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The context of this work is the well studied dissemination of information in large scale distributed networks through pairwise interactions. This problem, originally called rumor mongering, and then rumor spreading has mainly been investigated in the synchronous model. This model relies on the assumption that all the nodes of the network act in synchrony, that is, at each round of the protocol, each node is allowed to contact a random neighbor. In this paper, we drop this assumption under the argument that it is not realistic in large scale systems. We thus consider the asynchronous variant, where at random times, nodes successively interact by pairs exchanging their information on the rumor. In a previous paper, we performed a study of the total number of interactions needed for all the nodes of the network to discover the rumor. While most of the existing results involve huge constants that do not allow us to compare different protocols, we provided a thorough analysis of the distribution of this total number of interactions together with its asymptotic behavior. In this paper we extend this discrete-time analysis by solving a conjecture proposed previously and we consider the continuous-time case, where a Poisson process is associated to each node to determine the instants at which interactions occur. The rumor spreading time is thus more realistic since it is the real time needed for all the nodes of the network to discover the rumor. Once again, as most of the existing results involve huge constants, we provide tight bound and equivalent of the complementary distribution of the rumor spreading time. We also give the exact asymptotic behavior of the complementary distribution of the rumor spreading time around its expected value when the number of nodes tends to infinity.

Introduction

Randomized rumor spreading is an important mechanism that allows the dissemination of information in large and complex networks through pairwise interactions. This mechanism initially proposed by [START_REF] Demers | Epidemic algorithms for replicated datbase maintenance[END_REF] for the update of a database replicated at different sites, has then been adopted in many applications ranging from resource discovery as in [START_REF] Harchol-Balter | Resource discovery in distributed networks[END_REF], data-aggregation as in [START_REF] Kempe | Gossip-based computation of aggregate information[END_REF], complex distributed applications as in [START_REF] Censor-Hillel | Global computation in a poorly connected world: Fast rumor spreading with no dependence on conductance[END_REF], or virus propagation in computer networks as in [START_REF] Berger | On the spread of viruses on the internet[END_REF], to mention just a few.

A lot of attention has been devoted to the design and study of randomized rumor spreading algorithms. Initially, some rumor is placed on one of the nodes of a given network, and this rumor is propagated to all the nodes of the network through pairwise interactions between nodes. One of the important questions raised by these protocols is the spreading time, that is time it needs for the rumor to be known by all the nodes of the network.

Several models have been considered to answer this question. The most studied one is the synchronous push-pull model, also called the synchronous random phone call model. This model assumes that all the nodes of the network act in synchrony, which allows the algorithms designed in this model to divide time in synchronized rounds. During each synchronized round, each node i of the network selects at random one of its neighbor j and either sends to j the rumor if i knows it (push operation) or gets the rumor from j if j knows the rumor (pull operation). In the synchronous model, the spreading time of a rumor is defined as the number of synchronous rounds necessary for all the nodes to know the rumor. In one of the first papers dealing with the push operation only, [START_REF] Frieze | The shortest-path problem for graphs with random arc-lengths[END_REF] proved that when the underlying graph is complete, the ratio of the number of rounds over log 2 (n) converges in probability to 1 + ln(2) when the number n of nodes in the graph tends to infinity.

Further results have been established (see for example [START_REF] Pittel | On spreading a rumor[END_REF], [START_REF] Karp | Randomized rumor spreading[END_REF] and the references therein), the most recent ones resulting from the observation that the rumor spreading time is closely related to the conductance of the graph of the network, see [START_REF] Giakkoupis | Tight bounds for rumor spreading in graphs of a given conductance[END_REF]. Investigations have also been done in different topologies of the network as in [START_REF] Chierichetti | Rumor spreading in social networks[END_REF], [START_REF] Daum | Rumor spreading with bounded indegree[END_REF], [START_REF] Fountoulakis | Rumor spreading on random regular graphs and expanders[END_REF], [START_REF] Panagiotou | Randomized rumor spreading: the effect of the network topology[END_REF], in the presence of link or nodes failures as in [START_REF] Feige | Randomized broadcast in networks[END_REF], in dynamic graphs as in [START_REF] Clementi | Rumor spreading in random evolving graphs[END_REF] and spreading with node expansion as in [START_REF] Giakkoupis | Tight bounds for rumor spreading with vertex expansion[END_REF].

In distributed networks, and in particular in large scale distributed systems, assuming that all nodes act synchronously is unrealistic. Several authors have recently dropped this assumption by considering an asynchronous model. In the discrete-time case, [START_REF] Acan | On the push&pull protocol for rumour spreading[END_REF] study the rumor spreading time for any graph topology. They show that both the average and guaranteed spreading time are Ω(n ln(n)), where n is the number of nodes in the network. [START_REF] Angluin | Fast computation by population protocols with a leader[END_REF] analyze the spreading time of a rumor by only considering the push operation (which they call the one-way epidemic operation), and show that with high probability, a rumor injected at some node requires O(n ln(n)) interactions to be spread to all the nodes of the network. This result is interesting, nevertheless the constants arising in the complexity are not determined. In the continuous-time case, [START_REF] Ganesh | Rumour spreading on graphs[END_REF] considers the propagation of a rumor when there are n independent unit rate Poisson processes, one associated with each node. At a time when there is a jump of the Poisson process associated with node i, this node becomes active, and chooses another node j uniformly at random with which to communicate. [START_REF] Ganesh | Rumour spreading on graphs[END_REF] analyzes the mean and the variance of the spreading time of the rumor on general graphs and [START_REF] Panagiotou | Asynchronous rumor spreading on random graphs[END_REF] proposes a thorough study for spreading a rumor on particular Erdös-Rényi random graphs.

In the present paper we consider the rumor spreading time in the asynchronous pushpull model for both the discrete and continuous time cases. This model provides minimal assumptions on the computational power of the nodes.

In the discrete-time case, nodes interact by pairs at random and if at least one node possesses the rumor, the other one also gets informed of it. In this case, the spreading time is defined by the number of interactions needed for all the nodes of the network to learn the rumor. In the continuous-time case, as suggested by [START_REF] Ganesh | Rumour spreading on graphs[END_REF], a Poisson process is associated with each node and at a jump occurrence of Poisson process of a node, this node contacts randomly a neighbor to interact with it as in the discrete-time case, i.e. to get informed of the rumor if one of these two nodes possesses the rumor. The n Poisson processes are suppose to be independent with the same rate.

In [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] we analyzed the rumor spreading time in the discrete-time asynchronous push-pull model. In the present paper we extend the results obtained in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] in two ways. First, we prove the conjecture formulated therein and second, we deal with the continuous-time asynchronous push-pull model.

The remainder of this paper is organized as follows. Section 2 presents the main results obtained in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] in the discrete time model needed to solve the continuous-time model. We also prove in this section the conjecture formulated in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF]. More precisely, if T n denotes the total number of interactions needed for all the n nodes to get the rumor then, lim n-→∞ P{T n > E(T n )} ≈ 0.448429663727, where E(T n ) = (n -1)H n-1 and H k is the harmonic series truncated at step k. In Section 3, we consider the continuous time model. A Poisson process is associated with each node and each jump of these independent Poisson processes correspond to an interaction between two different nodes. In this model, the time needed for all the n nodes to get the rumor is denoted by Θ n . We first give simple expressions of the expected value and variance of Θ n . Then we give an explicit expression of its distribution and we obtain a simple bound of its complementary distribution which is proved to also be an equivalent of its tail. It is also shown that this bound is much more tight than already known bounds. Finally, we give the limiting distribution of the ratio Θ n /E(Θ n ) when the number n of nodes tends to infinity. Finally, Section 4 concludes the paper.

The discrete time case

We recall in this section the main results obtained in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] needed to deal with the continuous time case. We also prove the conjecture formulated in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] In the discrete time case, the total number of interactions needed so that all the n nodes get the rumor is denoted by T n . We suppose without any loss of generality that among the n nodes, a single one initially knows the rumour. The case where the number of initial nodes possessing the rumor is greater than one has been considered in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF]. A value 0 or 1 is associated with each node. A node with value 1 means that this node knows the rumor and a node with value 0 means that it is not aware of the rumor.

For every t ≥ 0, we denote by C (i) t the value (0 or 1) of node i at time t. At time 0, all the C (i) 0 are equal to 0 except one which is equal to 1 and which corresponds to the node initially knowing the rumor.

At each discrete instant t, two distinct indexes i and j are successively chosen among the set of nodes 1, . . . , n randomly. We denote by X t the random variable representing this choice and we suppose that this choice is uniform, i.e we suppose that

P{X t = (i, j)} = 1 n(n -1) 1 {i =j} .
Once the couple (i, j) is chosen at time t ≥ 1, we have

C (i) t = C (j) t = max{C (i) t-1 , C (j) t-1 } and C (m) t = C (m)
t-1 for m = i, j.

The random variable T n , defined by

T n = inf{t ≥ 0 | C (i) t = 1, for every i = 1, . . . , n},
represents the number of interactions needed for all the nodes in the network to know the rumor.

We introduce the discrete-time stochastic process Y = {Y t , t ≥ 0} with state space {1, . . . , n} defined, for all t ≥ 0, by

Y t = i | C (i) t = 1 .
The random variable Y t represents the number of nodes knowing the rumor at time t. The stochastic process Y is then a homogeneous Markov chain with n states, states 1, . . . , n -1 being transient and state n absorbing. The random variable T n can then be written as

T n = inf{t ≥ 0 | Y t = n}.
It is well-known, see for instance [START_REF] Sericola | Markov Chains. Theory, Algorithms and Applications[END_REF], that the distribution of T n is given, for every k ≥ 0, by

P{T n > k} = αQ k 1, ( 1 
)
where α is the row vector containing the initial probabilities of states 1, . . . , n -1, that is

α i = P{Y 0 = i} = 1 {i=1}
, Q is the matrix obtained containing the transition probabilities between transient states, that is, as shown in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF],

Q i,i = 1 - 2i(n -i) n(n -1) for i = 1, • • • , n -1 and Q i,i+1 = 2i(n -i) n(n -1) , for i = 1, • • • , n -2 (2)
and 1 is the column vector of dimension n -1 with all its entries equal to 1.

For i = 0, . . . , n, we introduce the notation

p i = 2i(n -i) n(n -1)
and we denote by H k the harmonic series defined by H 0 = 0 and H k = k =1 1/ , for k ≥ 1. If we denote by S i , for i = 1, . . . , n -1, the total time spent by the Markov chain Y in state i, then S i has a geometric distribution with parameter p i and we have

T n = n-1 i=1 S i .

Analysis of the spreading time

The mean time E(T n ) needed so that all the nodes get the rumor is then given by

E(T n ) = α(I -Q) -1 1, ( 3 
)
where I is the identity matrix. Its explicit value has been obtained in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF]. It is given, for every n ≥ 1, by

E(T n ) = (n -1)H n-1 . (4)
An explicit expression of the distribution of T n , for n ≥ 2, has been obtained in the following theorem wich will used to deal with the continuous-time case.

Theorem 1. For every n ≥ 1, k ≥ 0, we have

P{T n > k} = n/2 j=1 (c n-1,j (1 -p j ) + kd n-1,j ) (1 -p j ) k-1 ,
where the coefficients c n-1,j and d n-1,j , which do not depend on k, are given, for j = 1, . . . , n -1, recursively by c 1,j = 1 {j=1} and d 1,j = 0 and for i ∈ {2, . . . , n -1} by

c i,j = p i c i-1,j p i -p j - p i d i-1,j (p i -p j ) 2 for i = j, n -j, d i,j = p i d i-1,j p i -p j for i = j, n -j, c i,i = 1 - n/2 j=1,j =i c i,j for i ≤ n/2 , c i,n-i = 1 - n/2 j=1,j =n-i c i,j for i > n/2 , d i,i = p i c i-1,i for i ≤ n/2 , d i,n-i = p i c i-1,n-i for i > n/2 .
Proof. See [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF].

The following bound and equivalent of the complementary distribution of T n will be used in the continuous-time case to obtain similar bound and equivalent.

Theorem 2. For all n ≥ 2 and k ≥ 1 we have

P{T n > k} ≤ 1 + 2k(n -2) 2 n 1 - 2 n k-1 , P{T n > k} ∼ k-→∞ 1 + 2k(n -2) 2 n 1 - 2 n k-1
.

Proof. See [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF].

Recall that

E(T n ) = (n -1)H n-1
, where H k is the harmonic series. We proved in Mocquard et al. ( 2016) that for all real c ≥ 0, we have

lim n→∞ P{T n > cE(T n )} =    0 if c > 1 1 if c < 1. (5) 
For c = 1, this result was formulated in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] as a conjecture. We are now able to give a proof of it.

Theorem 3.

lim n-→∞ P{T n > E(T n )} = 1 -2e -γ K 1 2e -γ ≈ 0.448429663727.
where γ is the Euler's constant given by γ = lim n-→∞ (H n -ln(n)) ≈ 0.5772156649 and K 1 is the modified Bessel function of the second kind of order 1 given, for z > 0, by

K 1 (z) = z 4 +∞ 0 t -2 e -t-z 2 /4t dt.
Proof. See Appendix A.

Relation (5) shows that for large values of n (n -→ ∞) and for all ε > 0, we have 

T n ≤ (1 + ε)E(T n ) with probability 1, T n > (1 -ε)E(T n ) with

The continuous time case

As in the discrete time case, we suppose without any loss of generality that among the n nodes, a single one initially knows the rumour and a value 0 or 1 is associated with each node. A node with value 1 means that this node knows the rumor and a node with value 0 means that it is not aware of the rumor. For every t ≥ 0, we denote by

C (i)
t the value (0 or 1) of node i at time t. At time 0, all the C (i) 0 are equal to 0 except one which is equal to 1 and which corresponds to the node initially knowing the rumor.

In the continuous time case, a Poisson process is associated with each node. These n Poisson processes are independent and have the same rate λ > 0. When the Poisson process associated with node i has a jump, this node chooses another node j randomly, with a given distribution to interact with node i. This is equivalent to consider a single Poisson process with rate nλ at the jumps of which two distinct nodes are randomly chosen to interact with a given distribution. Then as in the discrete time case, the two nodes change their value with the maximum value of each node. Again, we want to evaluate the time needed to spread the rumor that is the time needed so that all the nodes get value 1.

We denote by (τ ) ≥0 the successive jumps of the Poisson process with rate nλ, with τ 0 = 0. Then once the couple (i, j) is chosen at time τ , we have

C (i) t = C (j) t = max{C (i) τ -1 , C (j) τ -1 } and C (m) t = C (m) τ -1 for m = i, j and t ∈ [τ , τ +1 ).
For every ≥ 1, we denote by X the random variable representing this choice at time τ and we suppose that this choice is uniform, i.e. we suppose that, for all ≥ 1, we have

P{X = (i, j)} = 1 n(n -1) 1 {i =j} .
We consider the random variable Θ n defined by

Θ n = inf{t ≥ 0 | C (i) t = 1, for every i = 1, . . . , n},
which represents the time needed for all the nodes in the network to know the rumor.

We introduce the continuous-time stochastic process Z = {Z t , t ∈ R + } with state space {1, . . . , n} defined, for all t ≥ 0, by

Z t = i ∈ {1, . . . , n} | C (i) t = 1 .
The random variable Z t represents the number of nodes knowing the rumor at time t. The stochastic process Z is then a homogeneous Markov chain with transition rate matrix B.

The non zero entries of matrix B are given, for i = 1, . . . , n, by

   B i,i = -nλp i , B i,i+1 = nλp i , for i = n.
Indeed, when Z t = i, the next node is activated with rate nλ. In order for process Z to reach state i + 1 from state i, this activated node, say node , either possesses the rumor (probability i/n) and the node contacted by , say m, does not possess the rumor (probability (n -i)/(n -1)) or node does not possess the rumor (probability (n -i)/n) and it contacts node m which possesses the rumor (probability i/(n -1)). This means that, for i = 1, . . . , n -1, the rate B i,i+1 is given by

B i,i+1 = nλ 2i(n -i) n(n -1) = nλp i .
The states 1, . . . , n -1 of Z are transient and state n is absorbing. The random variable Θ n can then be written as

Θ n = inf{t ≥ 0 | Z t = n}.
It is well-known, see for instance [START_REF] Sericola | Markov Chains. Theory, Algorithms and Applications[END_REF], that the distribution of Θ n is given, for every t ≥ 0, by

P{Θ n > t} = αe Rt 1, (6) 
where α is the row vector containing the initial probabilities of states 1, . . . , n -1, that is α i = P{Z 0 = i} = 1 {i=1} , R is the sub-matrix obtained from B by deleting the row and the column corresponding to absorbing state n and 1 is the column vector of dimension n -1 with all its entries equal to 1. For every i = 1, . . . , n -1 we denote by U i the sojourn time of process Z in state i, that is the time during which the system counts exactly i nodes knowing the rumor. The random variables U i are independent and exponentially distributed with rate µ i = nλp i and we have

Θ n = n-1 i=1 U i .

Expectation and variance of Θ n

The expected value and the variance of Θ n were obtained by [START_REF] Ganesh | Rumour spreading on graphs[END_REF] in the push model case. We extend these results to the push-pull model in the following two lemmas.

Lemma 1. For all n ≥ 2, we have

E(Θ n ) = (n -1)H n-1 nλ and E(Θ n ) ∼ n-→∞ ln(n) λ .
Proof. We have

E(Θ n ) = n-1 i=1 E(U i ) = 1 nλ n-1 i=1 1 p i = 1 nλ E(T n ) = (n -1)H n-1 nλ .
The rest of the proof is evident since

H n-1 ∼ n-→∞ ln(n).
Lemma 2. For all n ≥ 2, we have

Var(Θ n ) = (n -1) 2 2n 2 λ 2 n-1 i=1 1 i 2 + 2H n-1 n ≤ 1 λ 2 π 2 12 + H n-1 n and lim n-→∞ Var(Θ n ) = π 2 12λ 2 .
Proof. The random variables U being independent, we have

Var(Θ n ) = n-1 i=1 Var(U i ) = 1 n 2 λ 2 n-1 i=1 1 p 2 i = (n -1) 2 4λ 2 n-1 i=1 1 i 2 (n -i) 2 = (n -1) 2 4n 2 λ 2 n-1 i=1 1 i + 1 n -i 2 = (n -1) 2 4n 2 λ 2 2 n-1 i=1 1 i 2 + 4H n-1 n ≤ 1 λ 2 π 2 12 + H n-1 n .
The rest of the proof is evident since H n-1 ∼ n-→∞ ln(n).

Explicit expression of the distribution of Θ n

The distribution of Θ n , for n ≥ 2, which is given by Relation ( 6) can be easily computed as follows. We make use of the uniformization technique, see for instance [START_REF] Sericola | Markov Chains. Theory, Algorithms and Applications[END_REF].

We introduce the uniformized Markov chain associated with the Markov chain Z which is characterized by its uniformization rate ν and by its transition probability matrix G. The uniformization rate ν must satisfy ν ≥ max i=1,...,n (-B i,i ) and matrix G is related to the infinitesimal generator R by

G = I n + B/ν,
where I n denotes the identity matrix of order n. We denote by N t the number of transitions occurring during the interval [0, t]. The process N t is a Poisson process with rate ν and since B = -ν(I n -G), we have R = -ν(I n-1 -P ), where P is the sub-matrix obtained from G by deleting the row and the column corresponding to absorbing state n. Relation (6) can then be written as

P{Θ n > t} = αe Rt 1 = ∞ k=0 e -νt (νt) k k! αP k 1.
It is easily checked that max i=1,...,n

(-R i,i ) = max i=1,...,n (nλp i ) ≤ nλ.
By taking ν = nλ, we get, from Relation (2), P = Q and thus, using (1), this leads to

P{Θ n > t} = ∞ k=0 e -nλt (nλt) k k! P{T n > k} = ∞ k=0 e -nλt (nλt) k k! αQ k 1. (7) 
Using this expression we obtain the following explicit expression of the distribution of Θ n .

Theorem 4. For every n ≥ 1, t ≥ 0, we have

P{Θ n > t} = n/2 j=1 (c n-1,j + nλtd n-1,j ) e -nλp j t ,
where the coefficients c n-1,j and d n-1,j are given in Theorem 1.

Proof. From Theorem 1, we have for every n ≥ 1 and k ≥ 0,

P{T n > k} = n/2 j=1 (c n-1,j (1 -p j ) + kd n-1,j ) (1 -p j ) k-1 ,
where the coefficients c n-1,j and d n-1,j are given in Theorem 1. Using now Relation (7), we obtain

P{Θ n > t} = ∞ k=0 e -nλt (nλt) k k!   n/2 j=1 c n-1,j (1 -p j ) k + n/2 j=1 kd n-1,j (1 -p j ) k-1   = n/2 j=1 c n-1,j e -nλp j t + nλt n/2 j=1 d n-1,j e -nλp j t ,
which completes the proof.

We obtain in this section a very simple bound of the complementary distribution of Θ n and we show that this bound is also an equivalent of its tail. This bound and equivalent of the quantity P{Θ n > t} are derived from Theorem 2.

Theorem 5. For all n ≥ 3 and t ≥ 0 we have

P{Θ n > t} ≤ 2(n -2) 2 λt + n n -2 e -2λt , P{Θ n > t} ∼ t-→∞ 2(n -2) 2 λt + n n -2 e -2λt .
Note that for n = 2, we have Θ 2 = U 1 which is exponentially distributed with rate µ 1 = 2λ and thus P{Θ 2 > t} = e -2λt .

Proof. From Theorem 2, we have for n ≥ 2 and k ≥ 1,

P{T n > k} ≤ 1 + 2k(n -2) 2 n 1 - 2 n k-1
.

Since P{T n > 0} = 1, this leads to

P{Θ n > t} = ∞ k=0 e -nλt (nλt) k k! P{T n > k} ≤ e -nλt + ∞ k=1 e -nλt (nλt) k k! 1 + 2k(n -2) 2 n 1 - 2 n k-1 = e -nλt + ∞ k=1 e -nλt (nλt) k k! 1 - 2 n k-1 + 2(n -2) 2 λt ∞ k=1 e -nλt ((n -2)λt) k-1 (k -1)! = e -nλt + ne -nλt e (n-2)λt -1 n -2 + 2(n -2) 2 λte -nλt e (n-2)λt = 2(n -2) 2 λt + n n -2 e -2λt - 2 n -2 e -nλt ≤ 2(n -2) 2 λt + n n -2 e -2λt .
which completes the first part of the proof.

On the one hand since p 1 < p j for j = 2, . . . , n/2 , we have, from Theorem 1,

P{T n > k} ∼ k-→∞ d n-1,1 k 1 - 2 n k-1
.

On the other hand, from Theorem 2, we have

P{T n > k} ∼ k-→∞ 1 + 2k(n -2) 2 n 1 - 2 n k-1
.

These two results imply that

d n-1,1 = 2(n -2) 2 n .
In the same way, from Theorem 4, we get

P{Θ n > t} ∼ t-→∞ d n-1,1 nλte -nλp 1 t = 2(n -2) 2 λte -2λt ∼ t-→∞ 2(n -2) 2 λt + n n -2 e -2λt ,
which completes the proof.

We give in the following two different bounds for the quantity P{Θ n > cE(Θ n )}, with c ≥ 1. These bounds will be compared and used to obtain the limiting behaviour of this quantity when the number n of nodes goes to infinity.

Recalling that E(Θ n ) = (n -1)H n-1 /(nλ), a first bound is obtained by an immediate application of Theorem 5.1 of Janson ( 2014), which leads, for all n ≥ 3 and for all real number c ≥ 1, to

P{Θ n > cE(Θ n )} ≤ 1 c exp - 2(n -1)H n-1 (c -1 -ln(c)) n . (8) 
Note that the right-hand side term is equal to 1 when c = 1.

Applying Theorem 5 at point cE(Θ n ), we obtain the following second bound.

P{Θ n > cE(Θ n )} ≤ 2(n -2) 2 λcE(Θ n ) + n n -2 e -2λcE(Θn) = 2c(n -2) 2 (n -1)H n-1 n + n n -2 exp - 2c(n -1)H n-1 n .
From now on we denote this bound by ϕ(c, n) and in the same way, we denote by ψ(c, n) the bound of P{Θ n > cE(Θ n )} obtained in (8). We then have, for n ≥ 3 and c ≥ 1,

ϕ(c, n) = 2c(n -2) 2 (n -1)H n-1 n + n n -2 exp - 2c(n -1)H n-1 n , ψ(c, n) = 1 c exp - 2(n -1)H n-1 (c -1 -ln(c)) n .
These two bounds are compared in the next theorem.

Theorem 6. For every n ≥ 5, there exists a unique c * ≥ 1 such that ϕ(c * , n) = ψ(c * , n)

and we have    ϕ(c, n) > ψ(c, n) for all 1 ≤ c < c * ϕ(c, n) < ψ(c, n) for all c > c * . (9) Furthermore, lim c-→∞ ϕ(c, n) ψ(c, n) = 0.
Proof. Let us introduce the quantities

A n = (n -1)H n-1 n , B n = 2(n -2) 2 A n and C n = n n -2 .
We then have

ϕ(c, n) ψ(c, n) = B n c 2 + C n c e -2An(1+ln(c)) = B n c 2-2An + C n c 1-2An e -2An .
It is easily checked that the sequence A n is strictly increasing and that A 3 = 1. It follows that for n ≥ 5, we have A n > 1 and so

1 -2A n < 2 -2A n < 0.
This implies that for every n ≥ 5, the function ϕ(c, n)/ψ(c, n) is strictly decreasing with c on [1, +∞) and that

lim c-→∞ ϕ(c, n) ψ(c, n) = 0.
Consider now the sequences x n and y n defined for n ≥ 5, by

x n = ϕ(1, n) ψ(1, n) = (B n + C n ) e -2An and y n = 2e -2 (n -2) 2 A n (n -1) 2 .
The sequence A n being increasing, it is easily checked that sequence y n is increasing too.

Moreover, we have

x n ≥ B n e -2(1+ln (n-1)) = e -2 B n (n -1) 2 = 2e -2 (n -2) 2 A n (n -1) 2 = y n .
A simple computation shows that we have y 34 > 1. The sequence y n being increasing, we obtain y n > 1 for every n ≥ 34. It follows that we also have x n > 1 for all n ≥ 34. A numerical computation gives x n > 1 for n = 5, . . . , 33 which means that for all n ≥ 5, we This theorem shows that our bound ϕ(c, n) is much more tight than the one obtained using the result of [START_REF] Janson | Tail bounds for sums of geometric and exponential variables[END_REF], which has been denoted by ψ(c, n), for c > c * , not only because the ratio ϕ(c, n)/ψ(c, n) decreases with c and tends to 0 when c tends to infinity, but also because for every value of n, the value of c * is very close to 1 as shown in Table 1.

have x n = ϕ(1, n)/ψ(1, n) > 1. The function ϕ(c, n)/ψ(c,
Moreover, from Theorem 5, our bound is optimal in the sense that

P{Θ n > cE(Θ n )} ∼ c-→∞ ϕ(c, n).
Table 2 and Figure 1 illustrate, for a network composed of n = 1000 nodes, the behavior of the bounds ϕ(c, 1000) and ψ(c, 1000), as a function of c, compared to the exact value of complementary distribution function of Θ 1000 at point cE(Θ 1000 ), computed using Theorem 4. Table 2 illustrates clearly the result of Theorem 5. Indeed the values of our bound ϕ(c, 1000) are very close to the real value of the complementary distribution function, while the values of ψ(c, 1000) tend to move away from this real value even for small values of c. Note that when c = 1 both bounds are useless and the real value P{Θ 1000 > E(Θ 1000 )} is very close to the limit obtained in Theorem 9 of next section. Figure 1 shows the large gap between the bounds ϕ(c, 1000) and ψ(c, 1000) when c is greater than c * whose value is c * = 1.12819634. Moreover this large gap increases when n increases since the value of c * decreases to 1 when n increases, as shown in Table 1.

Table 2 Values of P{Θ1000 > cE(Θ1000)}, ϕ(c, 1000) and ψ(c, 1000) for different values of c.

c 1 1.2 1.4 1.6 1.8 2
P{Θ 1000 > cE(Θ 1000 )} 0.446 0.063 0.005 3.9 × 10 -4 2.6 × 10 -5 1.6 × 10 -6 ϕ(c, 1000) ≥ 1 0.288 0.017 9.7 × 10 -4 5.5 × 10 -5 3 × 10 -6 ψ(c, 1000) 1.0 0.634 0.276 0.089 0.023 0.005

Asymptotic analysis of the distribution of Θ n

We analyze in this section the behavior of the complementary distribution of Θ n at point cE(Θ n ) when the number n of nodes in the network tends to infinity, in function of the value of c.

We prove in the following theorem that the bounds ϕ(c, n) and ψ(c, n), obtained from Theorem 5 and Relation (8) respectively with t = cE(T n ), both tend to 0 when n goes to infinity. which tends to 0 when n tends to infinity. Concerning ψ(c, n) we have

ψ(c, n) ∼ n-→∞ 1 c e -ln(n)(c-1-ln(c)) .
For c > 1 we have c -1 -ln(c) > 0 which implies that ψ(c, n) tends to 0 when n tends to infinity.

Theorem 8. For all real c ≥ 0, we have

lim n→∞ P{Θ n > cE(Θ n )} =    0 if c > 1 1 if c < 1.
Proof. From Theorem 7, both bounds ϕ(c, n) and ψ(c, n) of P{Θ n > cE(Θ n )} tend to 0 when n tends to infinity, for c > 1. So using either ϕ(c, n) or ψ(c, n) we deduce that lim n-→∞

P{Θ n > cE(Θ n )} = 0 for all c > 1.

In the case where c < 1, Theorem 5.1 of [START_REF] Janson | Tail bounds for sums of geometric and exponential variables[END_REF] leads to

P{Θ n > cE(Θ n )} ≥ 1 -exp -2(n -1)H n-1 (c -1 -ln(c)) n .
Since c -1 -ln(c) > 0 for all c ∈ [0, 1), the right-hand side term of this inequality tends to 1 when n -→ ∞. Thus, lim n-→∞ P{Θ n > cE(Θ n )} = 1 when c < 1.

The following theorem considers the case c = 1. Note that the result is identical to the one of Theorem 3 in the discrete time case.

Theorem 9.

lim n-→∞ P{Θ n > E(Θ n )} = 1 -2e -γ K 1 2e -γ ≈ 0.448429663727.
where γ is the Euler's constant given by γ = lim n-→∞ (H n -ln(n)) ≈ 0.5772156649 and K 1 is the modified Bessel function of the second kind of order 1 given, for z > 0, by

K 1 (z) = z 4 +∞ 0 t -2 e -t-z 2 /4t dt.
Proof. See Appendix B.

Remark. Some possible extensions of this work are the following.

1. We have supposed that the initial number of nodes knowing the rumor is equal to 1.

The case where this number is equal to , with ≥ 2, has been dealt with in [START_REF] Mocquard | Analysis of the propagation time of a rumour in large-scale distributed systems[END_REF] in the discrete time case. This extension to the continuous time case is almost straightforward since it suffices to redefine the random variable Θ n as Θ

n = U + • • • U n .
2. Instead of considering the total time needed for all the nodes to obtain the rumor, one could be interested in the total time needed for a fixed percentage, say ρ, of the nodes to obtain the rumor. In that case the random variable Θ n to consider should be redefined

as Θ n = U 1 + • • • U ρn .
Of course this extension could also be combined with the first one above.

a Poisson process. This could be generalized by considering, instead of a Poisson process, a Phase-type renewal process which preserves the Markov property and can approximate every point process.

Acknowledgement. We would like to thank Professor Philippe Carmona for his expert advice concerning the proof of Theorem 3.

Conclusion

In this paper we have provided a thorough analysis of the rumor spreading time in the asynchronous push-pull model in the continuous time case by completing and extending the results already obtained in the discrete time case. Such a precise analysis is a step towards the design of more complex such as, for instance, the leader election in large distributed systems. Our analysis concerning the tail distribution of the rumor spreading time and its limiting behavior when the number of nodes goes to infinity has never been done in such detail before. It shows that the evaluation of the first moment of the rumor spreading time is far from sufficient to provide a global control of the system.

P{p n,i S n,i > x} = P{S n,i > x/p n,i } = (1 -p n,i ) x/p n,i , which tends to e -x when n tends to infinity, since p n,i tends to 0. If Z i is a random variable exponentially distributed with rate 1, we have shown that p n,i S n,i L --→ Z i . Moreover since the (S n,i ) i=1,...,n-1 are independent, the (Z i ) i≥1 are also independent.

Observing now that for each fixed i, we have lim n-→∞ np n,i = 2i and defining

R n,i = S n,i -E(S n,i ) we obtain, since E(S n,i ) = 1/p n,i , R n,i n = S n,i -E(S n,i ) n = p n,i S n,i -1 np n,i L --→ Z i -1 2i . ( 10 
)
Suppose that n = 2k + 1. We then have

T 2k+1 -E(T 2k+1 ) = 1 2k + 1 k i=1 R 2k+1,i + k i=1 R 2k+1,2k+1-i = V k + V k , (11) 
where

V k = 1 2k + 1 k i=1 R 2k+1,i and V k = 1 2k + 1 k i=1 R 2k+1,2k+1-i .
The random variables V k and V k are independent and they also have the same distribution. Indeed, since p n,i = p n,n-i the variables R n,i and R n,n-i have the same distribution.

The rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF]. We introduce the notation

W m,k = 1 2k + 1 m-1 i=1 R 2k+1,i .
Using the fact that E(R n,i ) = 0 and that the R n,i are independent, we have

E((V k -W m,k ) 2 ) = E   1 2k + 1 k i=m R 2k+1,i 2   = Var 1 2k + 1 k i=m R 2k+1,i = 1 (2k + 1) 2 k i=m Var(R 2k+1,i ) = 1 (2k + 1) 2 k i=m Var(S 2k+1,i ) = 1 (2k + 1) 2 k i=m 1 -p 2k+1,i p 2 2k+1,i ≤ 1 (2k + 1) 2 k i=m 1 p 2 2k+1,i . Recalling that p 2k+1,i = 2i(2k + 1 -i)/(2k(2k + 1)), we obtain E((V k -W m,k ) 2 ) ≤ k 2 k i=m 1 i 2 (2k + 1 -i) 2 .
In this sum we have 2k + 1 -i ≥ k. This leads to

E((V k -W m,k ) 2 ) ≤ k i=m 1 i 2 . We then have lim m-→∞ lim sup k-→∞ E((V k -W m,k ) 2 ) ≤ lim m-→∞ ∞ i=m 1 i 2 = 0.
Using now the Markov inequality, we obtain, for all ε > 0,

P{|V k -W m,k | ≥ ε} = P{(V k -W m,k ) 2 ≥ ε 2 } ≤ E((V k -W m,k ) 2 ) ε 2 .
Putting together these results, we have shown that for all ε > 0, we have lim

m-→∞ lim sup k-→∞ P{|V k -W m,k | ≥ ε} = 0 (12) 
Let us introduce the notation

W m = m-1 i=1 Z i -1 2i .
Using (10) and the fact that the R n,i are independent, we have

W m,k L --→ W m as k -→ ∞. ( 13 
)
The hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF] are properties (10) and (13). We can thus conclude that

V k L --→ W as k -→ ∞.
Similarly, we have

V k L --→ W as k -→ ∞.
This means, from Relation (11), that

T 2k+1 -E(T 2k+1 ) 2k + 1 L --→ W (1) + W (2) ,
where W (1) and W (2) are i.i.d. and distributed as W .

The same reasoning applies in the case where n = 2k.

We are now ready to prove Theorem 3.

Theorem 3

lim n-→∞ P{T n > E(T n )} = 1 -2e -γ K 1 (2e -γ ) ≈ 0.448429663727.
where γ is the Euler-Mascheroni constant given by γ = lim n-→∞ (H n -ln(n)) ≈ 0.5772156649 and K 1 is the modified Bessel function of the second kind of order 1 given, for z > 0, by

K 1 (z) = z 4 +∞ 0
t -2 e -t-z 2 /4t dt.

Proof. Louis Gordon has proved in [START_REF] Gordon | Bounds for the distribution of the generalized variance[END_REF] that

-γ + +∞ i=1 1 -Z i i L = ln Z 1 ,
where (Z i ) are i.i.d. exponential with rate 1 and γ is the Euler-Mascheroni constant. Thus, by definition of W in Lemma 3, we have

W L = - γ + ln Z 1 2 .
Introducing W (1) L = -(γ + ln Z 1 )/2 and W (2) L = -(γ + ln Z 2 )/2, we obtain from Lemma 3, lim n-→∞ P{T n > E(T n )} = P W (1) + W (2) > 0 = P{-2γ -ln (Z 1 Z 2 ) > 0}

= P Z 1 Z 2 < e -2γ
As in the discrete time case, the rest of the proof consists in checking the hypothesis of the principle of accompanying laws of Theorem 3.1.14 of [START_REF] Stroock | Probability Theory: An Analytic View[END_REF]. We introduce the notation

W m,k = m-1 i=1 R 2k+1,i .
Using the fact that E(R n,i ) = 0 and that the R n,i are independent, we have

E((V k -W m,k ) 2 ) = E   k i=m R 2k+1,i 2   = Var k i=m R 2k+1,i = k i=m Var(R 2k+1,i ) = k i=m Var(U 2k+1,i ) = k i=m 1 µ 2 2k+1,i .
Recalling that µ 2k+1,i = 2λi(2k + 1 -i)/(2k), we obtain

E((V k -W m,k ) 2 ) = k 2 λ 2 k i=m 1 i 2 (2k + 1 -i) 2 .
In this sum we have 2k + 1 -i ≥ k. This leads to

E((V k -W m,k ) 2 ) ≤ 1 λ 2 k i=m 1 i 2 .
We then have lim

m-→∞ lim sup k-→∞ E((V k -W m,k ) 2 ) ≤ 1 λ 2 lim m-→∞ ∞ i=m 1 i 2 = 0.
Introducing the random variable

W m = m-1 i=1 Z i -1 2λi ,
the rest of the proof is exactly as in the discrete time case.

We are now ready to prove Theorem 9.

Theorem 9 lim n-→∞ P{Θ n > E(T n )} = 1 -2e -γ K 1 (2e -γ ) ≈ 0.448429663727.

Proof. Louis Gordon has proved in [START_REF] Gordon | Bounds for the distribution of the generalized variance[END_REF] that

-γ + +∞ i=1 1 -Z i i L = ln Z 1 ,
where (Z i ) are i.i.d. exponential with rate 1 and γ is the Euler-Mascheroni constant. Thus, by definition of W in Lemma 4, we have

W L = - γ + ln Z 1 2λ .
Introducing W (1) L = -(γ + ln Z 1 )/2λ and W (2) L = -(γ + ln Z 2 )/2λ, we get from Lemma 4, lim n-→∞ P{T n > E(T n )} = P W (1) + W (2) > 0 = P{-2γ -ln (Z 1 Z 2 ) > 0} .

The rest of the proof is similar to that of Theorem 3.

  probability 1. Moreover Theorem 3 shows that for large values of n (n -→ ∞), we have T n > E(T n ) with probability 0.44843 and thus T n = E(T n ) with probability 0.55157.

  n) being strictly decreasing with c on [1, +∞), we deduce that there exists a unique solution, called c * , to the equation ϕ(c, n)/ψ(c, n) = 1 and (9) follows.

  Figure1

Table 1

 1 Values of c * for different network sizes n.

	n	10	10 2	10 3	10 4	10 5	10 6	10 7	10 8	10 9
	c * 1.253 1.163 1.128 1.109 1.095 1.085 1.078 1.071 1.066

Appendix A: Proofs in the discrete time case

We give in this appendix the proof of Theorem 3 which concerns the discrete time case.

In order to prove Theorem 3, we first need a technical Lemma. The random variables S i are independent and geometrically distributed with parameter p = 2i(n -i)/(n(n -1)), but since the p i depend on n, we rename the random variables S i as S n,i and the parameters p i as p n,i . The spreading time T n thus writes as

We use the notation X n L --→ X to express that the sequence of random variables (X n ) converges in distribution (or in law) towards the random variable X when n tends to infinity. Lemma 3. Let (Z i ) i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and let W be defined by

We then have

where W 1 and W 2 are i.i.d. with the same distribution as W .

Proof. For each fixed i, we have lim n-→∞ p n,i = 0. It follows that for every x ≥ 0, we have

Let u be the function defined on (0, +∞) by u(t) = exp(-t -e -2γ /t). We easily get

The derivative u of u is given by

Integrating ( 15) over (0, +∞) and using ( 14), we obtain

By definition of function u, this leads to

where K 1 is the well-known modified Bessel function of the second kind of order 1, see for instance expression 8.432.6 [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF].

This theorem is as expected similar to the one obtained in the discrete time case.

Appendix B: Proofs in the continuous time case

We give in this appendix the proof of Theorem 9 which concerns the continuous time case.

In order to prove Theorem 9, we first need, as in the discrete time case, the following technical Lemma.

The random variables U i are independent and exponentially distributed with rate µ i = 2λi(n -i)/(n -1), but since the µ i depend on n, we rename the random variables U i as U n,i and the parameters µ i as µ n,i . The spreading time Θ n thus writes as

Lemma 4. Let (Z i ) i≥1 be a sequence of i.i.d. random variables exponentially distributed with rate 1 and let W be defined by

We then have

where W (1) and W (2) are i.i.d. with the same distribution as W .

Proof. For all n ≥ 2, i = 1, . . . , n -1 and x ≥ 0, we have

Thus if Z i is a random variable exponentially distributed with rate 1, we have µ n,i U n,i L = Z i . Moreover since the (U n,i ) i=1,...,n-1 are independent, the (Z i ) i≥1 are also independent.

Observing now that for each fixed i, we have lim n-→∞ µ n,i = 2λi and defining

Suppose that n = 2k + 1. Defining

we have

The random variables V k and V k are independent and they also have the same distribution. Indeed, since µ n,i = µ n,n-i the variables R n,i and R n,n-i have the same distribution.