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Abstract

The characterization of brain tissue is crucial to better understand neurological disorders. Mechanical characterization
is an emerging tool in that field. The purpose of this work was to validate a transient ultrasound technique aimed at
measuring dispersion of mechanical parameters of the brain tissue. The first part of this work was dedicated to the
validation of that technique by comparing it with two proven rheology methods: a rotating plate rheometer, and a
viscoelastic spectroscopy apparatus. Experiments were done on tissue mimicking gels. Results were compared on
storage and loss modulus in the 20 Hz to 100 Hz band. Our method was validated for the measurement of storage
modulus dispersion, with some reserves on the measurement of loss modulus. The second part of this work was the
measurement of the mechanical characteristics of ex vivo human white matter. We were able to measure the dispersion
of the storage and loss modulus in the 20 Hz to 100 Hz band, fitting the data with a custom power law model.
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1. Introduction

Benefiting from the wide elasticity of human body
tissues (eight orders of magnitude for the elastic mod-
ulus from soft to hard tissues), manual palpation is a
common practice in medicine. However, this practice is
more qualitative than quantitative and is limited to tis-
sues to which we have direct access. It is well known
that wave propagation within a tissue is related to its me-
chanical properties, and tools based on the principles of
wave propagation, such as elastography, may be advan-
tageous for quantitative measurement of the mechanical
features of tissues. Elastography could then be seen as a
quantitative palpation device, capable of better discrim-
ination of tissues and variations within them.

Brain elastography has been recognized as a promis-
ing diagnostic tool (Vappou et al., 2008; Kruse et al.,
2008; Sack et al., 2008; Weaver et al., 2012). Neu-
rodegenerative diseases such as Alzheimer’s disease are
difficult to evaluate by conventional imaging methods.
These diseases have diffuse effects on the brain, slowly
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replacing normal tissue with plaques and neurofibrillary
tangles. It is assumed that such changes affect the me-
chanical properties of the brain (Huston et al., 2011).
It is also theorized that other diseases, such as normal
pressure hydrocephalus,result in change in brain me-
chanical properties (Bradley Jr. et al., 1991).

We propose here preliminary results of shear wave
speed dispersion measurement using ultrasound tran-
sient elastography applied to calibrated viscoelasticity
phantoms and to the human brain ex vivo.

2. Interest of measuring viscoelastic parameters dis-
persion for medical applications

Theoretical and physical factors indicate that the
presence of microscopic obstacles may influence not
only the absolute value of viscoelastic tissue param-
eters, but also their relationship with frequency (?).
There is a physical link between the propagation of
shear waves in a viscoelastic medium and its viscoelas-
tic properties (Szabo and Wu, 2000; Sandrin et al., 2004;
Catheline et al., 2004). In particular, we know that the
linear dynamic shear modulus of biological soft tissues
appears to be proportional to the fractional power of fre-
quency, i.e. the frequency-dependent modulus may be
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modeled by a power law, the exponent parameter repre-
senting a mechanical property inherent to a given tissue
(Bagley, 1983; Schiessel et al., 1995; Tanter et al., 2006;
Nicolle et al., 2013). This behavior cannot be mod-
eled by the classical Voigt or Maxwell model widely
used in elastography. Indeed, the Voigt model predicts
a frequency-independent elastic modulus G′(ω) and a
loss modulus G′′(ω) ∝ ω that is directly proportional
to the angular frequency, which is in obvious contra-
diction with fractional law behavior. In contrast, the
Maxwell model allows dispersion for both moduli but
not according to a power law with equal exponents for
G′(ω) and G′′(ω). There are, however, rheological mod-
els that are capable of describing power law behavior
for the complex shear modulus, named springpot mod-
els (Bagley, 1983; Schiessel et al., 1995; Tanter et al.,
2006). A basic springpot model is equivalent to a hier-
archical organization of springs and dashpots (Schiessel
et al., 1995) and can continuously interpolate between
a purely solid material (γ = 0) and a purely liquid
(γ = 1) material with respect to the power law expo-
nent for G∗(ω) = G′(ω) + iG′′(ω) ∝ (iω)γ. However,
this model has limitations; the power exponent γ is re-
stricted to the interval [0, 1], and second the ratio G′′(ω)

G′(ω)

is linked to the power exponent via G′′(ω)
G′(ω) = tan

(
γπ
2

)
with

the same γ.

The dispersion of the shear modulus has been studied
in several types of tissue, using different approaches to
model such dispersion. Results obtained in breast tu-
mors, brain tissue and the liver are briefly presented be-
low. It was shown by MRE by Tanter et al. (2006) in
in vivo breast carcinoma that the frequency behavior of
G′(ω) (storage modulus) and G′′(ω) (loss modulus) are
well modeled by a non-integer power law: G′(ω) = ωγ,
G′′(ω) = ωγ with γ = 0.75. In this set of in vivo breast
data, although the data ratio is not frequency dependent,
its value corresponds to the ratio predicted by a spring
pot model G′′(ω)

G′(ω) = tan
(
βπ
2

)
with a constant β = 0.15

different to and lower than γ. To simulate this specific
soft tissue architecture, a new rheological model was
introduced by the authors based on a network with an
infinite ladder of spring pots. The basic element and
the network have the same nature, i.e. the basic ele-
ment parameter and the network element parameter are
the same. In this new rheological model, the frequency
behavior in ωγ of the dynamic and loss moduli is due
to the spring pot corresponding to the basic element of
the network. Thus, it characterizes the cells. The ratio
G′′(ω)
G′(ω) = tan

(
βπ
2

)
is due to the network and the arrange-

ments of the spring pots. The β parameter is different
from γ and its value is between 0 and 1. For solid ma-

terial, the β parameter is close to 0, while for liquid ma-
terial it is closer to 1. Moreover, carcinoma is charac-
terized by a high β value, corresponding to a liquid-like
behavior, while a fibro adenoma is characterized by a
low β value corresponding to solid-like behavior. Thus,
the rheological model can be adapted to the soft tissue
structure.

Undertaking a multiple frequency study using MRE
involves making multiple measurements at each fre-
quency, which can considerably lengthen the examina-
tion time. With ultrasound elastography, a short, wide
band excitation signal can be used which will allow
a dispersion study using a single acquisition, or even
multiple acquisitions with varying center frequencies to
cover a wider band.

In this study we tested the feasibility of measuring
the dispersion of mechanical properties using transient
shear wave propagation in a tissue mimicking phantom
and in the human brain ex vivo.

3. Materials and methods

3.1. Experimental setup
The experimental setup used in this study and pre-

sented schematically in figure 1 is based on previous
work by Catheline et al. (2004). A purely transver-
sally polarized plane wave propagating in the x direc-
tion is mechanically induced in the studied medium.
A multi-element linear ultrasound probe (128 elements,
2.8 MHz center frequency, Vermon, France) was placed
perpendicularly to the direction of propagation, to al-
low observation of the wave propagation. The probe
was connected to an ultrafast echographic scanner (Aix-
plorer, SuperSonic Imagine, France), capable of acquir-
ing 5000 frames per second, used to measure displace-
ment inside the medium. On each acquisition, the scan-
ner triggered a signal generator (Tektronix AFG 31023),
driving a vibrator (Bruel & Kjaer 4826). A rigid Plex-
iglas plate was connected to the vibrator generating a
sum of plane, low amplitude shear waves in the medium
being tested. This experimental setup is represented in
figure 2.

The signal used to drive the vibrator was a Gaussian
shaped wave, providing a single, broadband acquisition
(20 Hz to 150 Hz).

To validate our method and compare the measure-
ments, two classical material characterization methods
were used, the first using hyper-frequency viscoelastic
spectroscopy (Hadj Henni et al., 2011) (Rheospectris,
Rheolution, Canada), with a cylindrical sample (10 mm
diameter, 45 mm height). This method allows explo-
ration of both G′ and G′′ in a wide frequency range
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Figure 1: Representation of the experiment. The plate moves along
the horizontal axis (z axis). The probe is placed perpendicular to it,
along the x axis.

(10 Hz to 1000 Hz). The second was a high-frequency
rheometer using a thin disk-shaped sample (15 mm di-
ameter, sub-millimetric thickness). This method was
used to measure G′ and G′′ between 10 Hz and 500 Hz.

The phantoms used were made of a mixture of a
triblock SEBS copolymer (Kraton Polymers, Univar,
France) dissolved in white mineral oil (Oudry et al.,
2009). The scatterers used were silica powder with
grain size ranging from 35 µm to 70 µm. These types
of phantom present several advantages over more clas-
sical types (agar gelatin), in particular excellent me-
chanical resistance and stability of the mechanical pa-
rameters (tested over 18 months). The two variable pa-
rameters were the oil kinematic viscosity and the poly-
mer concentration. These parameters provide a wide
range of mechanical parameters, with a Young’s modu-
lus of 2.2 kPa to 150 kPa and an attenuation coefficient
of 0.1 dB cm−1 to 40 dB cm−1.

The phantom used in elastography experiments was
of cylindrical shape, 15 cm high, 15 cm diameter. The
homogeneity of the phantoms was verified from a struc-
tural point using B-mode ultrasound imaging and con-
firmed by Magnetic Resonance Elastography (MRE)
(figure 3).

3.2. Data processing

The data obtained from the scanner was raw demodu-
lated in-phase and quadrature components (complex IQ
data). The IQ signal can be written:

IQ(x, z, n) = I(x, z, n) + jQ(x, z, n) = A(x, z, n)e jφ(x,z,n)

(1)
where A is the signal amplitude and φ(x, z, n) the sig-
nal phase at position (x, z) for the nth pulse. The veloc-
ity estimator is defined in equation 2, an extension of
the autocorrelation estimator developed by Hoeks et al.
(1994). This estimates the mean velocity using mul-
tiple, spatially contiguous IQ sample volumes in time.

This approach increases the accuracy of the velocity es-
timated at the expense of decreasing the spatial resolu-
tion, expressed mathematically as:

V (x, z, t) =
λ

4πT
×

arg

 Na∑
a=0

Nb∑
b=0

IQ (x, z − a, t − b) IQ (x, z − a, t − b − 1)


(2)

where λ is the wavelength and T the time interval be-
tween two acquisitions. Na is the number of samples
defining the volume of interest and Nb the number of
temporal samples in the autocorrelation over which the
mean velocity is estimated.

The axial resolution obtained was 1λ = 0.5 mm. For
each subsample volume at a given depth, the tissue ve-
locity was estimated with an observation window of 8
samples with 50 % overlap, giving a temporal resolution
of 0.4 ms.

Figures 4 and 5 illustrate the tissue velocity calcu-
lated within a phantom. In these figures the purely
transversal, shear nature of the wave can be easily seen
and the amplitude decreasing with depth x is clearly vis-
ible. In particular figure 5 shows the shear wave prop-
agation in a time space domain for a given z, and the
group speed of the shear wave can be approximated
from that visualization. The rebound of the wave can
also be seen (vertically symmetric wave starting at the
bottom, at 60 ms).

In this configuration, assuming that the media being
tested was homogeneous, isotropic, viscoelastic and in-
compressible, the shear wave generated by the shaking
plate was considered to be purely transverse. Thereafter
the velocity field could be expressed by the following
Helmholtz wave equation:

G∗ (ω)
∂2Vz (x)
∂x2 + ρω2Vz (x) = 0 (3)

with ω the angular frequency and G∗ (ω) the complex
shear modulus. The amplitude of the velocity which
solved eq. 3 for a given frequency was:

Vz

(
ω f , x

)
= V0

(
ω f

)
e jk′(ω f )x e−α(ω f )x (4)

with ω f a fixed frequency, k the complex wave
number, k′ the real part of the wave number and α
the imaginary part (attenuation coefficient), both being
frequency-dependent.
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Figure 2: Experimental setup

Figure 3: Elastogram obtained for a phantom using a commercial se-
quence on a Siemens 3T MRI. Four axes of view are shown. The data
are represented as a mechanical index, representative of the material
stiffness. The black mesh on the edges of the phantom is indicative of
a low confidence index.
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Figure 4: Particle velocity field at 20 ms, 30 ms, 40 ms and 50 ms after
excitation. This confirms the plane shear nature of the wave. Attenu-
ation due to viscosity can also be observed.

If Uz (ω, x) is the complex spectral amplitude of
Vz (ω, x), computed by temporal Fourier transform, the
inverse-problem is solved in the frequency space do-
main for a fixed ω f . The following two expressions
could then be used to estimate velocity and attenuation,
respectively:

Az (k) =
∣∣∣∣FFTx

(
Uz

(
ω f , x

))∣∣∣∣ (5)

Bz (x) = ln
(∣∣∣∣Uz

(
ω f , x

)∣∣∣∣) (6)

with FFTx the spatial Fourier transform.
The maximum of Az provides kxmax , the wave num-

ber associated with the maximum amplitude of the wave
field at frequency ω f . An example of this is shown in
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Figure 5: Particle velocity field for a given z. The slope of the curve
provides a quick approximation of the group velocity.

figure 6. The transverse wave velocity cT could then be
deduced:

cT

(
ω f

)
=

ω f

2πkxmax (ω)
(7)
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Figure 6: Example of Az (k), for f = 60 Hz. In this example,
k =43.5 m−1, and cT = 1.38 m s−1.

Linear regression of Bz (x) provides −α. An example
is shown in figure 7.

In order to estimate the quality of the measurements
by elastography, comparison with rheological measure-
ments on a similar phantom was carried out. Without
making hypotheses on the viscoelastic behavior of the
material the complex shear modulus can be expressed:
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Figure 7: Example of Bz (x), for f =60 Hz

G∗ (ω) = ρ
ω2

k2 (8)

Given that G∗ = G′+ jG′′ and k = k′+ jα (viscoelastic
medium), from equation 8 it could finally be deduced
that:

G′ (ω) = ρω2 k′2 − α2(
k′2 + α2)2 (9)

G′′ (ω) = −2ρω2 k′α(
k′2 + α2)2 (10)

All these steps were repeated for each frequency in
the 20 Hz to 120 Hz band, with 0.5 Hz resolution.

A typical acquisition consisted of 128 parallel echo-
graphic lines and enough frames to strobe the entire
shear wave (usually 256 or 512) at 5000 frames per sec-
ond. The acquisition depth was approximately 10 cm,
with ∆z = 500 µm and ∆x = 300 µm. The calculations
were repeated for every depth, indicating the robustness
of the algorithm.

Viscoelastic parameters were estimated using a
model developed by Nicolle et al. (2010). In this model,
G is expressed as:

G (iω) = K (iω)n + iη∞ω (11)

with K the coefficient of consistence, n the linear
constitutive parameter and η∞ the viscosity at high fre-
quency.
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The real and imaginary parts of G are respectively:

G′ (ω) = K cos
(
π

2
n
)
ωn (12)

G′′ (ω) = K sin
(
π

2
n
)
ωn + η∞ω (13)

4. Results

4.1. Calibrated, homogeneous phantoms
The experiment was conducted on two different gels,

the first with a stiffness and sound velocity close to those
of brain tissue, and the second with a higher Young’s
modulus. Their characteristics are presented in table 1.

To compare the three methods, three phantoms were
made (one for each method) in a single session to avoid
differences in characteristics.

The results for the first phantom are presented in fig-
ure 8. Figures 8a and 8b represent G′ and G′′ for the
three methods, respectively. The results for the second
gel are presented in figure 9. There was a a good match
in the results between the three methods for the storage
modulus. Moreover, the values of G′ were in accor-
dance with the estimated Young’s modulus. The disper-
sion of the storage modulus was low, in accordance with
the low viscosity components of the gel.

The loss modulus measurements were less reliable,
the SWE technique being less reliable especially in gel
2 (see figure 9b).

Our method was based on a measurement of k for a
fixed ω f . Thus, when the wavelength was longer than
the observation window, measurement was bound to be
difficult. We followed the propagation of the shear wave
in a window of 3.8 cm (x axis, the size of the probe)
and a gross estimate of the shear wave speed could be

made using cs =
√

G′
ρ

, with cs the shear wave speed,

and ρ the density of the gel, measured at 1 g cm−3. For
gel 1 G′ ≈ 1 kPa, and for gel 2 G′ ≈ 2.5 kPa yield-
ing cs ≈ 1 m s−1 for gel 1 and cs ≈ 1.5 m s−1 for gel 2.
This can explain the drop found in the value of G′ for
gel 2 (figure 9a). In that case, at 40 Hz we had a wave-
length of about λ = 4 cm, rendering evaluation of k dif-
ficult. For gel 1 there was no drop, as the wavelength
was shorter (about 2.5 cm).

The evaluation of G′′ was more challenging because
we needed to assess the attenuation of the shear wave.
For frequencies under 40 Hz, there was a discrepancy
between the SWE method and the other two methods
for both gels. As before, estimating an attenuation on
less than a wavelength was difficult. The tiniest field
variation, whether noise related or due to a small het-
erogeneity has a significant effect on the measurement.

For frequencies above 40 Hz the results were correlated
with the other methods. Adding more copolymer to the
gel mixture tended to increase its shear viscosity, in ac-
cordance with the behavior observed at low frequencies
by Oudry et al. (2009).
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Figure 8: Real and imaginary parts of the complex shear modulus
measured for gel 1, made of oil at 35 mm2 s−1 mixed with 3.2 % of
copolymer. The three measurement methods are compared: Shear
Wave Elastography (SWE), high-frequency rheometer, and hyper-
frequency viscoelastic spectroscopy.

4.2. Ex vivo brain
The method was then tested on an ex vivo human

brain, extracted 48 hours after death. The experimen-
tal setup similar to the previous setup, with the Plexiglas
plate placed on top of the brain and the ultrasound probe
placed across the parietal and temporal lobes, as seen in
figure 11. In order to measure the mechanical charac-
teristics on an homogeneous area, the measurement was
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Table 1: Gel characteristics. Young’s modulus was estimated using the experimental law by Oudry et al. (2009)

Phantom
Oil viscosity

at 20 ◦C
(mm2 s−1)

Copolymer
concentration

(percent of oil quantity)

Estimated
Young’s modulus

(kPa)
1 35 3.2 2.8
2 35 5 8.4
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Figure 9: Real and imaginary parts of the complex shear modulus
measured for gel 2, made of oil at 35 mm2 s−1 mixed with 5 % of
copolymer. The three measurement methods are compared: Shear
Wave Elastography (SWE), high-frequency rheometer, and hyper-
frequency viscoelastic spectroscopy.

restricted to a 2 cm x 2 cm area of white matter. The
area of interest is shown in figure 10. The results ob-
tained are shown in figure 12. The data shown are the
interquartile range of 40 computations across the 2 cm.
From these results viscoelastic parameters were approx-
imated for the power law model. We obtained (95 %
confidence bounds):

G′ (ω) = (1575 ± 348) cos
(
π

2
(0.12 ± 0.04)

)
ω(0.12±0.04)

(14)

G′′ (ω) = (1575 ± 348) sin
(
π

2
(0.12 ± 0.04)

)
ω(0.12±0.04) + (3.79 ± 0.53)ω

(15)

Figure 10: Coronal brain section showing the area measured (dotted
square).

The results were compared with those obtained by
Nicolle et al. (2005); in their study on porcine brain
white matter, they obtained values of G′ ranging from
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(2.1 ± 0.9) kPa to (16.8 ± 2.0) kPa when going from
0.1 Hz to 6310 Hz.

The human brain measurements were correlated to
the porcine brain data. Differences can be inputed to
the delay between death, extraction and measurement.
The G′ values were globally higher for the the porcine
brain, while G′′ were in close proximity, but with a dif-
ferent dispersion behavior.

Using SWE, Chan et al. (2014) revealed a focal area
of increased stiffness approximately 1.5 cm from the
brain surface (Fig. 1E) on a 7 year old boy presented
with a 5 year history of medication-resistant frontal
lobe epilepsy. This area had a mean Youngs modulus
(YM) of 74.7 kPa, compared to the surrounding gray
and white matter, which had a mean YM of 36.2 kPa
and 20.8 kPa, respectively. If we assume that E = 3G′,
we measure a YM which varies from 6 kPa at 25 Hz
to 12 kPa at 100 Hz. In Chan et al. (2014), the elas-
ticity is measured from the group velocity which cor-
responds approximately to the shear velocity at the fre-
quency corresponding to the maximum amplitude of the
shear wave. Even if we dont have that information our
measurements are lower compared to their work. In her
thesis Imbault (2017) measured gray matter brain elas-
ticity with intraoperative SWE for tumor classification
(meningiomas, low-grade gliomas, high-grade gliomas
and metastasis). Chauvet et al. (2015) reported these re-
sults. A global mean elasticity of (7.3 ± 2.1) kPa was
measured on normal brain tissue. These measurements
were done in the gray matter with SWE and are in ac-
cordance with Kruse et al. (2008) but are also lower than
the Chan et al. (2014) results.

Figure 11: Ex vivo human brain with probe and vibrating plate
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Figure 12: G′ and G′′ (storage and loss modulus) for an ex vivo human
brain. The data represented is the interquartile range for 40 computa-
tions at different depths across the area of interest. The porcine brain
data was obtained with a rheometer by Nicolle et al. (2005). A power
law fit is represented.
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5. Conclusion

The SWE method allowed us to measure the storage
modulus dispersion (and thus the shear wave speed dis-
persion) in two mimicking gels, as well as in ex vivo
brain tissue.

The method was successfully tested against two other
proven rheology measurement techniques, i.e. hyper-
frequency viscoelastic spectroscopy and high-frequency
rheometer, in the 20 Hz to 120 Hz range. The SWE
method was found to provide similar results when mea-
suring G′, the storage modulus.

Measurement of G′′, the loss modulus, proved to be
more challenging. However, when enough care was
taken to have at least one wavelength in the observa-
tion window the results were then comparable to those
obtained with other methods.

These ex vivo measurements show that it is possible
to follow the propagation of a shear wave in the brain
at a 4 cm depth, in the the 20 Hz to 120 Hz bandwidth.
We have enough sensitivity with our method (diffusion
of ultrasound from the brain tissue, acquisition SNR
and frame rate, Doppler tissue velocity estimation al-
gorithm) to measure the dispersion of G′ and G′′ with
comparable precision to the reference method (rheome-
ter). The main difficulties are to induce plane wave US
in the brain through the phase and amplitude aberrating
skull with sufficient SNR, to induce measurable shear
wave in the brain in vivo, and to estimate the elasticity
from these low frequency complex field patterns. Re-
sults published by Maitre Maitre et al. (2011) on MRE
using the anatomical pathways as waveguides to induce
shear wave in the brain are promising. The apparatus
developed in this work can be adapted for US brain elas-
tography. Imbault (2017) measures a Young modulus of
(33.1 ± 5.9) kPa, (23.7 ± 4.9) kPa, (11.4 ± 3.6) kPa and
(16.7 ± 2.5) kPa for meningiomas, low and high grade
gliomas respectively, and metastasis with normal brain
tissue (gray matter) of (7.3 ± 2.1) kPa7, using intraop-
erative SWE. This biomarker differentiates benign from
malignant lesions. Using a modified version of the tran-
sient elastography method presented in this study with
the guided pressure waves used in brain MRE, we can
envision a method to measure brain tissue stiffness in
vivo without opening the skull.
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