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Stochastic maximum allowable transmission intervals for the stability of
linear wireless networked control systems

Vineeth S. Varma, Romain Postoyan, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract— We investigate the scenario where a plant, modeled
as a linear deterministic discrete-time system, is controlled
through a wireless communication network. The controller
is designed by emulation, meaning that we construct it to
stabilize the origin of the plant while ignoring communication
constraints and then implement the control law over the
network. The transmissions over the wireless channel are
time-varying and uncertain, in particular, the probability of
successful communication (i.e., no packet is dropped) between
the plant and the controller depends on the resources utilized,
such as the allocated bandwidth or the transmission signal
power. As a result, we provide conditions on the varying inter-
transmission times to ensure the mean square stability of the
closed-loop system. The novelty is that stability properties are
characterized by not only the length of the inter-transmission
interval (often called the MATI in the deterministic literature),
but also by the probability of successful communication before
and after this interval, referred to as the stochastic allowable
transmission interval (SATI). These conditions could then be
utilized by radio engineers/researchers to design energy-efficient
communication strategies while ensuring the mean square
stability of the control system.

I. INTRODUCTION

Wireless networks offer appealing features for the imple-
mentation of control loops, as these allow remote control
and exhibits many advantages over traditional wired point-
to-point set-ups in terms of flexibility, ease of maintenance,
reduced weight and volume. On the other hand, the commu-
nication constraints induced by the network, such as packet
drop-outs, scheduling, etc., need to be appropriately handled
in the design of the control law to guarantee the desired
requirement for the closed-loop system, called in this context,
a networked control system (NCS); see [7], [8], [21] and the
references therein. A key parameter of NCS is the maximum
allowable transmission interval (MATI), which is a bound on
the maximum time between two successive transmissions.
Numerous works address the construction of computable
bounds on the MATI under which the control requirements
are ensured, see [1], [4], [9], [11]–[13] for stability results,
[14] for observers design and [15] for tracking control.
The MATI is a deterministic constraint, as two successive
transmission times are not allowed to be spaced by more than
this quantity. This requirement may be difficult to achieve
when working with wireless NCS (WNCS), for which trans-
missions are often modeled as a stochastic process. While
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relaxations of the MATI to cope with packet drops or delays
are available in e.g., [2], [4], [6], [11], these results still have
a strong deterministic flavor, which may not be suitable for
WNCS. A stochastic alternative to the notion of MATI is
therefore needed when dealing with WNCS: this is the main
purpose of this study.

A first observation is that we can no longer character-
ize stability exclusively based on the length of the inter-
transmission interval, N , in the stochastic setting. Indeed, we
also need to take into account the (cumulative) probability
that a transmission occurs within these N steps, which
we denote η. The value η depends on the probability of
successful transmission at each time step in the interval of
N . We also need to consider what happens if the time since
the last successful transmission becomes bigger than N . In
this case, we want to maximize the chance for a packet
to be successfully transmitted. We therefore assume that
every transmission after N steps, occurs with probability
δ. The parameter δ represents the physical limitations of
the communication system in terms of packet success [18],
and it is impossible to achieve a higher communication
success probability than δ at any time instant regardless
of the resources utilized, see also [17], [22] for practical
details. In other words, when the inter-transmission interval
is larger than N , transmission is repeatedly attempted with all
the available resources, i.e., with a success probability of δ,
until the transmission is successful. As a result, stability now
depends on N , η and δ and we term this ensuing notion, the
(η, δ)-stochastic maximum allowable transmission interval,
(δ, η)-SATI in short. The (η, δ)-SATI is not only useful
to investigate stability of WNCS, it is also relevant to
optimize the transmission energy. Indeed, we have shown
in [19] how to optimize the energy used to communicate in
WNCS with stochastic channel fading, while guaranteeing
a MATI condition. Because of the latter, we had to make
strong assumptions on the channel state, in particular we
assumed that a successful transmission is possible at any
given time. These assumptions can be relaxed when imposing
a (η, δ)-SATI constraint on the network instead; this will be
investigated in future work.

Before we explain in more detail the content of this study,
we need to point out that related results are available in the
literature. In particular in [3], [10], [20], stochastic time-
varying transmission times are considered and stability is
established under conditions on the i.i.d probability dis-
tributions of the inter-transmission intervals. In Section V
of [10], two cases are studied, when the inter-transmission
intervals follow a given i.i.d distribution, or when the inter-



transmission intervals are a Markov process, with each
mode of the associated Markov jump system denoting a
certain inter-transmission interval. Our results are signifi-
cantly different from these works as we characterize stability
depending on the inter-transmission interval length, N , the
cumulative probability η that a transmission occurs before
N steps have elapsed, and δ, instead of the probability
distribution of the inter-transmissions intervals. This major
difference prevents us from applying the results in [3], [10]
and requires developing a new framework.

In this paper, we consider plants modeled by a linear time-
invariant discrete-time system. The controller is designed
by emulation, meaning that we synthesize it while ignoring
the network. We allow for dynamic output-feedback laws,
hence covering static feedback stabilizers as a particular case.
We then take into account the stochastic communication
constraint induced by the network. We concentrate on the
impact of time-varying successful transmission times and we
ignore possible transmission delays and quantization effects.
Various holding strategies are allowed when implementing
the controller, such as zero-order hold, zeroing [16], or
model-based techniques [10]. The overall system is modeled
as a Markov jump linear systems like in Section V of [10],
but with each mode of the Markov jump system representing
the time since the last transmission instant, and not the
inter-transmission interval as done in [10]. Note that inter-
transmission intervals measure the time interval between
two successful transmissions. Our objective is to ensure the
mean square stability (MSS) of this Markov jump linear
system depending on the values of η, δ and N (and not the
probabilities of having certain inter-transmission intervals).
Sufficient conditions in terms of matrix inequalities are
provided, and then extended to the case where η and δ are
time-varying. The results are then illustrated on a numerical
example.

The paper is organized as follows. The problem is stated
in Section II. In Section III, we formally define the SATI
and we model the WNCS as a Markov jump linear system in
Section IV. In Section V, we provide conditions in the form
of linear matrix inequalities (LMIs) under which the WNCS
is MSS. Finally, in Section VI, some numerical results
are presented, which highlight the relevance of our approach.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 :=
{0, 1, 2, . . .}. We use E for the expectation taken over
the relevant stochastic variables and 1(·) for the indicator
function, taking the value 1 when the condition is satisfied
and 0 otherwise.

II. PROBLEM STATEMENT

We consider the discrete-time linear system

xp(t+ 1) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t),

(1)

where t ∈ Z≥0 is the time, xp(t) ∈ Rnx is the plant state,
u(t) ∈ Rnu is the control input, y(t) ∈ Rny is the output

and nx, nu, ny ∈ Z≥0. The pairs (Ap, Bp) and (Ap, Cp) are
assumed to be stabilizable and detectable, respectively.

We proceed by emulation and we first construct a stabi-
lizing controller for system (1) given by

xc(t+ 1) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t) +Dcy(t),

(2)

where xc(t) ∈ Rnx is the controller state. A stabilizing
controller of the form of (2) for system (1) always exists
since (Ap, Bp) is stabilizable and (Ap, Cp) is detectable.

We are intested in the scenario where plant (1) and
controller (2) communicate over a wireless channel. In
particular, we investigate the case where the wireless network
is between the sensors and the controller as seen in Figure
1a, or is between the controller and the actuator as seen
in Figure 1b. As a result, the feedback loop is no longer
closed at every time instant t ∈ Z≥0, but only at the instants
ti, i ∈ I ⊆ Z≥0 when communication is successful.

System Controller

Wireless Network
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(a) Network between the sensors and the controller.

System Controller

Wireless Network
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û u

(b) Network between the controller and the actuators.

Fig. 1: Schematic of the networked control system.

When the WNCS is of the first case as in Figure 1a, (1)
remains unchanged, but (2) becomes

xc(t+ 1) = Acxc(t) +Bcŷ(t)
u(t) = Ccxc(t) +Dcŷ(t),

(3)

where ŷ(t) denotes the networked version of the measure-
ment available at the controller. When the network is between
the controller and the actuators as in Figure 1b, (2) remains
unchanged, but (1) becomes

xp(t+ 1) = Apx(t) +Bpû(t)
y(t) = Cpxp(t),

(4)

where û(t) denotes the networked version of the control
available at the actuator. In the following, we focus on
the case where the network is between the sensors and the
controller as in Figure 1a. The other case can be similarly
handled and results in the same general model as shown in
Section IV. Between two successive successful transmission



instants, ŷ(t) is held using the following holding function

ŷ(t) = Cg ŷ(t− 1)) +Dgxc(t)) (5)

when t ∈ Z≥0 and t /∈ {ti}i∈I . For instance, the use of
zero-order-hold devices leads to (Cg, Dg) = (I, 0), and the
use of zeroing strategies gives (Cg, Dg) = (0, 0). When the
xc-system in (2) is an observer, we can use a model-based
holding strategy like in [10], which leads to (Cg, Dg) =
(CpBpDc, Cp(Ap +BpCc)). At ti, i ∈ I, we have

ŷ(ti) = y(ti).

We now need to describe the sequence of successful trans-
mission instants ti, i ∈ I. When the transmissions between
the plant and the controller must satisfy a deterministic
constraint, a key parameter is the MATI as we mentioned
in the introduction. As we consider discrete dynamics, the
MATI is the maximum interval N ∈ Z≥0 such that the
stability of the original closed loop system is preserved,
provided

ti+1 − ti ≤ N (6)

for all i ∈ I, see [13]. In this paper, we consider wireless
networks, for which transmissions are typically modeled as
a stochastic process. As a result, to demand that successful
transmission occurs within the MATI may not be appropriate.
We therefore need a new notion to ensure stability (in a
stochastic sense), which not only depends on the length of
the inter-transmission intervals as in (6), but also on the
probability that a successful transmission occurs before a
given time and that after this time has passed. We call
this new notion (η, δ)-SATI, where η is the cumulative
probability that communication was successful within the
(η, δ)-SATI, and δ is the maximum transmission success rate
possible for the communication network at any given time
after the interval has passed.

Our objective is to provide conditions on η, δ and the
induced SATI such that the closed-loop networked control
system is MSS. Before we study the stability properties, we
will establish the technical framework for defining the (η, δ)-
SATI in the next section.

III. STOCHASTIC ALLOWABLE TRANSMISSION INTERVAL

The stability of the WNCS (4) depends on the sequence
of successful communication instants ti, i ∈ I. To model the
latter, we introduce the clock τ(t) ∈ Z≥0 which counts the
number of time instants since the last successful transmission

τ(t+ 1) =


1

when communication is successful at t
τ(t) + 1

when no or failed communication at t.
(7)

Let N be a given transmission interval length. We consider
that the probability that communication is successful is given
by f(τ(t)) ∈ [0, δ] for all τ(t) ≤ N . That is, communication
success is a Bernoulli process, with the time since the last
transmission triggering different communication modes. We
allow f to depend on τ(t), and on t in the time-varying

extension described in the remark below, as this probability
depends on several factors like the time-varying wireless
channel quality, transmission power etc. The sensor can
know if a transmission was successful via a simple ac-
knowledgement scheme, which is commonly used in wireless
communication systems. The probability η to transmit within
this interval N is therefore defined as

η := 1−
N∏
i=1

(1− f(i)). (8)

To be precise, we impose a constraint on the probability
of the inter-transmission interval being larger than N , and
η denotes the probability that the inter-transmission interval
was within the interval N . The motivation for characterizing
communication policies in this manner is to decouple the
control requirements and the communication aspects. As
long as the inter-transmission interval τ(t) is within the
communication interval N , i.e. τ(t) ≤ N , communication
can be attempted with a lower resource consumption, like
radio-transmit power or bandwidth, while ensuring that (8)
is satisfied to have stability.

Recall that δ is the maximum success probability as
explained in the above section, and so f(τ(t)) ≤ δ for all
t ∈ Z≥0. We study a specific class of policies defined by the
interval N ∈ Z≥0, after which communication is repeatedly
attempted with all the available resources. That is, f(τ(t)) =
δ for all τ(t) > N . If the inter-transmission interval is too
large, i.e. more than N , all the available resources must be
utilized, resulting in the maximum communication success
rate of δ.

A special case of interest is when η = 0, i.e., no
communication is attempted until τ(t) > N . This quantity is
highly relevant in practice as many communication systems,
like remote sensors, have low computational capabilities and
can only operate in two modes ON or OFF. Additionally,
communication constraints do not allow updates in every
time slot due to scheduling conflicts etc. As δ can be de-
termined from the network settings, it becomes very easy to
design a scheme that after a successful communication, waits
for the duration (0, δ)-SATI and then repeatedly attempts to
send its message until it is received and so on. Therefore,
we will refer to the (0, δ)-SATI as simply the δ-SATI.

Remark 1: We can easily extend our results when the
communication probabilities are time-varying. That is, if the
communication success at each time is given by f(τ(t), t) ∈
[0, δ(t)], such that δ(t) ∈ [δmin, δmax] with 0 ≤ δmin ≤
δmax ≤ 1. This model is suitable when the wireless commu-
nication system has time-varying parameters. For instance,
the quality of the wireless communications, commonly
known as the channel fading, is a time-varying parameter,
which determines the packet success rate. In such cases,
instead of η, we will have η(t) for each t which we can
constraint to lie in a certain bound, i.e. 0 ≤ ηmin ≤ η(t) ≤
ηmax ≤ 1 for all t ∈ Z≥0.



IV. THE WNCS AS A MARKOV JUMP LINEAR SYSTEM

In this section, we model the WNCS as a Markov jump
linear system in order to then proceed with the stability
analysis in Section V. As mentioned in Section III, we focus
on the scenario where the network is between the sensors
and the controllers as in Figure 1a; similar derivations apply
when the network is between the controller and the actuators.

We define the concatenation of all the state variables as

χ(t) :=

 xp(t)
xc(t)
ŷ(t− 1)

 (9)

with ŷ(−1) being chosen arbitrarily from Rny . We thus write
the overall model as

χ(t+ 1) =


A1χ(t)

when communication is successful
A2χ(t)

when no or failed communication,
(10)

with

A1 :=

 Ap +BpDcCp BpCc 0
BcCp Ac 0
Cp 0 0

 , (11)

and

A2 :=

 Ap BpCc BpDc

0 Ac Bc

0 Cg Dg

 . (12)

System (10) is a linear jump system with two modes,
depending on whether a successful transmission occurs at
time t ∈ Z≥0. To write the system as a Markov jump linear
system, we introduce N + 1 virtual modes as the transition
probabilities are f(τ(t)) for τ(t) ≤ N and is a constant δ
otherwise.

When communication is successful, i.e. τ(t+1) = 1, χ(t+
1) = A1χ(t) and χ(t + 1) = A2χ(t) otherwise. Therefore,
we model the dynamical system as a linear jump system with
2 distinct dynamics, but N + 1 virtual modes (the dynamics
are identical for N of these modes) as shown in Figure 2.
The mode index r(t) ∈ {1, 2, . . . , N + 1} defined as r(t) =
τ(t) when τ(t) ≤ N and r(t) = N+1 when τ(t) > N . The
associated jump probability matrix is Π given by

Π :=


f(1) f(2) . . . f(N) δ

1− f(1) 0 . . . 0 0
0 1− f(2) . . . 0 0
...
0 0 . . . 1− f(N) 1− δ

 ,

(13)
which can be deduced by studying Figure 2. There is a
probability to jump to mode 1, i.e., to communicate, given
by f(τ(t)) or equivalently f(r(t)) from any mode r(t). The
only other mode that can be reached from r(t) is one with
τ(t + 1) = τ(t) + 1, resulting in 0 probability of jumps to
all the other states. Finally, it is also possible to jump from
r(t) = N+1 to r(t+1) = N+1 as r(t) = N+1 represents
any τ(t) > N . As a result, the dynamics (10) are rewritten

1,A1

2,A2 3,A2

N,A2

N + 1,A2
f(1)

1− δ

1
−
f

(1
)

f(2)

1− f(2)

1−
f(N

)δ

f(3)

f(N)

1− f(3)

1− f(N − 1)

Fig. 2: The Markov chain with the modes representing the
states

as

χ(t+ 1) = A1+1(r(t)>1)χ(t),
Pr(r(t+ 1) = j|r(t) = i) = Πij , 1 ≤ i, j ≤ N + 1,

(14)
with r(t) denoting the discrete-time process determining the
mode of the Markov jump system.

With system (14) at hand, we are ready to proceed with
the stability analysis in the next section.

Remark 2: When the wireless network is between the
controller and the actuators as in 1b, we have

χ(t) :=

 xp(t)
xc(t)

û(t− 1)

 , (15)

with

A1 =

 Ap +BpDcCp BpCc 0
BcCp Ac 0
DcCp Cc 0

 , (16)

and

A2 =

 Ap 0 Bp

BcCp Ac 0
0 Cg Dg

 . (17)

V. MAIN RESULTS

Our goal is to determine conditions such that the system
(14) is MSS defined as follows.

Definition 1: Given N ∈ Z≥0, η, δ ∈ [0, 1], the system
(14) is MSS if and only if for some β ≥ 1, 0 < ζ < 1 and
any χ(0) ∈ Rnx × Rnx × Rny ,

E[χ(t)Tχ(t)] ≤ βζtχ(0)Tχ(0) (18)

�
We first derive the next lemma, which directly follows from
the results in Section 4 of [5].



Lemma 1: System (14) is MSS if and only if there ex-
ists symmetric positive definite matrices Qm, with m ∈
{1, 2, . . . , N + 1}, such that the following holds

A1+1(m>1)

(
N+1∑
i=1

Πi,mQi

)
AT

1+1(m>1) < Qm (19)

for all 1 ≤ m ≤ N + 1. �
Lemma 1 is informative but it does not suit our purpose.

Indeed, stability conditions are provided, but these involve
the probabilities f(τ(t)) through Π, see (13) and (14). We
are looking for conditions, which are independent of f(τ(t)),
and only depend on N , η and δ. Therefore, we propose the
next theorem in order to characterize MSS of (14) based on
η, δ and N , allowing us to compute bounds on the (η, δ)-
SATI.

Theorem 1: Given N ∈ Z≥0, η ∈ [0, 1] and δ ∈ [0, 1],
the system (14) is MSS if there exists symmetric positive
definite matrices Q1, QN+1 and S such that

A1 (δQN+1 + ηS)AT
1 < Q1 (20)

A2 ((1− δ)QN+1 + (1− η)S)AT
2 < QN+1 (21)

and
Ai

2Q1(Ai
2)T < S ∀i ∈ {0, . . . , N − 1} (22)

holds. �
Theorem 1 provides sufficient conditions for the system

(14) to be MSS. These conditions can be easily verified and
are dependent only on N , δ and η, and are independent of
the probabilities f(τ(t)) used during the flexible period. As
δ is usually given from communication constraints, we have
flexibility in choosing N and η. For a given N and δ, as
0 ≤ η ≤ 1, we can do a bisection based linear search to find
the minimum η required for having MSS. On the other hand,
N belongs to a discrete set, hence, for a given (η, δ), we
can also do a line search to find the largest N satisfying the
LMIs, thereby obtaining a lower bound on the (η, δ)-SATI.
Note that when η = 1 and δ = 1, a SATI always exists as the
system (1)-(2) has its origin globally exponentially stable.

When η = 0, the largest N satisfying the matrix inequal-
ities in Theorem 1 corresponds to the δ-SATI. In this case,
when η = 0, we have less conservative matrix inequalities
as seen from next corollary.

Corollary 1: Given N ∈ Z≥0, η = 0 and δ ∈ [0, 1], the
system (14) is MSS if there exists symmetric positive definite
matrices Q1 and QN+1 such that

δA1QN+1AT
1 < Q1 (23)

A2

(
(1− δ)QN+1 +AN−1

2 Q1(AN−1
2 )T

)
AT

2 < QN+1

(24)
holds. �

As mentioned in Remark 1, our results can be easily
extended to the case where η and δ are time-varying.
When the communication success at each time is given
by f(τ(t), t) ∈ [0, δ(t)] such that δ(t) ∈ [δmin, δmax] and
ηmin ≤ η(t) ≤ ηmax for all t ∈ Z≥0, we have the next result,
whose proof follows similar lines as the proof of Theorem 1,

and is therefore omitted. Here, the process is time-varying,
but the probabilities for packet loss is bounded by the values
δmin and δmax. It might not be feasible to impose a time-
invariant constraint as in (8), and so we consider a time-
varying η(t) as well, which lies in the interval defined by
ηmin and ηmax.

Corollary 2: System (14) is MSS for a given interval N ,
ηmin ≤ η(t) ≤ ηmax and δ(t) ∈ [δmin, δmax], if the following
matrix inequalities are satisfied:

A1 (δmaxQN+1 + ηmaxS)AT
1 < Q1 (25)

A2 ((1− δmin)QN+1 + (1− ηmin)S)AT
2 < QN+1 (26)

and
Ai

2Q1(Ai
2)T < S ∀i ∈ {0, . . . , N − 1} (27)

for some Q1 = QT
1 > 0, QN+1 = QT

N+1 > 0 and S =
ST > 0. �

VI. NUMERICAL RESULTS

In this section, we apply our results on system (1) with

Ap =

(
1 0.1
0 1

)
, Bp =

(
0
1

)
and Cp = I , for which

we design the controller (2) with Dc =
(
−0.012 −0.07

)
,

Bc = I and Cc = Ac = 0. We then implement this controller
over a network. For ease of exposition, we focus on the
case where the probability of successful transmission only
depends on the clock τ(t) and not explicitly on the time.
We then apply Theorem 1 to study the impact of N, δ and
η on stability. The objective of this section is to illustrate
how N , η and δ all impact each other. Our numerical study
illustrates that for a given δ, we can chose one of several
potential interval lengths N , by using the appropriate η. This
demonstrates the flexibility of our approach.

In particular, we first fix values for δ and we study the
smallest η such that (20)-(22) hold for a given N . Fixing δ
is relevant from a practical point of view as the maximum
packet success rate is determined by the wireless network.
We plot the smallest η which results in MSS in Figure 3
against N for certain values of δ. Surprisingly, we observe
that even for very low maximum packet success rates, i.e.
δ = 0.2, we are able to achieve MSS with a large enough η.
That is, if the probability for the transmission interval to be
beyond N is small enough, the system is MSS. We also note
that the δ-SATI for δ = 0.5 is lower bounded by 26 and the
δ-SATI for δ = 0.2 is lower bounded by 19.

Next, we demonstrate the flexibility in choosing δ and
η, by presenting the image of the lower bound on the
corresponding (η, δ)-SATI in Figure 4. In practice δ might be
determined by the wireless network, however the flexibility
in choosing η and the corresponding (η, δ)-SATI allows us
to select the right configuration for designing the optimal
communication scheme based on the communication system
requirements. For example, if every transmission attempt
costs the same amount of energy, transmitting periodically,
with a period length of the δ-SATI interval might be the most
efficient, as no energy is consumed within this interval. On
the other hand, if the communication cost depends on the



Fig. 3: The smallest feasible η plotted against N . The largest
value of N feasible for a given η and δ corresponds to the
(η, δ)-SATI.

Fig. 4: The (η, δ)-SATI (lower bounds) for various values of
δ and η. The color indicates the value of the (η, δ)-SATI,
and we notice that even when δ = 0.1 and η = 0, a δ-SATI
of 6 is possible.

time-varying strength of the wireless channel, selecting a
larger η might be more suitable. This enables us to select a
longer (η, δ)-SATI, as long as communications are attempted
even within the interval to meet the constraint (8) based on η.
Communication within this interval can be optimized based
on the wireless channel as we have done in [19] for the
deterministic setting.

VII. CONCLUSION

We have studied discrete-time linear systems in which the
communication with the controller occurs over a stochastic
wireless channel. We introduce the notion of (η,δ)-SATI
which is an interpretation of the traditional MATI in the
stochastic setting, where η denotes the cumulative probability
of a successful transmission within the (η, δ)-SATI and δ
denotes the instantaneous communication success probability
after the (η, δ)-SATI has passed. Under the assumption that
the system with perfect communication is stabilizable, we
provide conditions on the (η, δ)-SATI in terms of matrix
inequalities. The obtained results will be exploited in fu-
ture work for the design of energy-efficient communication
strategies depending on the channel fading, while ensuring
the MSS of the WNCS. Hence, extending our previous work
[19] which considered a MATI constraint.
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[11] D. Nešić and A.R. Teel. Input-output stability properties of networked
control systems. IEEE Trans. on Aut. Control, 49:1650–1667, 2004.

[12] H. Omran, L. Hetel, J.-P. Richard, and F. Lamnabhi-Lagarrigue.
Stability analysis of bilinear systems under aperiodic sampled-data
control. Automatica, 50(4):1288–1295, 2014.
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