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On the super-resolution capacity of imagers using
unknown speckle illuminations

November 10, 2017 - Jérôme Idier, Member, IEEE, Simon Labouesse, Marc Allain, Penghuan Liu,
Sébastien Bourguignon, and Anne Sentenac, Member, IEEE

Abstract—Speckle based imaging consists of forming a super-
resolved reconstruction of an unknown sample from low-
resolution images obtained under random inhomogeneous illu-
minations (speckles). In a blind context where the illuminations
are unknown, we study the intrinsic capacity of speckle-based
imagers to recover spatial frequencies outside the frequency sup-
port of the data, with minimal assumptions about the sample.We
demonstrate that, under physically realistic conditions, the co-
variance of the data has a super-resolution power corresponding
to the squared magnitude of the imager point spread function.
This theoretical result is important for many practical imaging
systems such as acoustic and electromagnetic tomographs, flu-
orescence and photoacoustic microscopes, or synthetic aperture
radar imaging. A numerical validation is presented in the case
of fluorescence microscopy.

Index Terms—Multi-illumination imaging, High-resolution,
Cutoff frequency, Second-order statistics, Optical microscopy,
Photoacoustic imaging, Synthetic aperture radar

I. INTRODUCTION

In most active wave imaging systems, the recorded data z
can be modeled as the convolution of a point spread function
(PSF) h with the product of the sample ρ with an illumination
E, plus some additive noise ε:

z = h⊗ (ρE) + ε (1)

where ⊗ stands for the convolution operator, either in two or
three spatial dimensions. This simple model applies to imaging
configurations as diverse as microwave scanners or anechoic
chambers [1], radar remote sensing [2] or fluorescence mi-
croscopy [3].

The shape of the point spread function h depends on the
imager geometry, e.g., the numerical aperture (NA) of the
microscope objective, or the size of the antenna array in radar
imaging. It accounts for the wave propagation from the sample
to the detector. In most configurations, free-space propagation
prevents the wavefield high frequencies from reaching the de-
tector. As a result, h has necessarily a bounded Fourier support
DPSF. For instance, in a microwave scanner, DPSF is a hollow
sphere of radius 1/λ (where λ is the illumination wavelength)
when the field scattered by the sample is recorded under all
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possible directions, or a cap of sphere when the observation
is performed only over a small solid angle [4]. Similarly, in
two (or three) dimensional fluorescence microscopy, DPSF is
a disk (or a solid torus) of radius 2NA/λ [3].

When the illumination is homogeneous throughout the tar-
get, solely the sample frequency components in DPSF can be
restored from the data by linear methods, which limits funda-
mentally the image resolution. To improve the latter, synthetic
imaging using multiple illuminations has been developed.
Its main principle is to use several known inhomogeneous
illuminations Em,m = 1, . . . , M , to probe the sample. The
frequency mixing of Em with ρ causes a down-modulation
of the sample high spatial frequencies into the frequency-
support DPSF. Using appropriate data processing, sample
frequencies beyond DPSF can be recovered, yielding a much
better resolution. This idea is at the core of many imaging
configurations such as Synthetic Aperture Radar (SAR) [2],
diffraction tomography [5], and Structured Illumination fluo-
rescence Microscopy (SIM) [6], [7], among others.

In all these imaging modalities, the standard numerical or
analog process that forms the super-resolved image from the
stack of low resolution data assumes the precise knowledge,
and thus the tight control, of the different illuminations Em.
The super-resolution capacity of the process is then both
theoretically and practically demonstrated. However, the full
control of the illumination patterns is a major constraint for
the experimental implementation and in some cases proves
impossible. The case of thick samples imaged with three-
dimensional SIM is a classical example since samples are
likely to introduce distorsions on the excitation pattern [8], [9].
Hence, some groups have developed reconstruction algorithms
able to handle some uncertainty about the illuminations [8]–
[11]. Following a less conventional option, others have advo-
cated using of totally uncontrolled illuminations of speckle
type [12]. This recent blind approach could dramatically
simplify the experimentation by further relaxing the con-
straints on controlling the illumination patterns. Examples of
implementations can be found in optical microscopy [13]–[17]
and photoacoustic imaging [18], [19]. The proposed inversion
schemes take advantage of the nonnegativity of the sample
ρ, and on statistical information on ρ and/or the illuminations
Em. In particular, some of them introduce sparsity information
on ρ [14], or on the products ρEm [17]. Generally speaking,
the stack of low resolution speckle data yielded reconstructed
images with significantly better resolution than that provided
by a standard imager using homogeneous illumination. How-
ever, many questions remain unanswered about the theoretical
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resolution that one can expect from such a system, in particular
with respect to the speckle statistics.

To the best of our knowledge, this paper provides the
first comprehensive mathematical understanding of the super-
resolution (SR) capacity of synthetic imaging using speckle
illuminations in a blind way. Our analysis is very general and
basically holds when the data can be modeled by Eq. (1) with
ρ ≥ 0. Pivotal SR results are for instance provided for two
popular microscopy modalities, namely optical fluorescence
microscopy and optical coherent imaging.

Fluorescence microscopy is an incoherent imaging modality,
for which the quantities involved in (1) have the following
physical interpretation: ρ is the fluorescence density distribu-
tion, i.e., a real-valued, nonnegative, quantity; the incoherent
PSF h is real-valued, nonnegative, and the support of its
Fourier transform is a disk or a torus in two and three
dimensions, respectively [3]; the illumination E is a speckle
intensity pattern produced by a coherent light beam, i.e., a
random real-valued, nonnegative, quantity (see for instance
[13]); and z is an intensity measurement plagued by real-
valued instrumental noise ε. In addition, in the low counting-
rate regime, one may consider photon counting fluctuations in
the observation model: in this case, the quantity h⊗(ρE) in (1)
is connected to the mean of the counting statistics. The case
of intensity measurement plagued by both photon counting
fluctuations and electronic noise is specifically addressed in
Appendix A.

In coherent imaging, such as tomographic diffraction mi-
croscopy [4], we have the following correspondence for the
model (1): ρ is the relative permittivity contrast distribution,
a complex-valued function in general, although our mathe-
matical analysis is restricted to real nonnegative ρ, i.e., it is
restricted to lossless dielectric objects; the coherent PSF h
is complex-valued, and the support of its Fourier transform
is a sphere cap [4]; the illumination E is a complex-valued
random field, e.g., a circular Gaussian random field if it arises
from a (scalar) electric field stemming from a fully developed
speckle produced by coherent light [20]; the recorded data z is
the scattered electric field plagued1 by circular complex-valued
instrumental noise ε, such that z is also a circular complex-
valued random field.

In the sequel, the term super-resolution is understood as the
ability to recover spatial frequencies of the sample that cannot
be obtained with either a constant illumination in incoherent
imaging, or a single plane-wave with normal incidence in
coherent imaging. Following standard results [23, Chap. 6],
we recall that the incoherent (intensity) PSF is obtained by
squaring the magnitude of the coherent (complex electric field)
PSF of the optical system. As a result, transmitted spatial
frequencies with an incoherent illumination span twice the
domain transmitted with a coherent illumination. However,
incoherent illuminations do not provide the permittivity con-
trast, but its squared magnitude, which prevents any direct
comparison in terms of spatial resolution between coherent

1This measurement z is usually obtained by the Fourier transform of
measured real valued intensities in an off-axis interferometric mounting, see
for instance [21], [22]. Moreover, if the counting rate is high enough, an
additive fluctuation model over the real and the imaginary part is relevant.

and incoherent optical systems, see e.g., [23, Sec. 6.5] for
details. In contrast, the present work shows that a double
spatial resolution can be obtained in both cases thanks to
random illuminations.

We finally note that the model (1) also encompasses some
other situations, namely microwave imaging [24] (the mea-
sured data are complex fields, ρ is the complex permittivity;
the noise being mainly an electronic fluctuation, it can be
assumed Gaussian for both the real and imaginary parts)
and photo-acoustic imaging [18], [19] (the measured data are
real-valued B-mode images corrupted by real-valued Gaussian
noise, and ρ represents the optical absorption). Hereafter, we
consider the complex-valued setting, since the real setting can
be deduced straightforwardly as a particular case where the
imaginary parts of the relevant quantities vanish.

The article is organized as follows. The next section pro-
vides the mathematic assumptions required in our SR analysis.
Section III establishes the expression of the first two moments
of the data. In section IV, the dependency between the
latter expressions and the spatial frequency components of
the sample ρ is further examined. Clear conclusions about
the SR capacity of the system are obtained if the speckle
illuminations are “sufficiently” correlated, in the sense that
their spectral power density lies within the frequency support
of the PSF. Such conclusions constitute the main contribution
of this paper. The opposite case of uncorrelated speckles is
also considered. Section V deals with the practical question
of a computational scheme to reconstruct the unknown scene.
A two-dimensional simulation of an optical fluorescence mi-
croscope using correlated speckle illuminations is provided,
and it supports that the expected SR ratio can be obtained
from the data empirical second-order statistics. Finally, Sec-
tion VI discusses the practical consequences of the obtained
results, and evokes possible extensions and remaining points
to address.

II. MODEL AND ASSUMPTIONS FOR THE SR ANALYSIS

We consider M images (z1, . . . , zM ) of the same sample
that have been acquired using M different speckle illumina-
tions. Each image zm = (zm(r1), . . . , zm(rN )) is a set of
N pixels, each of which being indexed by a spatial coordinate
vector rn. In practice, vector rn spans a finite d-dimensional
rectangular grid G, common to all images, d being equal to
two or three. Without loss of generality, we consider the spatial
sampling rate to be normalized to unity in each direction.
By convention, we also consider that zm are column vectors
obtained by scanning the image grid G in an arbitrary order.
Hence, for all m ∈ {1 · · ·M} and r ∈ G, the observation
model reads

zm(r) = ym(r) + εm(r), (2)

with

ym(r) =

∫
h(r − r′)ρ(r′)Em(r′) dr′, (3)

and where Em and εm are random quantities: Em is the mth
random illumination and εm stands for electronic noise. Fur-
thermore, the following assumptions will be made concerning
the observation model (2):



3

(i) The PSF h is both integrable and square-integrable (i.e.,∫
|h(x)|p dx < ∞ for p = 1, 2). Moreover, its Fourier

transform2 h̃ takes finite values and vanishes outside a
bounded set DPSF = {u | h̃(u) 6= 0}. These assump-
tions are met when the measurement zm is obtained in
the far-field domain, which is the case of most imaging
systems [4].

(ii) The sample ρ is integrable and takes finite, nonnegative
values over Rd. Moreover, it approaches zero at large
distance from the origin.

(iii) The data grid G is sufficiently large to make the influence
of finite data extent negligible. As a consequence, we
will identify G with Zd in the sequel. This is indeed
a legitimate simplification given Assumptions (i) and
(ii) since we can show that h ⊗ (ρE) tends towards
zero at large distance from the origin, provided that the
illumination pattern E is bounded.

(iv) G is fine enough to sample the PSF h with no discretiza-
tion error. According to Parzen’s multidimensional exten-
sion of Shannon theorem [25], such a condition is met as
soon as DPSF belongs to the baseband B = [−1/2, 1/2]d.

(v) The noise and illuminations are second-order stationary,
mutually decorrelated random processes. This is a stan-
dard hypothesis which is verified for most imagers [12,
Sec. 4.4]. Moreover, a direct extension would be possible
to cases where the statistical mean of the illuminations is
spatially varying. Without loss of generality, we will also
assume that the noise is zero-mean.

(vi) The first two moments of the illuminations and of the
noise are known. This assumption is at the core of our
approach. It is expected to be less difficult to satisfy than
the knowledge of the illuminations patterns.

In this work, we restrict the analysis of the data by consid-
ering only second-order statistics, i.e., the statistical mean and
covariance of the data. More precisely, our aim is to determine
the spatial frequency domain over which the sample spectrum
can be identified from these statistics. Such a restriction is
legitimate for several reasons.

On the one hand, the empirical mean and covariance are
easily accessible statistical quantities, that can provide reli-
able second-order information from a practically acceptable
number of illuminations.

On the other hand, the statistical mean and covariance
are exhaustive statistics if the data are Gaussian, whether it
is real-valued or complex circular. For instance, the latter
assumption is suited to coherent imaging techniques such as
tomographic diffraction microscopy. In other situations, such
as optical fluorescence microscopy, the speckle illumination,
and hence the data, are non-Gaussian. The statistical mean
and covariance do not summarize all the information about
the sample available in the measurements in such situations,
but our results still provide a lower bound on the information
retrievable from the complete data statistics.

With the goal of characterizing the SR potential of second-
order methods, we wish to assign each component of the

2Hereafter, the tilde sign ˜ denotes the d-dimensional continuous-space
Fourier transform.

spatial Fourier transform ρ̃(u) of the imaged sample to one
of the three classes:
• Non-identifiable spectral components are those for which

the second-order data statistics bring no information.
• Partially identifiable components are those for which the

second-order data statistics bring some information, but
for which some ambiguity remains.

• Identifiable components are those which are uniquely
determined given the second-order data statistics.

Obviously, the support of each class in the Fourier domain may
depend on the frequency support DPSF and on the covariance
structure of the speckle illumination.

III. FIRST AND SECOND-ORDER STATISTICS OF THE DATA

The statistical mean and covariance of the data are now
derived. In what follows, E{·} and ∗ denote the statistical
expectation operator and complex conjugation, respectively.
According to assumptions (v) and (vi), let E{E} = E0

and γE(r) = E{E(x)E∗(x− r)} − |E0|2 denote the mean
and covariance function of the speckle, and let γε(r) =
E{ε(x)ε∗(x− r)} denote the covariance function of the
noise.

A. First-order information content

From the observation model (2)-(3) and from the assump-
tion of centered noise, we deduce the statistical mean:

µz(r) = E{zm(r)} = E0

∫
h(r − r′)ρ(r′) dr′, r ∈ Zd.

(4)
The continuous-space Fourier transform of µz reads

µ̃z(u) = E0 h̃(u)ρ̃(u) (5)

for all u ∈ Rd. Function µ̃z has a support limited to DPSF,
so, according to assumption (iv), the sampling of µz on Zd
is lossless. A straightforward deduction from expression (5)
is that any spectral component of ρ belonging to the support
DPSF is identifiable, provided that E0 6= 0. In particular, if
Em(r) is a complex circular Gaussian process, then E0 =
0 [12] and µz(r) brings no information about the unknown
sample. This conclusion leads to the following property.

Property 1 The frequency component ρ̃(u) is identifiable
from µz if and only if u ∈ D1 with

D1 =

{
DPSF if E0 6= 0,
∅ otherwise.

In any case, the first-order moment does not convey any
information on the spectral components outside DPSF, i.e.,
it brings no SR capacity.

B. Second-order information content

Now let us focus on the data covariance function that reads

γz(r, r
′) = E{zm(r)z∗m(r′)} − µz(r)µ∗z(r

′)

with r, r′ ∈ Zd. If (2) and (3) hold, then we immediately get

γz(r, r
′) = γy(r, r′) + γε(r − r′) (6)
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with

γy(r, r′) =∫∫
ρ(x)ρ(x′)h(r − x)h∗(r′ − x′) γE(x− x′) dx dx′.

(7)

The noise covariance function γε is known according to
assumption (vi), but it conveys no information about the
sample. The knowledge of γz is thus equivalent to that of γy ,
the latter term being the only potential source of information
about the spectral components outside DPSF. Let us examine
the Fourier content of γy , first neglecting its discrete character.
Using the continuous-space Fourier transform of (7), we obtain

γ̃y(u,u′) = h̃(u) h̃∗(−u′)∫∫
e−2iπ(u·x+u′·x′)ρ(x)ρ(x′)γE(x− x′) dx dx′

(8)

for all u, u′ ∈ Rd, where u·r denotes the usual scalar product
in Rd. Given that

γE(x− x′) =

∫
e2iπ(x−x′)·u′′

γ̃E(u′′) du′′,

it is easy to express γ̃y(u,u′) as follows:

γ̃y(u,u′) = h̃(u) h̃∗(−u′) g̃(u,u′), (9)

with

g̃(u,u′) =

∫
ρ̃(u− u′′) ρ̃(u′ + u′′) γ̃E(u′′) du′′. (10)

According to (9) and to assumption (iv), γ̃y has a support
limited to B×B. Hence, γ̃y(u,u′) identifies with the discrete-
space Fourier transform of γy for all u, u′ ∈ B. We conclude
that the available information on the sample ρ from the discrete
data covariance is contained in (and limited to) g̃(u,−u′), for
all u, u′ ∈ DPSF.

IV. SUPER-RESOLUTION CAPACITY OF SECOND-ORDER
METHODS

According to expressions (7) or (9)-(10), the spectral density
γ̃E clearly plays a central role in identifying the spectral
components of the sample. However, a difficulty in analyzing
the SR capacity of second-order methods comes from the
fact that the data covariance is not a linear but a quadratic
functional of the unknown sample ρ. As a consequence, no
general theory can be applied to solve equations (7) or (9)-(10)
for ρ. However, two cases lend themselves to a deeper analysis.
The first one corresponds to “sufficiently” correlated speckles,
in the sense that the frequency support of the covariance
function γ̃E is contained in the frequency support of the PSF.
At the opposite, the case of uncorrelated speckles can also
be treated. These two cases are examined in the next two
subsections, whereas handling the intermediate case remains
an open issue. In the sequel, we make use of the Minkowski
difference between two sets

A	B = {x− y,x ∈ A,y ∈ B}
to define the frequency domains over which the identification
(or partial identification) of the frequency components of the
sample is possible.

A. Case of “sufficiently” correlated speckle

Let us assume that the unknown speckle illuminations are
spatially correlated, and that the frequency support of its
covariance function is Dspec = {u | γ̃E(u) 6= 0}. According
to expression (9), γ̃y(u,u′) vanishes when either u or −u′ is
outside DPSF. On the other hand, according to (10), g̃(u,u′)
conveys no information on the frequency components ρ̃(v)
such that either v±u or v±u′ falls outside Dspec. Then, the
following property holds.

Property 2 Any spectral component ρ̃(u) such that u 6∈ D1∪
D′2 with D′2 = DPSF	Dspec is non-identifiable from the mean
µz(r) and the covariance function γy(r, r′).

Remark 1 If each speckle pattern was known, the set of
identifiable frequency components would be D1∪D′2 for a suf-
ficiently large number of speckles. Moreover, the components
outside D1 ∪ D′2 would remain non-identifiable. In the same
way, if the complete data statistics were available (the speckle
patterns being unknown), the components outside D1 ∪ D′2
would also be non-identifiable, since the latter situation is
not more favorable than the former. We thus conclude that
frequency components outside D1 ∪ D′2 cannot be retrieved
from standard (i.e., non Bayesian) statistical information, even
including higher moments.

Property 2 is of negative nature. Fortunately, a positive
partial converse can be established in the important situation
where the frequency support of the illuminations Dspec is not
larger than that of the PSF. The following non trivial property
holds. Its proof is reported in Appendix B.

Property 3 Provided that γE is such that Dspec ⊆ DPSF, any
spectral component ρ̃(u) is identifiable from the mean µz(r)
and the covariance function γy(r, r′) if u ∈ D1 ∪ D′′2 with
D′′2 = Dspec 	Dspec.

Remark 2 An alternative definition of D′′2 is obtained via

D′′2 = {u | (γ̃E ? γ̃E)(u) > 0} (11)

where ? is the (deterministic) cross-correlation3 operator.

Let us consider a two-dimensional (2D) incoherent (e.g.,
fluorescence) microscopy problem as an illustrative example
for Properties 1, 2 and 3. In this case, DPSF and Dspec are
centered disks of respective radii νPSF and νspec and D′′2
is a centered disk of radius 2νspec. As a consequence, if
νPSF/2 < νspec < νPSF, we get D1 ⊂ D′′2 and a SR factor of
2νspec/νPSF.

Figure 1 gives a graphical illustration of the situation. Let
us remark that the status of the frequency components outside
the colored areas remains an open question. Our conjecture is

3The cross-correlation between two square-integrable functions f1 and f2
is defined by

(f1 ? f2)(x) =

∫
f∗1 (x

′)f2(x
′ + x) dx′.
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that they are only partially identifiable from the second-order
data statistics.

In the same conditions, according to Remark 1, the SR
factor would be equal to 1+νspec/νPSF if each speckle pattern
was known. On Fig. 1, such a limit corresponds to the bound-
ary line of the set of non-identifiable components. In a similar
way, classical (harmonic) SIM would yield an SR factor equal
to 1+νharm/νPSF if many known harmonic illuminations were
used, at frequencies spread around a centered circle of radius
νharm.

0 νspecνPSF

νPSF

2νPSF

ν

Identifiable
components
(Prop. 3)

Non-identifiable
components
(Prop. 2)

Fig. 1. Illustration of Props. 2 and 3 when DPSF and Dspec are centered
disks of respective radii νPSF and νspec (and E0 6= 0). The cutoff frequency
νPSF is fixed, while the speckle maximal frequency νspec varies along the X-
axis. The range of identifiable and of non-identifiable frequency components
are represented along the Y-axis.

The important case Dspec = DPSF is encountered in
practice when illuminations and observations are performed
via the same components (same antenna array for emission
and detection, or same microscope objective for illumination
and collection). The latter two properties then allow us to reach
a tight conclusion in this context: second-order data statistics
are sufficient to identify all the frequency components of the
sample within D′′2 ≡ D′2 ≡ D2 = DPSF	DPSF, and bring no
information outside (such a situation corresponds to the black
dot in Fig. 1). In other words, they should permit to recover
the sample with a resolution equivalent to that of |h|2, akin to
classical SIM in fluorescence microscopy.

Let us also add a few comments about our main result for
three-dimensional (3D) problems:
• For coherent imaging systems, h̃ is typically a hollow

spherical cap, as depicted in Fig. 2(a), and thus a single
incoming excitation (plane wave) E cannot provide any
3D information about the permittivity contrast ρ [4].
In contrast, the same setup using coherent, but random
excitations such that Dspec = DPSF, is able to retrieve ρ̃
within a domain D′′2 that is a centered solid torus, hence
providing 3D information4 about the permittivity contrast.

• In incoherent imaging, h̃ is typically a solid torus, as
depicted in Fig. 2(b), which provides very poor sectioning

4The same identification domain can be obtained from a set of plane waves
with various incoming angles, i.e., with the additional difficulty and slowness
of controlling the angles of illuminations, see [4], [22] for details.

capability along the axial direction z; this is the so-
called “missing-cone” problem in wide-field incoherent
microscopy [26]. In this case, speckle intensity illumina-
tions such that Dspec = DPSF give access to a frequency
domain D′′2 that provides an extended lateral and axial
resolution without any missing-cone, see Fig. 2(c). This
domain is actually equivalent to that of a perfect confocal
microscope with an infinitively small pinhole [27], but it
is obtained with no transverse scanning and no loss of
photons.

(a)

(b)

(c)

Fig. 2. Coherent imaging system: (a) DPSF is a surface in the 3D Fourier
domain with an isotrope lateral cutoff frequency uxy and an axial frequency
extension ua; (b) Assuming random excitations such that Dspec = DPSF,
the frequency components of the permittivity contrast ρ should be further
identified over a domainD′′2 that is a torus with a lateral (resp. axial) frequency
extension of 2uxy (resp. 2ua). Incoherent imaging system: (b) DPSF is
a solid torus exhibiting a “missing cone” along uz ; (c) Assuming random
illuminations such that Dspec = DPSF, ρ should be further identified over
an extended frequency domain D′′2 providing a lateral (resp. axial) resolution
of 4uxy (resp. 4ua) without any “missing-cone” along uz .

As a final note, we stress that Property 3 deals with the
identifiability of the frequency components of the sample, and
it does not predict the reachable estimation precision in the
realistic situation of a limited set of noisy data and of a limited
field of view. Nevertheless, the numerical reconstruction exam-
ple proposed in Section V suggests that most of the frequency
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components within DPSF 	DPSF can be reliably retrieved in
practice.

B. Case of uncorrelated speckle

Let us now assume that γE(r) = γE(0)δ(r), where δ is
a Dirac distribution. This assumption can be considered valid
when the speckle correlation typical size is much smaller than
that of the point spread function. Then (7) becomes

γy(r, r′) = γE(0)

∫
ρ2(x)h(r − x)h∗(r′ − x) dx. (12)

In the Fourier domain, γ̃E(u) = γE(0), so (9) read

γ̃y(u,u′) = γE(0)h̃(u) h̃∗(−u′) ρ̃2(u+ u′). (13)

The latter relation is important since it yields that ρ2 is
accessible over all frequencies u + u′ such that both u and
−u′ belong to DPSF, i.e., over the set DPSF 	 DPSF. As a
conclusion, the following property holds.

Property 4 The frequency component ρ̃2(u) is identifiable
from the covariance function γy(r, r′) if and only if u ∈ D2 =
DPSF 	DPSF.

A remarkable fact is that Property 4 still holds if only the
variance v(r) = γy(r, r) is considered instead of the full
covariance function γy(r, r′), provided that the data grid
fulfills a more stringent condition than assumption (iv). The
starting point is the following relation obtained from (12):

v(r) = γE(0) (ρ2 ⊗ |h|2)(r), (14)

The continuous-space Fourier transform of v reads

ṽ(u) = γE(0) ρ̃2(u)× (h̃ ? h̃)(u).

Since the support of h̃ ? h̃ spans the domain D2, the discrete-
space Fourier transform of v identifies with ṽ provided that
D2 ⊂ B. This assumption is stronger than (ii). Typically,
it means that the data must be acquired at least at twice
the Nyquist rate. Alternatively, the acquisition rate could be
unchanged, but then the data should be interpolated on a twice
finer grid to yield the variance (14). Obviously, interpolation
will not bring any new information. It will simply allow
us to preserve the SR information contained in the sampled
variance function v, and more precisely to avoid aliasing on
v. On the other hand, interpolation will also apply to the
noise component, so that the corresponding statistics should
be modified accordingly.

Property 5 Provided that D2 ⊂ B, the frequency component
ρ̃2(u) is identifiable from the variance function γy(r, r) if and
only if u ∈ D2.

A statement somewhat similar to Property 5 was already made
in [15], assuming a circular aperture and a single incoherent
point source (for ρ). Whereas the authors of [15] assert that
uncorrelated speckle illumination has the ability to improve the
resolution of the imaging setup beyond the diffraction limit, it
should be stressed that if ρ̃2 = ρ̃⊗ ρ̃ can be retrieved on D2,
this does not mean that ρ̃ can be retrieved on the same domain,

nor in any other domain. In practice, additional constraints
(e.g., the positivity of the sample assumed in this paper) can
be further considered [23, Sec. 6.6.4], [19], but with no formal
guarantee about the super-resolution property obtained on ρ,
to our best knowledge.

V. NUMERICAL IMPLEMENTATION FOR 2D SPECKLE SIM
The goal of the present section is to give a practical

illustration of Property 3, which is the main theoretical result
of Section IV. For this purpose, we consider a 2D speckle
illumination fluorescence microscopy problem. In the standard
assumption of a perfect circular lens, h is the so-called Airy
pattern [23, Sec. 4.4.2], and the optical transfer function
(OTF) h̃ defines a support DPSF = {u, ‖u‖2 < 2NA/λ}
with NA the numerical aperture of the microscope and λ the
emission/excitation wavelength. We further assume that the
illumination of the sample and the collection of the emitted
light is performed through the same optical device. Ignoring
the Stokes-shift5, we consider hereafter that γE = E2

0 h.
According to Property 3, an SR effect approaching a factor two
is expected from the empirical second-order statistics of a set
of M collected images, for asymptotically large values of M .
The goal here is to show empirically that this SR effect does
happen in realistic conditions, and in particular for moderately
large values of M .

A. Discretized model for 2D speckle SIM

For the sake of computer implementation, (3) must be
replaced by its discretized counterpart

zm = HREm + εm, (15)

where H is a symmetric convolution matrix, and R =
Diag(ρ), so that REm corresponds to the product between
the vectorized sample ρ, and the vectorized mth illumination
pattern Em. The mean vector and the covariance matrix of the
acquisition zm now read

µz = E0Hρ, Γz = HRΓERH + Γε, (16)

where ΓE and Γε are the covariance matrix of the speckle
patterns and of the additive noise, respectively. For any finite
number of illuminations M , the empirical mean µ̂z and
covariance Γ̂z are defined as

µ̂z =
1

M

M∑
m=1

zm, Γ̂z =
1

M

M∑
m=1

zmz
†
m − µ̂zµ̂

†
z, (17)

where the symbol † stands for the transpose conjugate operator.
As M grows, µ̂z and Γ̂z respectively converge toward µz
and Γz , so that spatial frequency components of the sample
within D′′2 become identifiable, according to Prop. 3. With a
view to propose a computationally effective strategy to retrieve
the latter components, we first directly formulate the main
elements of Prop. 3 and of its proof in a finite dimensional
(i.e., discretized) framework.

5The Stokes-shift [28] implies that the support h̃ is slightly smaller than
the support of γ̃E . This difference between supports is small (about 10%) and
we expect that it will have a negligible impact on the SR effect that should
reach twice the cutoff frequency of the OTF.
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B. Matrix transposition of Property 3

In the discrete framework of model (15), the matrix for-
mulation of Property 3 mostly relies on the one-to-one map-
ping between the asymptotically available covariance Γy =

HRΓERH and the matrix S = Γ
1/2
E RΓ

1/2
E , provided that

KerH ⊆ Ker ΓE . The latter condition is the discrete-space
counterpart of the condition Dspec ⊆ DPSF that allows the
identification result stated in Prop. 3. (KerM denotes the set
of vectors v such that Mv is the null vector). Then, we can
show that S is the unique Hermitian positive semi-definite6

square-root of

F = Γ
1/2
E H+ΓyH

+Γ
1/2
E ,

where + denotes the generalized inverse [29, Chap. 5]. Indeed,
matrices F and S respectively correspond to kernels F and
f introduced in the proof of Property 3 (see Appendix B).
Whereas Γy quadratically depends on ρ, S exhibits a linear
dependency with respect to ρ, paving the way to an identifia-
bility analysis via a standard eigenvalue decomposition.

C. Numerical estimation strategy

The reconstruction principle from the second-order data
statistics amounts to finding ρ that makes the mean vector
µz and the covariance matrix Γz in (16) best match with the
empirical quantities µ̂z and Γ̂z defined by (17). Given the
previous subsection, a simple idea to recover the identifiable
components of ρ̃ would be to compute an approximation F̂
of matrix F from the empirical data statistics:

F̂ = Γ
1/2
E H+Γ̂yH

+Γ
1/2
E ,

where Γ̂y = Γ̂z − Γε, with a view to extract a positive semi-
definite square-root matrix Ŝ. However, neither Γ̂y nor F̂ are
guaranteed to be positive semi-definite, so the existence of Ŝ
is not granted.

A preferable procedure consists in introducing an appro-
priate dissimilarity measure between the empirical and the
theoretical second-order statistics of the data, and to minimize
the dissimilarity to obtain an estimated sample ρ̂. One possible
choice of dissimilarity measure is the Kullback-Leibler diver-
gence (KLD) D(ρ) = DKL(N (µ̂z, Γ̂z)‖N (µz,Γz)), where
N (µ,Γ) is the normal distribution of mean µ and covariance
Γ. According to [30, § 9.1], an explicit expression of D(ρ) is:

D(ρ) =
1

2
Tr
(
Γ−1
z Γ̂z

)
+

1

2
(µz − µ̂z)tΓ−1

z (µz − µ̂z)

+
1

2
log
|Γz|
|Γ̂z|

− N

2
(18)

where |·| and Tr(·) are the determinant and the trace of a
square matrix, respectively. Let us mention that D is propor-
tional to the log-likelihood of the data under the assumption
that the latter follow the normal distribution N (µz,Γz) [31].
However, the minimizer of D is an unregularized solution,
which is unstable with respect to the random fluctuations in
the dataset. Therefore, a penalization term must be added to

6A Hermitian matrix is positive semi-definite if and only if all of its
eigenvalues are nonnegative.

D. In the sequel, we choose a quadratic penalization term to
stabilize the solution, so that the SR effect remains purely
driven by the data term. The criterion to minimize is then

J(ρ) = D(ρ) +
β

2
‖ρ‖22 , (19)

with β ≥ 0 and ‖·‖2 is the usual Euclidian norm. From a
computational perspective, a closed-form minimizer cannot be
found, so the minimization problem must be solved iteratively.
Indeed, it is a so-called structured covariance type problem,
for which the Expectation-Maximization (EM) algorithm can
be implemeted [31]–[33]. However, our tests indicate that the
EM algorithm converges very slowly in the speckle SIM con-
text. For this reason, we rather rely on a nonlinear conjugate
gradient method, which turns out to produce more efficient
iterations. It relies on the expression of the gradient of the
penalized KLD (19) with respect to ρ (see Appendix C for a
derivation):

∇J(ρ) =

−
([

Ωt
(
∆Γ + δµδ

t
µ

)
Ω
]
◦ ΓE

)
ρ− E0Ω

tδµ + βρ, (20)

displayed as a column vector, with Ω = Γ−1
z H , δµ =

µ̂z − µz , ∆Γ = Γ̂z − Γz , and ◦ stands for the Hadamard
(component-wise) product. Let us stress that each computation
of the gradient needs the construction and the inversion of an
N×N matrix (for an N -pixel size problem), which represents
a prohibitive computing cost for realistic imaging problems.
The design of less costly iterations for large-size problems is
out of the scope of the present paper, but we are currently
working on this crucial issue.

D. Numerical illustration for 2D speckle SIM

Numerical simulations are now considered to support that a
significant SR effect can be obtained in speckle fluorescence
SIM, even with a moderately large number of illumination
patterns Em. The ground truth ρ? consists in the 2D ’star-
like’ fluorescence pattern depicted in Fig. 3(a). The convo-
lution matrix H modeling the microscope is built from the
discretized OTF associated with a circular aperture [23, Eq.
(6-32)]; the numerical aperture NA is set to 1.49 and the
emission/excitation wavelength λ is arbitrary set to 1. For
this configuration, the resolution limit of standard wide-field
imaging is clearly visible in Fig. 3(c). According to (15), a
set of M ∈ {100, 1000} speckle patterns are simulated to
produce M low-resolution microscope images {zm}Mm=1. The
covariance matrix ΓE is set to E2

0 H (we assume γE = E2
0 h)

and each acquisition zm is corrupted with an independent and
identically distributed Gaussian noise such that the signal-
to-noise ratio in each frame is set to 40 dB. From the
dataset {zm}Mm=1, the statistics µ̂z and Γ̂z (17) are built.
The case of an infinite illumination number (M = ∞) is
also adressed by considering the expected (i.e., asymptotical)
statistics µ̂z = µ?z and Γ̂z = Γ?z , where µ?z and Γ?z are
obtained from (16) by setting ρ = ρ?. In all cases, we proceed
to the iterative minimization of the penalized KLD (19) to
estimate the sample, using the deconvolved wide-field image
of Fig. 3(c) as an initial point. For the (noise-free) asymptotic
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statistics, the regularization parameter is set to β = 0 and,
as expected, the reconstruction exhibits the doubled resolution
predicted by Prop. 3, see Fig. 3(f) compared to Fig. 3(b,c).
With 100 and 1000 illuminations, the SR factor is lower, but
the reconstructions shown on Figs. 3(d,e) are still much more
resolved than the wide-field image of Fig. 3(c). Moreover, the
SR factor progressively grows with the illumination number
M , the result at M = 1000 being close to the asymptotic
regime.

VI. CONCLUSION AND PERSPECTIVES

We have mathematically demonstrated that the mean and the
covariance function of low resolution images obtained with
unknown, random illuminations permit to recover a super-
resolved image of the sample, provided the first two statistical
moments of the illuminations are fully characterized. Since
this condition is expected to be less stringent to meet than the
knowledge of each illumination, we believe that this result can
be interesting in many practical situations.

In fluorescence microscopy, if the speckle is generated
through the same objective as the one used to collect the light,
its covariance function is almost identical to the microscope
PSF and Proposition 3 is also expected to apply. We believe
that this is a particularly important result. Indeed, it shows
that speckle microscopy has the potential to generate a super-
resolved image corresponding to the PSF hext = |h|2. In other
words, the SR would be equivalent to that of a perfect confocal
microscope with infinitively small pinhole [27], but it would
be obtained with no transverse scanning and with no loss of
photons.

For coherent imaging system, the consequence could be
even more spectacular. In holographic systems, the Fourier
support of the PSF h is generally a cap of sphere. As a
result, the three-dimensional information on the sample is lost
if only one illumination is used. This is clearly observed in
tomographic diffraction microscopy where the reconstruction
of a target from its unique 2D hologram obtained under a
monochromatic plane wave illumination is significantly dete-
riorated along one axis [34]. On the other hand, by processing
2D images obtained under different speckle illuminations, one
should be able to reconstruct the target in three dimensions
with a PSF comparable to that obtained in tomographic
diffraction imaging [4], but without the difficulty and slowness
of controlling the angles of illuminations.

In photoacoustic imaging using speckle illuminations, the
autocorrelation length of the random optical intensity can drop
to a few hundreds of nanometers while the acoustic PSF h has
a typical width of tens of microns. Hence, from the acoustic
point of view, the illumination can be seen as an uncorrelated
random process [18], which is the case studied in Subsection
IV-B. Using optical speckle in a photoacoustic experiment
would allow to retrieve the square of the optical absorption
density with a resolution corresponding to the PSF |h|2.

Finally, it is important to stress the limits of the present
analysis. First, the case of complex-valued samples (i.e., with
both dielectric and absorptive components) remains to be
investigated, since it could have important implications in

electromagnetic tomography. The present study can be easily
adapted to the case of pure absorptive (imaginary) samples, but
an extension to the more general case is not so direct. Second,
our theoretical results are of asymptotic nature, in that they
only predict the SR capacity of the imagers with an arbitrarily
large number of illuminations. In particular, Proposition 3 does
not provide the sensitivity of the retrievable sample frequency
components. The simulation results shown in Section V-D
nonetheless suggest that these frequency components can be
retrieved with only a few hundreds of illuminations. Third,
our results do not take into account the potential impact of
advanced regularization in the inversion schemes (for instance,
exploiting a sparsity prior [14] could yield an additional
increase of resolution). Fourth, there exist many imaging
configurations where the second-order statistics do not entirely
characterize the probability distribution of the data (e.g., when
the speckle illuminations are positive intensities). In such
cases, our identifiability results only provide a lower bound
on the super-resolution factor that could be reached from
the complete data statistics, since accounting more precisely
for the speckle statistics could still ameliorate the resolution.
According to Remark 1, no amelioration can be expected when
the support of the speckle covariance identifies with that of
the PSF, but the question remains open in other cases. For
instance, for uncorrelated speckles, one can write the following
extension of Eq. (14),

Cumn
y (r, . . . , r) = Cumn

E(0, . . . , 0) (ρn ⊗ |h|n)(r), (21)

where Cumn denotes the nth circular cumulant of a given
random process [35]. Equation (21) indicates that data higher-
order statistics yield additional information on higher spatial
frequencies of the sample. Such a property is reminiscent
of the principle of SOFI [36]. The computational issue also
remains broadly open, both in terms of memory requirements
(to store the empirical data covariance matrix) and of comput-
ing time. The iterative scheme proposed in Subsection V-D
is clearly limited to small-sized images. A challenge will be
to accelerate the reconstruction process while preserving the
SR capacity of speckle-based imaging, as characterized in this
paper.

As a final remark, let us stress that controlled and random
illuminations lead in our opinion to distinct “resolution vs. cost
vs. versatility” trade-offs for the setup. In particular, when an
accurate control of the illumination can be obtained within
the sample volume, random illuminations may not be the best
option to maximize the resolution for a given photon budget.
On the contrary, random illuminations should achieve a better
trade-off when the illumination cannot be controlled, or if one
aims at designing versatile and cheap setups. The cautious
evaluation of these trade-offs is a clear perspective of this
work.
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Fig. 3. (a) Lower quarter of the (80×80 pixels) ground-truth fluorescence pattern considered in [13]. (b) Filtered ground-truth retaining only the spatial
frequency lower than twice the OTF limit. (c) The deconvolution of the wide-field (constant illumination) microscope acquisition. (d,e) Estimator of ρ
obtained from the minimization of the penalized KLD (19) with M = 100 (d) and M = 1000 (e) speckle patterns; the regularization parameter is set to
β = β0/M with β0 = 100. (f) Estimator of ρ obtained from the minimization the KLD (18) with the asymptotic statistics µ̂ = µ? and Γ̂ = Γ?. The
distance units along the horizontal and vertical axes are given in wavelength λ. The image sampling step for all simulations is set to λ/20. The dashed (resp.
solid) lines corresponds to the spatial frequencies transmitted by the OTF support (resp. twice the OTF limit).

APPENDIX A
CASE OF POISSON DATA

For an incoherent imaging setup (e.g., optical fluorescence
microscopy), the intensity measurement relies on counting
discrete particles and the model (2) can be replaced by

zm(r) = pm(r) + εm(r), r ∈ Zd (22)

where pm(r) is a Poisson random variable with mean

E{pm(r) |Em} =

∫
ym(ζ) Π(ζ − r) dζ, r ∈ Zd,

where Π is the indicator function of a centered detector pixel.
Assuming further that the pixel size is “small” with respect to
the spatial variation in ym, the expected counting rate for all
r ∈ Zd is approximated by

E{pm(r) |Em} = a ym(r)

where a is the area of a single detector pixel. We also assume
that the Poisson outcomes are jointly statistically independent.
The expression for µz(r) = E{zm(r)} = E{pm(r)} then
reads, according to the law of iterated expectations:

E{pm(r)} = E{E{pm(r) |Em}} = a E{ym(r)}

where E{ym(r)} = E0(h ⊗ ρ)(r). Concerning the data
covariance function, we have for r, r′ ∈ Zd:

γz(r, r
′) = γp(r, r

′) + γε(r − r′)

with:

γp(r, r
′) = E{pm(r)pm(r′)}−E{pm(r)} E{pm(r′)} . (23)

According to the law of iterated expectations,

E{pm(r)pm(r′)} = E{E{pm(r)pm(r′) |Em}} .

For r′ 6= r, since pm(r) and pm(r′) are decorrelated Poisson
variables given Em, we get

E{pm(r)pm(r′)} = a2 E{ym(r)ym(r′)}

while for r′ = r,

E
{
pm(r)2

}
= a2E

{
ym(r)2

}
+ aE{ym(r)} ,

since a Poisson variable is of equal mean and variance.
Therefore, (6) must be replaced by

γz(r, r
′) = a2 γy(r, r′)+µz(r)δK(r−r′)+γε(r−r′) (24)
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where γy is given in (7) and δK(r) = 1 if r = 0 and zero
otherwise. The data covariance hence only differs from (7)
when r = r′. In this case, we note that the additional term
µz(r) is proportional to E0, whereas the variance γy(r, r)
varies as γE(r), which is usually proportional to E2

0 for
intensity speckle patterns [12]. Therefore, accounting for the
Poisson statistics of the data in may be useful in the low
counting-rate regime only.

APPENDIX B
PROOF OF PROPERTY 3

Let q denote the impulse response of the filter defined in
the Fourier domain by

q̃(u) = γ̃
1/2
E (u) if u ∈ Dspec, 0 otherwise.

Akin to γE , q is positive semi-definite, and hence it is a
Hermitian symmetric function. We have then γ̃E = q̃2, and
hence

γE = q ⊗ q. (25)

Let us also define the following kernels:

f(r, r′) =

∫
q(r − x)q∗(r′ − x)ρ(x) dx, (26)

F (r, r′) =

∫
f(r, r′′)f∗(r′, r′′) dr′′. (27)

and the induced integral operators Kf and KF :

Kfφ(r) =

∫
f(r, r′)φ(r′) dr′,

KFφ(r) =

∫
F (r, r′)φ(r′) dr′.

According to the Cauchy-Schwarz inequality,

|f(r, r′)|2 ≤
∫
|q(r − x)|2 ρ(x) dx

∫
|q(r′ − x)|2 ρ(x) dx.

As a consequence,∫∫
|f(r, r′)|2 dr dr′ ≤

(∫
|q(r)|2 dr

∫
ρ(x) dx

)2

,

where ρ is integrable, according to assumption (ii), and∫
|q(r)|2 dr =

∫
γ̃E(u) du = γE(0) <∞.

Therefore, we have∫∫
|f(r, r′)|2 dr dr′ <∞,

i.e., f ∈ L2(Rd × Rd;C), and consequently, Kf is a Hilbert-
Schmidt integral operator [37, Proposition 3.4.16]. On the
other hand, the integral operator KF is the square of Kf ,
in the sense that KFφ = KfKfφ for any φ. Thus, KF is also
a Hilbert-Schmidt operator.

Now let us go to the heart of the proof, which is threefold.
The first step allows us to show that kernel F is uniquely
defined from γy . In a second step, we establish that f is
uniquely defined from F given (27). At this point, we conclude
that the knowledge of γy implies that of f , which is a
linear functional of ρ (whereas the dependency of γy in ρ

is quadratic). The last step consists in a Fourier analysis of
f , in order to determine which spectral components of ρ are
identifiable from the knowledge of f .

Step 1) Given (26) and (25), we have the following alternate
expression for (27):

F (r, r′) =∫∫
ρ(x)ρ(x′) q(r − x)q∗(r′ − x′) γE(x− x′) dx dx′.

(28)

Comparing the latter expression to (7), it is clear that F = γy
in the case q = h, i.e., when the speckle covariance is h⊗ h.
More generally, using a double Fourier transform on (28), in
the same way as we obtained (9) from (7), we get

F̃ (u,u′) = q̃(u)q̃(−u′)g̃(u,u′)

=
q̃(u)q̃(−u′)
h̃(u)h̃∗(−u′)

γ̃y(u,u′) if u,u′ ∈ Dspec, (29)

= 0 otherwise. (30)

Let us remark that h̃(u) 6= 0 if u ∈ Dspec because we have
assumed Dspec ⊆ DPSF.

Step 2) Kernel f is obviously symmetric. Moreover, it is
positive semi-definite, since for any square integrable function
φ,∫∫

f(r, r′)φ(r)φ∗(r′) dr dr′ =

∫
|q ⊗ φ|2(x)ρ(x) dx ≥ 0.

It is easy to check that kernel F is also positive semi-
definite. Moreover KF is bounded, since it is a Hilbert-
Schmidt operator. Being bounded and positive semi-definite,
KF admits a unique square root [37, Prop. 3.2.11]. In other
words, Kf is uniquely defined given KF , and equivalently,
given the kernel F , there exists a unique kernel f that fulfills
(27).

Finally, the knowledge of γy uniquely determines F through
(29)-(30), which in turn determines f .

Step 3) In the Fourier domain, Eq. (26) reads

f̃(u,u′) = q̃(u) q̃(−u′) ρ̃(u+ u′). (31)

The latter identity shows that ρ̃(u′ + u′′) is identifiable for
all (u′,u′′) such that u′ and −u′′ belong to DPSF. We thus
conclude that the frequency components ρ̃(u) are identifiable
from kernel f , and thus from the data covariance γy , for all
u ∈ Dspec 	Dspec.

APPENDIX C
GRADIENT OF THE KULLBACK-LEIBLER DIVERGENCE

We first note that (18) also reads

D(ρ) =
1

2
log |Γz|+

1

2M
Tr
(
Γ−1
z V V

t
)

+ C (32)

where C is an irrelevant constant term, and

V = (v1| · · · |vM ) with vm = zm − µz. (33)
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The following identities [38, Sec. 2] will be useful for the
derivation of the gradient of (32):

∇θ log |A| = Tr
(
A−1(∇θA)

)
∇θ(A−1) = −A−1(∇θA)A−1 (34)
∇θ(AB) = (∇θA)B +A(∇θB)

∇θTr(A) = Tr (∇θA)

∇θ(At) = (∇θA)t

where A and B are two matrices that depend on a real scalar
parameter θ. From these relations, we get

∂nD(ρ) =
1

2
Tr
(
Γ−1
z (∂nΓz)

)
+

1

2M
Tr
(
(∂nΓ−1

z )V V t + Γ−1
z ∂n(V V t)

)
(35)

where ∂n = ∇ρn . The gradient of (32) is then defined by

∇D(ρ) = vect {∂nD(ρ)} (36)

where vect {vn} = (v1| · · · |vN )
t. According to (35) and (34),

the expressions of ∂nΓz and ∂n(V V t) are required. Let en
be the nth canonical vector, hn the nth column of H and
1 = (1 · · · 1)t. We get from (16)

∂nΓz = HRΓEenh
t
n + (HRΓEenh

t
n)t (37)

and from (33):

∂n(V V t) = −E0

(
V 1ht

n + (V 1ht
n)t
)
. (38)

The derivative of the three terms in (35) can now be obtained.
On the one hand, elementary manipulations involving the trace
operator allow to deduce

Tr
(
Γ−1
z (∂nΓz)

)
= 2 et

nWhn (39)

from (37), with W = ΓERH
tΓ−1
z . On the other hand, we

have from (34) and (37):

Tr
(
(∂nΓ−1

z )V V t
)

= − 2 et
n(WV V tΓ−1

z )hn (40)

and from (38):

Tr
(
Γ−1
z ∂n(V V t)

)
= −2E0 h

t
nΓ−1

z V 1. (41)

According to (35) and (36), we need to vectorize the relations
(39), (40) and (41) to obtain the full gradient of (32). In
particular, according to the identity

((ADiag(ρ)Bt) ◦ I)1 = (A ◦B)ρ, (42)

we deduce from (39) that

vect
{

Tr
(
Γ−1
z (∂nΓz)

)}
= 2 ((WH) ◦ I) 1

= 2
(
(HtΓ−1

z H) ◦ ΓE
)
ρ. (43)

Similarly, we obtain after a few manipulations

1

M
vect

{
Tr
(
(∂nΓ−1

z )V V t
)}

= − 2

M

(
(ΩtV V tΩ) ◦ ΓE

)
ρ

(44)
and

1

M
vect

{
Tr
(
Γ−1
z ∂n(V V t)

)}
= − 2

M
E0Ω

tV 1 (45)

where Ω = Γ−1
z H . As a result, the gradient of (35) reads

∇D(ρ) =

−
((

Ωt
(

1

M
V V t − Γz

)
Ω
)
◦ ΓE

)
ρ− 1

M
E0Ω

tV 1.

(46)

Finally, the following relations hold:

V = (z1 − µ̂| · · · |zM − µ̂) + δµ1t,

1

M
V V t = Γ̂ + δµδ

t
µ,

which allow us to obtain the gradient expression (20), given
that ∇J(ρ) = ∇D(ρ) + βρ.
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