞.



This means, from Relation (11), that

T2k+1−E(T2k+1)

2k+ 1

L−−→W (1) +W (2),

where W (1) and W (2) are i.i.d. and distributed as W .

The same reasoning applies in the case where n= 2k.

We are now ready to prove Theorem 3.

Theorem 3

lim
n−→∞

P{Tn >E(Tn)}= 1− 2e−γK1 (2e−γ)≈ 0.448429663727.

where γ is the Euler-Mascheroni constant given by γ = limn−→∞(Hn− ln(n))≈ 0.5772156649 and K1 is the

modified Bessel function of the second kind of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt.

Proof. Louis Gordon has proved in Gordon (1989) that

−γ+

+∞∑
i=1

1−Zi
i

L
= lnZ1,

where (Zi) are i.i.d. exponential with rate 1 and γ is the Euler-Mascheroni constant. Thus, by definition of

W in Lemma 3, we have

W
L
= −γ+ lnZ1

2
.

Introducing W (1) L= −(γ+ lnZ1)/2 and W (2) L= −(γ+ lnZ2)/2, we obtain from Lemma 3,

lim
n−→∞

P{Tn >E(Tn)}=P
{
W (1) +W (2) > 0

}
=P{−2γ− ln (Z1Z2)> 0}

=P
{
Z1Z2 < e

−2γ}
=

∫ ∞
0

(
1− exp(−e−2γ/t)

)
e−tdt

= 1−
∫ ∞
0

exp(−t− e−2γ/t)dt.

Let u be the function defined on (0,+∞) by u(t) = exp(−t− e−2γ/t). We easily get

lim
t−→0+

u(t) = 0 and lim
t−→∞

u(t) = 0,

which implies that ∫ ∞
0

u′(t)dt= 0. (14)

The derivative u′ of u is given by

u′(t) =
(
−1 + e−2γt−2

)
u(t)

=−u(t) + e−2γu(t)t−2 (15)

Integrating (15) over (0,+∞) and using (14), we obtain∫ ∞
0

u(t)dt= e−2γ
∫ ∞
0

u(t)t−2dx.



By definition of function u, this leads to

lim
n−→∞

P{Tn >E(Tn)}= 1− e−2γ
∫ ∞
0

t−2 exp(−t− e−2γ/t)dx

= 1− 2e−γK1 (2e−γ)≈ 0.448429663727,

where K1 is the well-known modified Bessel function of the second kind of order 1, see for instance expression

8.432.6 Gradshteyn and Ryzhik (2014).

This theorem is as expected similar to the one obtained in the discrete time case.

Appendix B: Proofs in the continuous time case

We give in this appendix the proof of Theorem 9 which concerns the continuous time case.

In order to prove Theorem 9, we first need, as in the discrete time case, the following technical Lemma.

The random variables Ui are independent and exponentially distributed with rate µi = 2λi(n− i)/(n− 1),

but since the µi depend on n, we rename the random variables Ui as Un,i and the parameters µi as µn,i. The

spreading time Θn thus writes as Θn =Un,1 + · · ·+Un,n−1.

Lemma 4. Let (Zi)i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and

let W be defined by

W =

∞∑
i=1

Zi− 1

2λi
.

We then have

Θn−E(Θn)
L−−→W (1) +W (2)

where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. For all n≥ 2, i= 1, . . . , n− 1 and x≥ 0, we have

P{µn,iUn,i >x}=P{Un,i >x/µn,i}= e−x.

Thus if Zi is a random variable exponentially distributed with rate 1, we have µn,iUn,i
L
= Zi. Moreover since

the (Un,i)i=1,...,n−1 are independent, the (Zi)i≥1 are also independent.

Observing now that for each fixed i, we have limn−→∞ µn,i = 2λi and defining Rn,i = Un,i −E(Un,i) we

obtain, since E(Un,i) = 1/µn,i,

Rn,i =Un,i−E(Un,i) =
µn,iSn,i− 1

µn,i

L−−→ Zi− 1

2λi
. (16)

Suppose that n= 2k+ 1. Defining

Vk =

k∑
i=1

R2k+1,i and V k =

k∑
i=1

R2k+1,2k+1−i,

we have

Θ2k+1−E(Θ2k+1) = Vk +V k. (17)

The random variables Vk and V k are independent and they also have the same distribution. Indeed, since

µn,i = µn,n−i the variables Rn,i and Rn,n−i have the same distribution.



As in the discrete time case, the rest of the proof consists in checking the hypothesis of the principle of

accompanying laws of Theorem 3.1.14 of Stroock (2010). We introduce the notation

Wm,k =

m−1∑
i=1

R2k+1,i.

Using the fact that E(Rn,i) = 0 and that the Rn,i are independent, we have

E((Vk−Wm,k)
2) =E

[ k∑
i=m

R2k+1,i

]2= Var

(
k∑

i=m

R2k+1,i

)

=

k∑
i=m

Var(R2k+1,i) =

k∑
i=m

Var(U2k+1,i) =

k∑
i=m

1

µ2
2k+1,i

.

Recalling that µ2k+1,i = 2λi(2k+ 1− i)/(2k), we obtain

E((Vk−Wm,k)
2) =

k2

λ2

k∑
i=m

1

i2(2k+ 1− i)2
.

In this sum we have 2k+ 1− i≥ k. This leads to

E((Vk−Wm,k)
2)≤ 1

λ2

k∑
i=m

1

i2
.

We then have

lim
m−→∞

lim sup
k−→∞

E((Vk−Wm,k)
2)≤ 1

λ2
lim

m−→∞

∞∑
i=m

1

i2
= 0.

Introducing the random variable

Wm =

m−1∑
i=1

Zi− 1

2λi
,

the rest of the proof is exactly as in the discrete time case.

We are now ready to prove Theorem 9.

Theorem 9

lim
n−→∞

P{Θn >E(Tn)}= 1− 2e−γK1 (2e−γ)≈ 0.448429663727.

Proof. Louis Gordon has proved in Gordon (1989) that

−γ+

+∞∑
i=1

1−Zi
i

L
= lnZ1,

where (Zi) are i.i.d. exponential with rate 1 and γ is the Euler-Mascheroni constant. Thus, by definition of

W in Lemma 4, we have

W
L
= −γ+ lnZ1

2λ
.

Introducing W (1) L= −(γ+ lnZ1)/2λ and W (2) L= −(γ+ lnZ2)/2λ, we get from Lemma 4,

lim
n−→∞

P{Tn >E(Tn)}=P
{
W (1) +W (2) > 0

}
=P{−2γ− ln (Z1Z2)> 0} .

The rest of the proof is similar to that of Theorem 3.


