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In this article, we explore the role of biofuel production on deforestation in developing and emerging countries. Since the 2000s biofuel production has been rapidly developing to address issues of economic development, energy poverty and reduction of greenhouse gas (GHG) emissions. However, the sustainability of biofuels is being challenged in recent research, particularly at the environmental level, due to their impact on deforestation and the GHG emissions they can generate as a result of land use changes. In order to isolate the impact of bioethanol and biodiesel production among classic determinants of deforestation, we use a fixed effects panel model on biofuel production in 112 developing and emerging countries between 2001 and 2012. We find a positive relationship between bioethanol production and deforestation in these countries, among which we highlight the specificity of Upper-Middle-Income Countries (UMICs). An acceleration of incentives for the production of biofuels, linked to a desire to strengthen energy security from 2006 onwards, enables us to highlight higher marginal impacts for the production of bioethanol in the case of developing countries and UMICs. However, these results are not significant before 2006 for developing countries, and biodiesel production appears to have an impact on deforestation before 2006 on both subsamples. These last two results seem surprising and could be related to the role of biofuel production technologies and the crop yields used in their production.

Introduction

The Bioenergy with Carbon Capture and Storage (BECCS) has a favorable carbon footprint and can, under certain conditions, boost growth, reduce dependence on fossil fuel imports, increase investments in agriculture and boost agricultural productivity [START_REF] Arndt | Biofuels, poverty and growth: a computable general equilibrium analysis of Mozambique[END_REF]. For these reasons, biofuels are at the heart of various initiatives aimed at developing renewable energies. The United Nations' Sustainable Development Goals (SDG) no 7 "Ensure access to affordable, reliable, sustainable and modern energy for all" by 2030 (UNDP, 2016) and the Sustainable Energy for All initiative (SEforALL), launched by former UN Secretary-General Ban Ki-Moon, aim to eradicate energy poverty and transform global energy systems to contribute to universal prosperity (Sustainable Energy for all, 2016). In addition, during the Paris Climate Conference, known as COP21, 40% of voluntary national contributions concerned measures to de-carbonize energies by introducing, for example, biofuels into the energy mix of the countries concerned [START_REF] Gota | Intended Nationally-Determined Contributions (INDCs) Offer Opportunity for Ambitious Action on Transport and Climate Change[END_REF]. These initiatives have boosted biofuel production from 1,700 barrels per day in 2001 to 4,700 barrels per day in 2012. Despite this progress, investment in BECCS will need to increase fourfold to contribute significantly to the fight against climate change according to the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2015).

However, the production of biofuels is not without risk because of the "Agriculture, Forests and Other Land Uses" (AFOLU) sector, which is currently responsible for a quarter of global greenhouse gas emissions (GHG) (IPCC, 2015). Indeed, the crops destined for biofuel production induce land use change which can lead to deforestation. This land reallocation can be both indirectly detrimental to agricultural land as well as directly detrimental to forest land. In the former case, poverty reduction targets may be threatened by rising food prices. In the latter case, the sustainability of biofuel energies is called into question by the GHG emissions caused by deforestation linked to the production of biofuels. The main question is whether GHG emissions prevented by the use of biofuels as an energy source compensate for emissions caused by the loss of forest cover. One of the most important concerns is changes in indirect land use. Indeed, in developing and emerging countries, the main driver of biofuel expansion is indirect land use change. The decline of forest is related to the displacement of agricultural activities caused by the expansion of crops for the production of biofuels. This phenomenon is indirect and difficult to detect, especially since it only appears over a long period and can take place on an international scale (Andrade de [START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF][START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF]. In the United States, for instance, some land use dedicated to the production of food items has been moved to forest areas in developing countries [START_REF] Searchinger | Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change[END_REF].

The analysis of the biofuel-deforestation nexus is complex. The impact of biofuels on deforestation through land use change depends primarily on the type of crops used (Gao et al., 2012). The heterogeneity of the types of raw materials used in the production of bioethanol and biodiesel implies the existence of various transmission channels between biofuel production and deforestation. Not all crops are subject to the same type of land use changes and some are exploited on already agricultural or marginal land, especially in industrialized countries.

Moreover, yield and price levels differ significantly by crop, which has an impact on production conditions and on the extent of land use change [START_REF] Lapola | Indirect land-use changes can overcome carbon savings from biofuels in Brazil[END_REF]. High crop yields allow an increase in the production of biofuels by an intensification of the exploitation of agricultural raw materials. In the case of indirect land use change, the productivity of the displaced agricultural activity comes into place. These changes depend partly on raw material market prices and on the demand elasticity [START_REF] Lapola | Indirect land-use changes can overcome carbon savings from biofuels in Brazil[END_REF][START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF][START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF]. There are numerous studies at the global and national levels on the biofuel-deforestation nexus, but they are mainly based on simulations. Econometric studies are scant and mainly based on case studies at the subnational level. These studies allow easier access to accurate information about the types of raw materials used, their prices, yields and the share allocated to the production of biofuels [START_REF] Gao | Assessing deforestation from biofuels: Methodological challenges[END_REF].

To the best of our knowledge, however, no studies have yet been conducted within a crosscountry panel framework. Firstly, this paper contributes to the literature by filling this gap and by providing empirical insights into the impact of biofuels on deforestation in developing and emerging countries. We use a new data-set based on time-series analysis of satellite images on 112 countries between 2001 and 2012, offering a unique level of precision concerning forest losses [START_REF] Hansen | High-Resolution Global Maps of 21st-Century Forest Cover Change[END_REF]. To address the endogeneity problem of the biofuel variable, we use panel econometric methods with instrumental variables. Secondly, this study is the first to analyse the effect of biofuels on deforestation according to the type of biofuel (bioethanol or biodiesel), the level of development, the density of forest cover and the acceleration of biofuel production. Our results show that bioethanol production contributes to increased deforestation in our sample of countries, and the effect is greater in low-density forest areas that may have already undergone anthropogenic changes. In other words, the development of bioethanol is more detrimental to degraded forests than to primary forests. Finally, the effect of bioethanol is significant over the period 2007-2012 and displays greater marginal effects than for the entire period. In contrast, we find no significant effect of biodiesel on deforestation in the total sample. By restricting the sample to Upper Middle Income Countries (UMICs) for the period 2001-2006, the effect of biodiesel on deforestation becomes positive and significant. This article is organized as follows: Section 1 presents the literature review. We focus our attention on the contributions of empirical and geographical analyses on the relationship between biofuel production, land use change and deforestation. In Section 2, we present the empirical analysis by describing the construction of our database and our empirical model. Section 3 presents and discusses the results. Section 4 concludes.

Biofuel production, land use change and deforestation

Geographical analyses

Most articles that study biofuel production are based on geographical analyses and use remote sensing techniques [START_REF] Rudorff | Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data[END_REF][START_REF] Adami | Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil[END_REF][START_REF] Ferreira | Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion[END_REF]. The mappings used take into account all of the physical characteristics of the crops concerned and make it possible to observe direct change in land use over a period of time. They provide qualitative and quantitative information on the development of biofuels and the loss of forest cover, but do not allow to investigate the classic determinants of deforestation [START_REF] Gao | Assessing deforestation from biofuels: Methodological challenges[END_REF].

These biofuel production studies were mainly carried out on Brazil during the first decade of the 2000s and analysed the country's capacity to meet the demand for biofuels [START_REF] Rudorff | Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data[END_REF][START_REF] Adami | Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil[END_REF]. [START_REF] Rudorff | Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data[END_REF] show that in 2008/2009, 56.5% of the additional land required for sugarcane production expanded to pasture land, 40.2% to arable land and less than 3.5% to other land types, including forest areas. [START_REF] Adami | Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil[END_REF] found that these figures are respectively 70%, 25% and 0.6% for the forest areas. The authors found that it would therefore not be necessary for Brazil to resort to further deforestation in the coming years to meet the demand for biofuels [START_REF] Adami | Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil[END_REF]. However, [START_REF] Ferreira | Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion[END_REF] show that the expansion of cultivated areas leads to a restructuration of land use and of the agrarian structure in the state of Sao Paulo and thus to a change in the state of the forest cover, especially when biofuel production activities are less productive. The authors map out 23 years, from 1986 to 2009 to analyse the evolution of land use over time and find that it is mainly Brazil's biofuel production policies that provide incentives to produce ethanol and, more generally, sugar, which has contributed to this agrarian restructuration. Some studies use empirical techniques to confirm findings from mapping, measure and analyze changes in indirect land use and study the factors behind it [START_REF] Barona | The role of pasture and soybean in deforestation of the Brazilian Amazon[END_REF][START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF][START_REF] Castiblanco | Oil palm plantations in Colombia: a model of future expansion[END_REF]. [START_REF] Barona | The role of pasture and soybean in deforestation of the Brazilian Amazon[END_REF] use a geographical analysis to observe the displacement of land use over time [START_REF] Ferreira | Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion[END_REF], and regression analysis (Ordinary Least Square (OLS)) to capture the relationship between the expansion of cattle breeding and deforestation between 2000 and 2006 in Amazônia Legal. They find that the expansion of cattle breeding is responsible for deforestation rather than the exploitation of soybeans which is an underlying cause of deforestation. [START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF] conducted a study on the same geographical area between 2003 and 2008 using mapping methods as well as statistical methods more adapted to the analysis of deforestation. The use of a spatial regression model allows them to capture the link between the expansion of mechanized agriculture and the conversion of pastures to forest frontiers. Extensive grazing activities are currently shifting to the cheapest land, that is, to forest areas, because of the expansion of mechanized farming. In order to control for the effect of variables specific to the geographical area and capture indirect long-term land reallocation linked to the expansion of soybean crops, the authors then run a panel model in which they introduce the lagged interest variable for a period. Thus, between 2003 and 2008, land allocated to soybean production is estimated to have spread over more than 39,000 km², mostly on agricultural land. When they do not control for indirect long-term land use change, a 10% decrease in this figure reduces deforestation by more than 4,000 hectares and by 25,000 hectares otherwise.

Finally, [START_REF] Castiblanco | Oil palm plantations in Colombia: a model of future expansion[END_REF] [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF] and [START_REF] Gollnow | Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001-2012[END_REF] confirm the existence of direct and indirect land use changes using exclusively empirical methods, although their work is not focused on the biofuel issue. [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF] focus on the role of soybean expansion in Northern Argentina from 1972 to 2011 due to the global acceleration in the demand for meat.

Empirical analyses

The authors find a link between the expansion of soybean crops and deforestation, which may involve the intensification of cattle breeding. However, the strength of this link depends on the incentive policies put in place by the State and the macroeconomic context observed during the periods under consideration. The authors begin by constructing a random effects panel model over 6-time periods and 17 departments to identify the role of soybean crops as a driver of deforestation and to analyze the effect of competing agricultural activities. The use of a temporal model for the Anta sector, one of the most deforested zones in Argentina, allows the authors to identify the major role of livestock production linked to the demand for meat and the role of soybean prices. The authors confirm the existence of an indirect change in land use and highlight the effects of soybean crop income supplements on the acceleration of deforestation. [START_REF] Gollnow | Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001-2012[END_REF] assume that there is a link between deforestation and soybean expansion through the displacement of livestock and test the strength of this link before and after the implementation of the plan to prevent and control deforestation through the PPCDAm (Plano de Ação para Prevenção e Controle do Desmatamento na Amazônia Legal -Action Plan for Prevention and Control of the Legal Amazon Deforestation) in 2004. They carry out their study on the municipalities of Brazil over a 9-year period from 2001 to 2012 and use the same method as [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF]. They confirm the results stated by [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF] and find a close link between soybean expansion and deforestation by the displacement of land allocated to cattle. However, this correlation decreases after the implementation of the PPCDAm treaty from 2005 onwards, which is well in line with the important role of state policies in land allocation decisions [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF].

Our paper more specifically builds on Andrade de [START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF], who integrate the production of biofuels into an equation accounting for the classic determinants of deforestation.

They rely on [START_REF] Pfaff | What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data[END_REF] and assume that the factors of deforestation are those that increase the rents associated with the expansion of agriculture: increase in the price of outputs, better agroecological conditions, lower input prices, better transport infrastructure, etc. They challenge the spatial econometric methods used in the literature that impose a structure of displacement in land use. In order to describe the process of indirect land use change, the authors proceed in several stages: (i) estimation of the indirect link between sugar cane exploitation in Sao Paulo and deforestation in the Amazon by the Generalized Method of Moments with the Arellano-Bond estimator; and (ii) estimation of the direct link between sugar cane exploitation and cattle expansion and then between cattle expansion and deforestation with a fixed effects panel estimator. With the Arellano-Bond estimator, the authors explain the number of hectares of land deforested by past deforestation, cattle herd and number of cultivated hectares of sugar cane, while controlling for potential endogeneity bias. The authors find a significant effect of cattle livestock on deforestation and the addition of interaction terms between cattle and sugarcane is indicative of an indirect land use change. In addition, the effect of bovine livestock on deforestation is sensitive to the number of hectares of sugarcane cultivated. The introduction of the lagged variables makes it possible to show that the effects of cattle expansion on deforestation are much greater over the long term than over the short term, which recalls the results of [START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF]. Thus, an additional livestock unit would induce 3 hectares of deforestation over the short and medium term and 4 hectares over the long term when the indirect effect of sugar cane is taken into account. Fixed-effect estimators confirm the existence of the indirect land use change. The authors find a negative correlation between the expansion of sugar cane and the presence of livestock in Sao Paulo and a positive correlation between the expansion of areas allocated to cattle breeding and loss of forest cover in the Amazon.

Data and econometric specification

Data

This section proposes a focus on the definition and measurement of deforestation and biofuel production. Descriptive statistics are provided in Table 5 in the Appendix.

Measuring forest cover loss

Defining "deforestation" is a crucial issue. In this paper, we consider the data issued by remote sensing methodology that burgeoned in the wake of the seminal presentation of [START_REF] Hansen | High-Resolution Global Maps of 21st-Century Forest Cover Change[END_REF]. As a consequence, the term "forest loss" is preferred to "deforestation". The definition of "forested areas" is different from that used in the Global Forest Resource Assessments (FRAs) conducted under the auspices of the Food and Agriculture Organization of the United Nations (FAO), which are rather based on a land use definition [START_REF] Keenan | Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015[END_REF].

FRA data has attracted many criticisms such as the lack of homogeneity in the measurement methodology (see e.g. [START_REF] Grainger | Difficulties in tracking the long-term global trend in tropical forest area[END_REF]. The Hansen data are deemed to be based on a consistent definition of forests over time and space. Forests are defined according to a minimum threshold of percentage of tree cover (10%, 15%, 20%, 25%, 30%, 50%, 75%). "Forest loss" is reported when the percent of tree canopy cover falls below the threshold, using a resolution of 30 by 30 meters. Though the Hansen data have been criticized (e.g., [START_REF] Tropek | Comment on "High-resolution global maps of 21st-century forest cover change[END_REF], they are increasingly recognized as being more reliable than previous datasets. They, therefore, deserve greater attention in analyses of the drivers of forest dynamics [START_REF] Hansen | Response to comment on "High-resolution global maps of 21st-century forest cover change[END_REF]. The main implication of using such data is taking different thresholds of tree cover since the extent of forest is sensitive to it [START_REF] Sexton | Conservation policy and the measurement of forests[END_REF]. In addition, it is not possible to compute net forest losses as the difference between forest losses minus forest gains. It is worth noting that remote sensing measures of forest cover do not currently enable a distinction to be made between natural forests and tree plantations. Hansen's definition of forests encompasses "all vegetation taller than 5m in height" (Hansen et al., 2013 -Supplementary material).

Measuring biofuel production

We use aggregate biofuel production data from the United States Energy Information Administration (US EIA) (EIA, 2011) from 2000 to 2012. Descriptive statistics are provided in the Appendix (Table 5). These data are broken down into ethanol and biodiesel production and expressed in thousands of barrels per day. For the US EIA, biodiesel production comprises any fuel produced from biomass raw materials. Biodiesel production includes biofuels derived from soybean, canola or any other vegetable, animal or recycled oils and ethanol production includes biofuels produced from sugar and corn-based agricultural crops (EIA, 2011). Given the specificities of countries concerning biofuel production, our database is heterogeneous, which implies the existence of several outliers among our observations (Figure 4 in the Appendix).

Empirical evidence of the effect of biofuel expansion on forest loss

Our database is made up of 112 developing and emerging countries over the 2001-2012 period. Countries are classified according to their minimum level of forest cover for each degree of canopy cover. We follow the World Bank classification to distinguish the UMICs.

Basic econometric specification

The basic specification is a panel data model in which the dependent variable is , and represents the measure of forest loss taken from the Hansen dataset. % indicates the type of forest according to the density of canopy cover (10%, 30%, 50%, 75%):

(3)

Our interest variable is . This variable is broken down into bioethanol production and biodiesel production . We make a distinction between both variables to avoid misleading comparisons between them. 1A fixed-effect model seems more suitable than a random one when we expect a constant unobserved heterogeneity over time to have an impact on the dependent variable, as may be the case in our sample. stand for the constant, country and year fixed-effects, respectively. is the error term. Country fixed effects account for all characteristics such as distance to the Equator, landlockedness, and the quality of institutions that have an impact on forest cover loss but that do not vary much over the period under consideration. The use of a fixed-effect model is particularly suitable when the independent variables show a high intraindividual variance 2 (Table 5 in the Appendix) and when the sample is not random, as is the case with developing and emerging countries. Year dummies control for common unobservable variables such as the price of raw materials and fossil energies. is the vector of control variables.

To analyse the relationship between biofuel production and forest cover loss in countries in the dataset with different types of forest coverage, we choose to gradually restrain our sample by introducing a filter for a minimum threshold of percentage of tree cover that a country presents at each level of canopy cover . 3 In the regressions where the sample is restrained, only the countries that have at least 10% forest cover at the studied level of canopy cover are included. We also include the regression without the restrained sample.

Dealing with potential endogeneity

Since biofuel production and land allocation decisions can be taken simultaneously, biofuel production can be suspected of endogeneity. Although any potential endogeneity is partly taken into account with country fixed-effects and temporal dummies, we tackle this issue further with instrumental variables.

Biofuel production is instrumented by wind speed and by the lagged biofuel production.

Wind speed is a proxy for a given country's potential in wind energy production. Data on wind speed comes from the ERA Interim database from the European Center for Medium-Range Meteorological Forecasts (ECMWF). It is expressed in meters per second and has been calculated at a 10 meter high speed [START_REF] Dee | The ERA-Interim reanalysis: configuration and performance of the data assimilation system[END_REF]. It is supposed to have no impact on deforestation except through its effect on biofuel production. 4 This variable is considered as exogenous since it may represent a complementary or substitutable strategy to the development of biofuels as a renewable energy. 5 Moreover, lagged biofuel production would not have any effect on deforestation at time t in our specification as it only occurs after the change in land use. In addition, our model does not account for indirect land-use changes as it can only be observed over a longer period (Andrade de [START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF].

Control variables

All socio-economic, agricultural and energy variables of the countries in our sample are defined and precisely described in Table 3 in the Appendix. Their descriptive statistics are also reported in Table 5. These control variables can be categorized into three distinct groups.

We first use socio-economic data on Gross Domestic Product (GDP) and population from the World Bank development indicators (World Bank, 2015). We use the following variables that represent socio-economic characteristics of countries to control for underlying causes of deforestation [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF]Kaimowitz, 1999, Geist and[START_REF] Geist | Proximate Causes and Underlying Driving Forces of Tropical Deforestation Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations[END_REF]; GDP per capita , squared GDP per capita and population . The GDP per capita variable in its level and its square are introduced to capture the existence of an Environmental Kuznets Curve (EKC) [START_REF] Grossman | Economic Growth and the Environment[END_REF], although its existence has been debated in the literature [START_REF] Choumert | Is the Environmental Kuznets Curve for deforestation a threatened theory? A meta-analysis of the literature[END_REF]. The variable stands for the size of the country; it has not been shown to have a clear-cut effect on deforestation in the literature [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF][START_REF] Pfaff | What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data[END_REF]. 6 Second, we use the following control variables to account for the profitability of agricultural activities: standardized rainfall and temperatures shocks , cereal yields and Real Effective Exchange Rates (REERs) Other agricultural activities compete with biofuel production in terms of land use, especially when an increase in the associated rent has an impact on decisions of land use and deforestation [START_REF] Pfaff | What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data[END_REF][START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF]. We improve both climate change mitigation and energy security. Here, the development of biofuel production could attract investments and make the development of the wind sector more profitable (IEA, 2015, [START_REF] Keeley | Determinants of Foreign Direct Investment in Wind Energy in Developing Countries[END_REF]. On the other hand, as both these energies can be used for the same purpose, they can be substitutes due to the existence of constraints on land availability and investment capacities (IEA, 2016). 6 Variables related to population density do not always exhibit high significance because of their ambiguous role on deforestation [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF][START_REF] Pfaff | What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data[END_REF]. In addition, this variable is often subject to endogeneity issues and to a high degree of collinearity with the other variables in the model [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF]Kaimowitz, 1999, Pfaff, 1999). Indeed, it often loses its significance when many variables are added to the model as it responds to many other factors (infrastructures for example) [START_REF] Pfaff | What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data[END_REF].

use climatic data on precipitations and temperatures from the Climatic Research Unit of the University of East Anglia [START_REF] Santoni | Country-level Climate database[END_REF] to draw an index of standardized climatic shocks defined as the standardized difference of precipitations and temperatures to their long-term annual average. This allows us to capture potential "el Niño effects". These phenomena can induce deregulation of climatic conditions in tropical countries, leading to significant impact on deforestation and agricultural activities such as droughts, fire… [START_REF] Alencar | Landscape fragmentation, severe drought, and the new Amazon forest fire regime[END_REF]. The cereal yields variable is taken from the World Bank development indicators (World Bank, 2015) and allows us to approximate the profitability of agricultural competing land uses [START_REF] Lapola | Indirect land-use changes can overcome carbon savings from biofuels in Brazil[END_REF][START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF][START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF][START_REF] Searchinger | Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change[END_REF]. We introduce the REER variable to represent country competitiveness, excluding the oil sector. This variable was constructed from the 2016 CEPII database for the international trade analysis [START_REF] Gaulier | BACI: International Trade Database at the Product-Level[END_REF]. A depreciation of REERs induces an increase in the relative price of competing and of internationally tradable activities for the production of biofuels (wood, energy…) and may lead to a rise of the pressure on forest. This effect should be relevant for developing and emerging countries [START_REF] Leblois | What has Driven Deforestation in Developing Countries Since the 2000s? Evidence from New Remote-Sensing Data[END_REF] in which REERs variations are temporary due to their instability [START_REF] Richards | Exchange rates, soybean supply response, and deforestation in South America[END_REF][START_REF] Arcand | Deforestation and the real exchange rate[END_REF]. Indeed, in developed countries, a stable and sustainable increase in relative prices should increase investment opportunities in the forestry sector and have a positive effect on afforestation [START_REF] Arcand | Deforestation and the real exchange rate[END_REF].

Third, the energy supply potential of the countries in our sample is taken into account with crude oil reserves _ and natural gas reserves _ variables that are taken from the US EIA and represent the estimated quantities of energetic resources that are highly likely to exist based on available geological data and existing technologies (EIA, 2011). Since biofuels can be considered as a substitute for fossil energies, the match between demand and supply for fossil fuels may thus modify the influence of biofuels on deforestation. Gas and crude oil reserve variables represent the potential of countries for fossil fuel production. Those that have larger fossil fuel reserves should be more likely to respond to energy security requirements, especially when they are subject to high energy needs.

Results and discussion

The results from the basic specification (equation 3) are provided in Table 1 below. We find that a 1% increase in bioethanol production should lead, ceteris paribus, to an average 0.143% forest cover loss, i.e., more than 5 million hectares over the entire period compared to the existing forest cover in 2000. This effect diminishes with the increase in the threshold on the canopy density percentage. It falls from 0.126% for countries that contain at least 10% of forest with a 10% level of canopy cover (i.e., approximately 4,500,000 hectares of forest cover loss) to 0.118% for countries that contain at least 10% of forest with a 30% level of canopy cover (less than 3,500,000 hectares). When we restrain the sample to take into account only countries with the highest threshold of canopy cover, the effect of bioethanol production becomes insignificant.

Direct change in land use should thus only occur on less dense forest area where anthropogenic activities have likely already taken place. Moreover, countries that hold the highest threshold of canopy cover are not always similar to those that produce the greatest amount of bioethanol, and vice-versa. Consequently, when we restrain the sample, some countries that were among 20 of the world's largest biofuel producers (including Pakistan, Kazakhstan, Turkey, Argentina, India and China) no longer fulfil the condition of the minimum density of canopy cover that has to be reached in order to be included in the analysis (at least 10% of forest with a 30%, 50% and 75% threshold of canopy cover). This reinforces the idea that changes in land use may occur on agricultural land, at least at the initial stages of land use changes.

The rapid development of biofuel production during the last decade may also be one of the underlying causes of deforestation [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF], Gasparri et al., 2014). Indeed, the effect of biofuel production on forest cover loss can occur as a result of a country's rise of income allowing for higher investment capacities and a more intensive use of forests (Gasparri et al., 2014). It might also occur through a positive effect on the growth and development of the country, such a hypothesis being reinforced by the positive and significant effect of the real GDP per capita on deforestation. In addition, the negative and significant effect of its squared shape indicated the presence of an increasingly pronounced EKC [START_REF] Grossman | Economic Growth and the Environment[END_REF] as a stricter definition of deforestation is used. This phenomenon may confirm the existence of a forest transition, more pronounced in countries that host the densest forests. Thus, in these countries, the loss of forest cover slows down and reverses for lower levels of economic development than in countries that have less dense forests. This result seems consistent with a change in land-use, which is not likely to take place in forest with the highest level of canopy cover.

The negative effect of an increase in REERs on forest cover loss indicates that the effect of agricultural production on deforestation declines when the competitiveness of the economy is slowed down by the increase in relative prices of agricultural activities [START_REF] Arcand | Deforestation and the real exchange rate[END_REF]. A REER appreciation makes the profitability of the export sector decreasing which penalize logging and agricultural activities. This result could be linked to agricultural activities being complementary to biofuel production and seems relevant only for countries that contain at least 10% of forest with a 10% to 30% threshold level of canopy cover. Again, the densest forests do not appear to be affected by direct land use change or thus by the profitability of agricultural activities.

We do not find any effect of biodiesel production 7 over forest cover loss in developing countries. One possible explanation may be related to the way the Hansen database is constructed [START_REF] Tropek | Comment on "High-resolution global maps of 21st-century forest cover change[END_REF]. In some countries (e.g., Malaysia and Indonesia) biodiesel production could result in forest cover gain due to the extension of palm oil plantations. In addition, our sample remains heterogeneous, which can attenuate the results obtained on biofuel production. Indeed, in 

The specific case of Upper Middle Income Countries

Many UMICs are endowed with large stocks of tropical primary forests. They have an intermediate position that makes dealing with low and high-income countries an issue for interpretation of the results. UMICs could more likely rely on their natural capital, which can, in turn, result in greater biofuel production at the expense of forested areas. This risk is even 8 We conduct a Fisher test for the significance of the temporal dummies. 9 We run a xtoverid over-identification test which provides equivalent results to the Hausman FE vs RE effect test when taking into account the presence of heteroskedasticity in the model [START_REF] Arellano | On the testing of correlated effects with panel data[END_REF]. However, the inclusion of temporal dummies is not supported.

greater as UMICs have shown accelerated adoption of biofuels in their energy policies [START_REF] Castiblanco | Oil palm plantations in Colombia: a model of future expansion[END_REF]. Figure 1 below confirms this. UMICs, however, differ from lower middle income or low income countries, as their development level would allow their inhabitants to exhibit a positive willingness to pay for environmental protection (Vincent et al., 2014[START_REF] Tait | Emerging versus developed economy consumer willingness to pay for environmentally sustainable food production: A choice experiment approach comparing Indian, Chinese and United Kingdom lamb consumers[END_REF], which may lead to greater incentives for governments to preserve the environment, in particular with the introduction of targets on the use of renewable energies (Zhou and Thomson, 2009). Results presented in Table 2 below demonstrate the specific forest dynamics of UMICs.

Indeed, we can observe that the effect of bioethanol production is strongly significant compared to results we obtain on all developing countries. An average 1% increase in bioethanol production per day would result in an average 0,214% loss of forest cover, i.e., more than 4,900,000 hectares, compared to the existing forest cover in 2000. Marginal coefficients remain stable when we use a stricter definition of deforestation but only up to a 50% level of canopy cover, where forest cover loss over our period would then be more than 3,400,000 hectares. In UMICs, biofuel production would imply a land use change on higher density forest than in the initial case, that is all developing countries. Nevertheless, the fact that biofuel production is not significant in countries that hold at least 10% forest with a 75% level of canopy cover allows us to confirm that land use change should not impact densest forests. As for developing countries, the REER has a negative impact on deforestation, which implies that its appreciation results in a decline in the profitability of agricultural and logging activities for exports and therefore in a reduction of the effect of biofuel production on deforestation. We now analyze whether the temporal heterogeneity occurring over our period could partially explain the insignificant effect of biodiesel production on deforestation. 10 Indeed, 10 One other possible reason is that the Hansen dataset, despite being more reliable, makes the distinction between forest cover and plantations difficult to account for. This could be problematic as the largest biodiesel producers are Indonesia, Malaysia and Thailand, whose biodiesel production is mainly based on palm oil feedstock. Results are available upon request. [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF] and [START_REF] Gollnow | Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001-2012[END_REF] observe that the effect of the policies implemented, as well as the macroeconomic context of the country, reveal coupling and decoupling periods between deforestation and expansion of mechanized agriculture. Similarly, [START_REF] Ferreira | Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion[END_REF], show that agrarian restructuration that occurred in the State of Sao Paulo was partly linked to the incentive for ethanol production implemented by the Brazilian state beginning in the 1980s.

Acceleration of production since 2007

In order to account for the temporal heterogeneity over our period, we divide our sample into sub-periods, taking 2006 as the reference date. We run our baseline regression on all developing countries and on UMICs before 2006 and from 2007. Results are provided by threshold levels of canopy cover in the Appendix (table 6 to 12) in order to confirm the stability of results when a restricted definition of deforestation is used.

Several elements suggest that countries are not subject to the same challenges during these two sub-periods. We notice a difference in the rate of increase in biofuel production from 2006, especially for the production of biodiesel (Figure 2 for biofuel production in developing countries and mostly in UMICs over this period (Sorda et al., 2010, Zhou andThomson, 2009). These measures mainly concern the acceleration of bioethanol 11 A Chow test run on our specification estimated using OLS indicated the existence of a structural break in bioethanol and biodiesel production on developing countries and on UMICs. When looking at developing countries before 2006, our results in Table 6 in the Appendix indicate a significant impact of biodiesel production on forest cover loss, even for countries that hold at least 10% of forest with a 75% level of canopy cover (Table 7 in the Appendix). Marginal effects are much higher than in the case of bioethanol production, which can be an indication of a larger direct land-use change for this type of biofuel. An average 1% increase of biodiesel production per day in developing countries would lead to an average 0.573% loss of forest cover or to an average 1.137% when taking a stricter definition of deforestation. These results are consistent with those found by [START_REF] Castiblanco | Oil palm plantations in Colombia: a model of future expansion[END_REF], suggesting that biofuel crops mainly expand on agricultural and pastured land, and to a lesser extent on forested land.

If we restrain the sample to UMICs before 2006, biodiesel production remains significant (Tables 9 and11 in the Appendix) with a higher marginal impact than for the entire sample.

However, in all developing countries, the impact of biodiesel production in terms of land-use change seems to occur on forests with a higher level of canopy cover (Table 7 in the Appendix).

This result is surprising and may be explained by lower yields for biofuel crops leading to larger changes in land-use in the least productive countries that hold forests with higher levels of canopy cover.

After 2006 in developing countries and in UMICs, the production of bioethanol remains significant and leads to a decline of forest cover from the lowest to the highest levels of canopy cover (Tables 8 and12 in the Appendix). Marginal effects are higher than for the entire period, which would indicate an acceleration in bioethanol development. In UMICs, bioethanol production is also significant before 2006 (Table 10 in the Appendix), which confirms its major role in total biofuel production.

We also note that the acceleration in biodiesel development only occurs from the second period, making the results on biodiesel over the first period surprising. This result could be explained by less advanced biodiesel production technologies based on lower yield crops before 2006. Comparing our baseline specification over two different sub-periods in order to account for temporal heterogeneity allows us to demonstrate the existence of direct land-use changes in countries that contain forests with higher levels of canopy cover.

Conclusion

Biofuel development is at the heart of current debates on the use of renewable energy as a response to climate change, poverty and energy insecurity in developing and emerging countries (UNDP, 2016, Sustainable Energy for all, 2016[START_REF] Gota | Intended Nationally-Determined Contributions (INDCs) Offer Opportunity for Ambitious Action on Transport and Climate Change[END_REF][START_REF] Choumert | The biofuel-development-nexus: A metaanalysis[END_REF].

Moreover, the effectiveness of this renewable energy on climate mitigation and on the enhancement of energy security is questioned both due to its direct and indirect effects on the displacement of agricultural activities toward forest areas.

The objective of this study was to explore the role of biofuels among classic determinants of deforestation in developing and emerging countries through the land-use change phenomenon.

To the best of our knowledge, no studies have been conducted on this issue within a crosscountry panel framework. In order to fill this gap in the literature, we conduct a fixed-effect panel analysis on 112 countries between 2001 and 2012 that allows us to account for countryspecific determinants of deforestation. Our results allow us to extend the conclusions made by [START_REF] Rudorff | Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data[END_REF] and [START_REF] Adami | Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil[END_REF] who highlight the existence of a marginal direct land use change toward forest areas in Brazil between 2008 and 2009. Our results are also close to those of [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF] who find that biofuel production, and more specifically bioethanol production, has an effect on forest cover loss through its capacity to provide large amounts of revenue. However, our finding does not hold for higher density forest areas, which means that the development of bioethanol should not encroach on densest forests which are more likely to host primary forest, or only marginally. In order to account for the spatial heterogeneity in our sample, we restrict it to the specific case of UMICs and find a greater effect of biofuel production on higher-density forest areas. Then, to account for the temporal heterogeneity occurring over our period, we divide our sample into sub-periods and conduct the analysis from 2007 and before 2006. Results are surprising since biodiesel production appears to be significant before 2006 in all developing and emerging countries and starts to become more pronounced from 2007. This could be linked to less effective biodiesel production technologies before 2006, resulting in a larger displacement of land dedicated to biodiesel production.

Our results confirm the existence of direct land-use change on a global scale and call into question the relevance of biofuel production as a renewable energy, especially with indirect land use change occurring over long periods (Andrade de [START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF]. Moreover, the numerous measures that have been implemented to enhance biofuel production may have accelerated the agrarian restructuration that took place in Brazil over the past decade (See [START_REF] Ferreira | Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion[END_REF].

Therefore, high marginal coefficients obtained on bioethanol production after 2007 confirm the threat inflicted by such measures on forest areas in developing and emerging countries [START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF].

In order to broaden the scope of our study, it would be interesting to take into consideration the existence of indirect land-use changes. This would first necessitate obtaining precise information on the yields, prices and hectares of the share of raw material that enters the production of biofuels over a much longer period [START_REF] Gao | Assessing deforestation from biofuels: Methodological challenges[END_REF]. The same information would be needed on displaced agricultural activities [START_REF] Gao | Assessing deforestation from biofuels: Methodological challenges[END_REF][START_REF] Andrade De Sá | Dynamics of indirect land-use change: Empirical evidence from Brazil[END_REF][START_REF] Arima | Statistical confirmation of indirect land use change in the Brazilian Amazon[END_REF]. However, this data, when available, does not display the level of aggregation needed within a cross-country panel framework. Another way to reinforce the relevance of our study would be to include world prices of biofuel and fossil energies. Indeed, numerous studies highlight the strong effects of these prices in the relationship between biofuel production and forest cover loss (Hargrave et Kis-Katos, 2012[START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF][START_REF] Gasparri | Linkages between soybean and neotropical deforestation: Coupling and transient decoupling dynamics in a multidecadal analysis[END_REF]. However, a fixed-effect panel framework does not support the introduction of such variables, which remain in the temporal dummies. A final extension of this work would be to add a variable describing the initial state of the forest at each period in a dynamic setting to account for this particular aspect of deforestation. 
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(2) and multiplied by the country's Consumer Price Index on the one of its partner. represents the weighting of each partner country according to his weight in the country's exports and imports from 2008 to 2012. 16 countries do not have exchange rate or CPI during the considered period and are not taken into account (Botswana, Belarus, Kosovo, Lesotho, Moldova, Namibia, North Korea, Russia, Somalia, Serbia, Swaziland, Tajikistan, Turkmenistan, Timor-Leste, Ukraine and Uzbekistan).

An increase in REER indicates a loss in trade competitiveness linked to the appreciation of the countries' currency unit. -bar = 12.8473 The between variance between represents the inter-individual variance of the observations, whereas the within variance represents the intra-individual variance of the observations. N: total number of observations n : number of countries T: number of years T-bar: Average number of years due to missing observations Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom. 

  use cartographic analysis to observe the change in land use in Colombia between 2002 and 2008, followed by a temporal model to determine the factors behind this phenomenon and the country's capacity to meet the demand for biodiesel by 2020. Palm plantations would tend to spread over pasture land, agricultural land and then to a lesser extent to forest land. A logit spatial model finally allows the authors to determine the probability of the expansion of palm oil crops on the territory by 2020. Because of the fragility of the ecosystems concerned, the authors conclude that the country should not pursue its objectives of accelerating the development of biodiesel by 2020.
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 1 Figure 1 -Biofuel production according to country income level

  below). 11 Fostering the use of renewable energies and accelerating biofuel development since 2006 could be linked to a strong motivation to maintain energy security (Zhou et Thomson, 2009, Wianwiwat and Asafu-Adjaye, 2013). Indeed, we observe a great increase in crude oil prices during the 2005-2008 period followed by oil price instability since the 2008 financial crisis (Figure 3 below). The acceleration in biofuel development since 2006 is confirmed by the numerous incentives that have been implemented

  Figure 2 -Evolution of biofuel production

  Figure 4 -Average biofuel production per day over the period 2000-2012

  

  

  

Table 1 ,

 1 we take into account countries subject to varying issues in terms of economic development, natural resource exploitation and energy security. Still, followingGasparri et al. (2014), biodiesel production might not be likely to generate sufficient revenues to intensify the exploitation of forested area or to accelerate growth and development in the country.
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Results are available upon request.

Table 1 -

 1 Basic specification: ethanol production in developing countries

				Restrained sample	
	Variables	Forestloss10%				
			Forestloss10% forestloss30% Forestloss50% Forestloss75%
	log(ethanol+1)	0.143	0.126	0.118	0.081	0.003
		(2.33)**	(2.00)**	(1.91)*	(1.29)	(0.04)
	log(pop)	-0.458	-0.201	0.304	0.208	1.189
		(0.82)	(0.33)	(0.51)	(0.32)	(1.69)*
	log(gdppc)	2.674	3.104	2.446	3.991	5.869
		(3.12)***	(3.59)***	(2.76)***	(3.78)***	(4.94)***
	log(gdppc) squared	-0.180	-0.205	-0.160	-0.256	-0.308
		(2.95)***	(3.14)***	(2.41)**	(3.40)***	(3.85)***
	e_rain	-0.003	0.018	0.011	0.007	-0.017
		(0.10)	(0.68)	(0.46)	(0.28)	(0.63)
	e_temp	0.018	0.019	0.017	0.022	0.053
		(1.00)	(0.96)	(0.89)	(0.99)	(2.37)**
	log(cer_yd)	-0.049	-0.206	-0.125	0.037	-0.073
		(0.48)	(1.47)	(0.83)	(0.20)	(0.33)
	log(reer)	0.034	-0.197	-0.292	-0.165	-0.339
		(0.87)	(2.01)**	(2.07)**	(0.99)	(1.61)
	log(co_pr + 1)	-0.173	-0.143	-0.202	-0.259	-0.078
		(1.73)*	(1.15)	(1.59)	(1.97)**	(0.89)
	log(ng_pr + 1)	0.007	-0.038	0.002	0.056	0.118
		(0.08)	(0.45)	(0.03)	(0.59)	(1.85)*
	r2	0.14	0.21	0.25	0.26	0.35
	Adjusted r2	0.03	0.11	0.15	0.16	0.25
	Number of obs.	1056	843	751	631	487
	Number of countries	92	73	64	54	42
	Time dummies 8	Yes (F=5.26)	Yes (F=5.88)	Yes (F=4.79)	Yes (F=4.23)	Yes (F=3.52)
	Test of fixed					
	effect (FE) vs random effect	FE (Х² 5.0)	FE (Х² 17.8)	FE (Х² 3.9)	FE (Х² 46.7)	FE (Х² 104.8)
	(RE) 9					

* p<0.1; ** p<0.05; *** p<0.01 Our variables are in a logarithm form to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroscedasticity.

Table 2 -

 2 Bioethanol production in UMICs

				Restrained sample	
	Variables	Forestloss10%				
			Forestloss10% Forestloss30% Forestloss50% Forestloss75%
	log(ethanol+1)	0.214	0.193	0.197	0.210	0.064
		(3.66)***	(3.18)***	(3.24)***	(3.17)***	(0.93)
	log(pop)	-0.862	-0.189	-0.180	-0.284	0.591
		(1.12)	(0.21)	(0.20)	(0.31)	(0.66)
	log(gdppc)	-1.407	-0.281	-1.827	-2.247	0.479
		(0.58)	(0.11)	(0.68)	(0.78)	(0.15)
	log(gdppc) squared	0.066	-0.005	0.091	0.120	-0.027
		(0.45)	(0.03)	(0.55)	(0.68)	(0.14)
	e_rain	-0.077	-0.018	-0.034	-0.012	-0.005
		(2.20)**	(0.44)	(0.84)	(0.28)	(0.12)
	e_temp	0.020	0.043	0.046	0.040	0.073
		(0.84)	(1.60)	(1.64)	(1.41)	(2.50)**
	log(cer_yd)	-0.124	-0.282	-0.267	-0.307	-0.359
		(0.73)	(1.23)	(1.12)	(1.28)	(1.50)
	log(reer)	0.045	-0.469	-0.629	-0.718	-0.767
		(1.19)	(3.13)***	(3.57)***	(3.04)***	(2.76)***
	log(co_pr + 1)	-0.224	-0.156	-0.143	-0.111	0.037
		(2.35)**	(1.12)	(0.99)	(0.77)	(0.26)
	log(ng_pr + 1)	-0.069	-0.053	0.033	0.014	0.054
		(0.62)	(0.46)	(0.26)	(0.10)	(0.56)
	r2	0.23	0.31	0.35	0.32	0.34
	Adjusted r2	0.11	0.19	0.23	0.20	0.22
	Number of obs.	411	332	315	303	267
	Number of countries	35	29	27	26	23
	Time dummies Yes (F=5,75)	Yes (F=6,29)	Yes (F=7,08)	Yes (F=6,43)	Yes (F=5,48)
	Test of FE vs RE FE (Х² 98,71) FE (Х² 25,06) FE (Х² 25,95) FE (Х² 29,82) FE (Х² 42,19)
	* p<0.1; ** p<0.05; *** p<0.01				
	Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables
	with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of
	heteroskedasticity.					
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 3 Description of variables

	Name	Description	Units	Availability	Source	Notes
	rain	Total annual rainfall	mm		Extracted by Olivier	
					Santoni (Santoni, 2016)	
	temp	Average annual temperatures	°C	1901-2014	from the Climatic Research Unit ts 3.23 from the database of the East Anglia University (Harris et al.,	
					2014)	
		Standardized				
		difference of				Computing method:
	e_rain	annual rainfalls	Mm			
		to their long-				-Average of « temp » and « rain »
		term average Standardized difference of		2000-2014	Authors' calculation from (Santoni, 2016)	calculated from 1901 to 2014 -Difference of « temp » and « rain » calculated from their long-term
	e_temp	annual temperatures to	°C			average in absolute value. -Division by the standard
		their long-term				deviation
		average				
	sur_area	Total country's surface	1000 hectares	1960-2012	FAO (Food and Agriculture Organization, 2015) http://faostat3.fao.org/do wnload/R/RL/E	The size of the country includes inland waters but excludes extraterritorial maritime areas. Possible variations in data may be related to updates and revisions.
					Extracted from the	
					European Center for	
					Medium range Weather	
	wind	Wind speed at 10 meters height	m/s	1979-2014	Forecasts (Dee et al., 2011)	
					http://apps.ecmwf.int/dat	
					asets/data/interim-full-	
					mnth/levtype=sfc/	
					World Development	
					Indicator (World Bank,	
	pop	Total population	-		2016)	
					http://data.worldbank.org	
					/indicator/SP.POP.TOTL	
					World Development	
	gdppc	GDP per capita	constant 2005 USD	1960-2012	Indicator (World Bank, 2016) http://data.worldbank.org /indicator/NY.GDP.PCAP.K	World bank data have been discounted in constant 2010 USD after the completion of this article
					D	
					World Development	
	cer_yd	Cereal yield	Kg per hectare of cultivated land		Indicator (World Bank, 2016) http://data.worldbank.org /indicator/AG.YLD.CREL.K	Included wheat, rice, but, barley, oats, rye, millet, sorghum, buckwheat and cereal mix
					G	
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 4 List of the countries in our sample

	Developing	At least 10% of	At least 30% of	At least 50% of	At least 75% of
	countries	canopy cover	canopy cover	canopy cover	canopy cover
	Afghanistan				
	Albania*	Albania*	Albania*	Albania*	Albania*
	Algeria*				
	Angola*	Angola*	Angola*	Angola*	
	Argentina*	Argentina*	Argentina*		
	Armenia	Armenia	Armenia		
	Azerbaijan*	Azerbaijan*	Azerbaijan*	Azerbaijan*	
	Bangladesh	Bangladesh	Bangladesh	Bangladesh	
	Belarus*	Belarus*	Belarus*	Belarus*	Belarus*
	Belize*	Belize*	Belize*	Belize*	Belize*
	Benin	Benin			
	Bhutan	Bhutan	Bhutan	Bhutan	Bhutan
	Bolivia	Bolivia	Bolivia	Bolivia	Bolivia
	Bosnia and				
	Herzegovina*				
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 5 Descriptive statistics

	Variables		Mean	Std. Dev.	Min	Max	Observations
		overall	4.310592	44.7136	0	908.6192	N = 2603
	ethanol	between		38.60318	0	441.0822	n = 202
		within		22.42655	-331.2316	471.8476	T-bar = 12.8861
		overall	.8592422	4.843732	0	64	N = 2625
	biodiesel	between		3.650156	0	35.03346	n = 202
		within		3.223976	-29.87422	41.08304	T-bar = 12.995
		overall	3.09e+07	1.24e+08	9419	1.35e+09	N = 2769
	pop	between		1.24e+08	9690.231	1.31e+09	n = 213
		within		5396437	-7.64e+07	1.34e+08	T = 13
		overall	11604.03	18430.79	134.8159	158602.5	N = 2514
	gdppc	between		19360	146.0822	131555.2	n = 198
		within		1745.581	-1322.893	38651.33	T-bar = 12.697
		overall	.8626394	.6613087	.000233	5.815677	N = 2808
	e_rain	between		.188711	.561871	2.488386	n = 216
		within		.6339319	-.7128776	4.18993	T = 13
		overall	2.072608	1.226348	.0005008	7.07183	N = 2834
	e_temp	between		.8431126	.6680627	5.612913	n = 218
		within		.8922446	-.4736174	5.141408	T = 13
		overall	3070.902	3668.727	110.1	74205.6	N = 2288
	cer_yd	between		2843.159	307.7462	28701.55	n = 177
		within		2319.333	-23630.64	48574.96	T-bar = 12.9266
		overall	398.7347	8067.366	1.425421	270094.3	N = 2160
	reer	between		3788.362	81.23111	49060.42	n = 167
		within		7123.033	-48614.22	221432.6	T-bar = 12.9341
		overall	6.327095	27.85623	0	267.02	N = 2606
	co_pr	between		26.92608	0	263.6262	n = 204
		within		6.491859	-126.7321	115.3553	T-bar = 12.7745
		overall	30.08607	150.0153	0	1700	N = 2608
	ng_pr	between		148.2701	0	1683.077	n = 203
		within		19.24908	-426.3985	253.9715	T

Table 6 -

 6 Additional specifications: developing countries, before and after 2006 Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. However, results for a non-instrumented panel are the same in terms of significance and magnitude. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.

			Forestloss10% -restrained sample	
	variables	before 2006	after 2006
		Ethanol	Biodiesel	Ethanol	Biodiesel
		production	production	production	production
	log(ethanol+1)	0.128		0.386	
		(1.39)		(2.64)***	
	log(biodiesel+1)		0.573		0.002
			(2.35)**		(0.03)
	log(pop)	-1.012	-1.069	-1.313	-1.434
		(0.69)	(0.73)	(1.04)	(1.10)
	log(gdppc)	3.955	4.388	3.414	3.032
		(1.80)*	(2.01)**	(1.67)*	(1.42)
	log(gdppc) squared	-0.278	-0.316	-0.222	-0.169
		(1.75)*	(1.99)**	(1.54)	(1.12)
	e_rain	0.089	0.089	-0.056	-0.061
		(2.01)**	(2.01)**	(1.61)	(1.72)*
	e_temp	0.010	0.007	0.041	0.037
		(0.31)	(0.21)	(1.54)	(1.39)
	log(cer_yd)	-0.164	-0.167	-0.282	-0.233
		(0.70)	(0.72)	(1.48)	(1.18)
	log(reer)	-0.195	-0.199	0.018	-0.018
		(1.60)	(1.63)	(0.06)	(0.06)
	log(co_pr+1)	-0.359	-0.350	-0.060	-0.019
		(1.66)*	(1.67)*	(0.36)	(0.11)
	log(ng_pr+1)	0.046	0.028	0.306	0.216
		(0.38)	(0.23)	(1.99)**	(1.41)
	r2	0.10	0.11	0.07	0.07
	Adjusted r2	-0.12	-0.12	-0.17	-0.17
	Number of obs.	431	431	411	417
	Number of	72	72	70	70
	countries				
	Time dummies	Yes (F=3.37)	Yes (F=3.43)	Yes (F=3.14)	Yes (F=3.06)
	Test of FE vs RE	RE (Х² 3.84)	RE (Х² 2.48) FE (Х² 21.10) FE (Х² 32.52)
	* p<0.1; ** p<0.05; *** p<0.01				
	Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables
	with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of
	heteroskedasticity.				

Table 7 -

 7 Additional specification: biodiesel production before 2006 in developing countries

				Restrained sample	
	Variables	Forestloss10%				
			Forestloss10% Forestloss30%	Forestloss50% Forestloss75%
	log(biodiesel+1)	0.635	0.573	0.602	0.552	1.137
		(2.51)**	(2.35)**	(2.34)**	(2.24)**	(2.08)**
	log(pop)	-1.846	-1.069	-0.279	-0.235	2.281
		(1.26)	(0.73)	(0.17)	(0.15)	(1.46)
	log(gdppc)	5.277	4.388	3.830	6.892	9.094
		(2.47)**	(2.01)**	(1.67)*	(2.91)***	(3.57)***
	log(gdppc)	-0.391	-0.316	-0.258	-0.464	-0.516
	squared					
		(2.52)**	(1.99)**	(1.57)	(2.81)***	(2.88)***
	e_rain	0.074	0.089	0.069	0.073	0.085
		(1.74)*	(2.01)**	(1.67)*	(1.71)*	(1.93)*
	e_temp	0.016	0.007	-0.044	-0.065	-0.008
		(0.56)	(0.21)	(1.27)	(1.90)*	(0.21)
	log(cer_yd)	0.009	-0.167	-0.085	0.049	0.007
		(0.05)	(0.72)	(0.33)	(0.17)	(0.02)
	log(reer)	0.057	-0.199	-0.246	0.011	-0.458
		(1.23)	(1.63)	(1.26)	(0.05)	(1.15)
	log(co_pr + 1)	-0.367	-0.350	-0.379	-0.376	-0.201
		(1.80)*	(1.67)*	(1.75)*	(1.65)	(1.02)
	log(ng_pr + 1)	0.079	0.028	0.001	0.021	0.122
		(0.66)	(0.23)	(0.01)	(0.16)	(1.01)
	r2	0.08	0.11	0.10	0.14	0.24
	Adjusted r2	-0.14	-0.12	-0.14	-0.09	0.02
	Nomber of obs.	531	431	378	318	246
	Number of	89	72	63	53	41
	countries					
	Time dummies	Yes (F=3.76)	Yes (F=3.43)	Yes (F=2.28)	Yes (F=2.67)	Yes (F=3.72)
	Test of FE vs RE RE (Х² 15.13)	RE (Х² 2.48) RE (Х² 11.08)	FE (Х² 23.80) FE (Х² 59.93)

* p<0.1; ** p<0.05; *** p<0.01 Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity. Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. However, results for a non-instrumented panel are the same in terms of significance and magnitude. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.

Table 8 -

 8 Additional specification: ethanol production after 2006 in developing countries

				Restrained sample	
	variables	Forestloss10%				
			Forestloss10% Forestloss30% Forestloss50% Forestloss70%
	log(ethanol+1)	0.414	0.386	0.350	0.361	0.332
		(2.90)***	(2.64)***	(2.56)**	(2.15)**	(1.97)*
	log(pop)	-1.551	-1.313	0.270	1.727	2.124
		(1.38)	(1.04)	(0.23)	(1.45)	(1.56)
	log(gdppc)	1.824	3.414	2.778	3.956	6.785
		(0.97)	(1.67)*	(1.40)	(1.64)	(2.28)**
	log(gdppc) squared	-0.149	-0.222	-0.195	-0.264	-0.453
		(1.32)	(1.54)	(1.38)	(1.60)	(2.28)**
	e_rain	-0.043	-0.056	-0.028	-0.045	-0.103
		(1.38)	(1.61)	(0.89)	(1.32)	(2.84)***
	e_temp	0.044	0.041	0.071	0.086	0.100
		(1.86)*	(1.54)	(2.99)***	(3.19)***	(3.28)***
	log(cer_yd)	-0.148	-0.282	-0.166	-0.048	0.094
		(1.11)	(1.48)	(0.98)	(0.26)	(0.42)
	log(reer)	-0.074	0.018	-0.219	-0.111	0.073
		(0.28)	(0.06)	(0.77)	(0.35)	(0.19)
	log(co_pr + 1)	-0.085	-0.060	-0.107	-0.159	-0.189
		(0.49)	(0.36)	(0.63)	(0.94)	(1.21)
	log(ng_pr + 1)	0.451	0.306	0.332	0.336	0.342
		(2.45)**	(1.99)**	(2.14)**	(2.28)**	(2.15)**
	r2	0.07	0.07	0.08	0.12	0.19
	Adjusted r2	-0.16	-0.17	-0.16	-0.13	-0.06
	Nomber of obs.	522	411	373	313	241
	Number of countries	89	70	63	53	41
	Time dummies	Yes (F=3.90)	Yes (F=3.14)	Yes (F=2.48)	Yes (F=2.30)	No (F=1.46)
	Test of FE vs RE FE (Х² 60.29) FE (Х² 21.10) RE (Х² 13.88) FE (Х² 19.84) FE (Х² 43.16)
	* p<0.1; ** p<0.05; *** p<0.01				

Table 9 -

 9 Additional specification: UMICs before and after 2006 Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. However, results for a non-instrumented panel are the same in terms of significance and magnitude. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.

				Restrained sample -forestloss10%
	Variables		Before 2006	After 2006
		Ethanol	Biodiesel	Ethanol	Biodiesel
		production	production	production	production
	log(ethanol+1)	0.204		0.461
		(1.66)*		(2.71)***
	log(biodiesel+1)			0.737		0.134
				(2.34)**		(1.56)
	log(pop)	0.759	0.782	3.883	4.196
		(0.36)	(0.38)	(1.99)**	(2.03)**
	log(gdppc)	-3.321	-2.710	17.482	20.200
		(0.60)	(0.53)	(2.33)**	(2.72)***
	log(gdppc) squared	0.192	0.147	-1.133	-1.283
		(0.55)	(0.45)	(2.46)**	(2.77)***
	e_rain	0.080	0.076	-0.093	-0.094
		(1.09)	(1.03)	(1.92)*	(1.84)*
	e_temp	0.028	0.021	0.088	0.088
		(0.61)	(0.44)	(2.36)**	(2.31)**
	log(cer_yd)	0.019	0.003	-0.188	-0.128
		(0.04)	(0.01)	(0.88)	(0.58)
	log(reer)	-0.251	-0.253	0.165	-0.151
		(1.19)	(1.21)	(0.35)	(0.33)
	log(co_pr+1)	-0.252	-0.295	-0.460	-0.456
		(0.95)	(1.25)	(2.27)**	(1.89)*
	log(ng_pr+1)	0.065	0.066	0.307	0.102
		(0.48)	(0.48)	(0.67)	(0.21)
	r2	0.20		0.19	0.34	0.31
	Adjusted r2	-0.07	-0.08	0.10	0.07
	Number of obs.	167		167	165	165
	Number of	28		28	28	28
	countries				
	Time dummies	Yes (F=3.83)	Yes (F=3.89)	Yes (F=7.42)	Yes (F=6.48)
	Test of FE vs RE	FE (Х²	.34) FE (Х² 3.8 ) FE (Х² 59.96) FE (Х² 34.18)

* p<0.1; ** p<0.05; *** p<0.01 Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity.

Table 10 -

 10 Additional specification: ethanol production before 2006 in UMICs Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity. Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. However, results for a non-instrumented panel are the same in terms of significance and magnitude. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.

					Restrained sample
	variables	Forestloss10%				
			Forestloss10% Forestloss30% Forestloss50%	Forestloss75%
	log(ethanol+1)	0.275	0.204	0.236	0.256	-0.287
		(2.29)**	(1.66)*	(1.83)*	(1.87)*	(1.23)
	log(pop)	-1.019	0.759	0.863	0.190	2.342
		(0.49)	(0.36)	(0.41)	(0.09)	(1.09)
	log(gdppc)	-5.508	-3.321	-8.106	-5.605	0.717
		(1.06)	(0.60)	(1.39)	(0.89)	(0.14)
	log(gdppc) squared	0.286	0.192	0.518	0.338	-0.013
		(0.89)	(0.55)	(1.42)	(0.87)	(0.04)
	e_rain	0.028	0.080	0.064	0.128	0.180
		(0.46)	(1.09)	(0.86)	(1.81)*	(2.40)**
	e_temp	0.019	0.028	0.023	-0.002	0.053
		(0.49)	(0.61)	(0.47)	(0.04)	(1.05)
	log(cer_yd)	0.061	0.019	-0.114	-0.167	-0.231
		(0.19)	(0.04)	(0.27)	(0.39)	(0.53)
	log(reer)	0.104	-0.251	-0.518	-0.295	-0.117
		(2.43)**	(1.19)	(1.91)*	(0.98)	(0.27)
	log(co_pr + 1)	-0.225	-0.252	-0.128	-0.088	-0.032
		(0.98)	(0.95)	(0.47)	(0.31)	(0.14)
	log(ng_pr + 1)	0.118	0.065	0.038	0.020	0.177
		(0.87)	(0.48)	(0.27)	(0.14)	(1.33)
	r2	0.18	0.20		0.25	0.24	0.29
	Adjusted r2	-0.07	-0.07	-0.02	-0.03	0.02
	Nomber of obs.	204	167		156	150	132
	Number of countries	34	28		26	25	22
	Time dummies	Yes (F=4.31)	Yes (F=3.83)	Yes (F=4.37)	Yes (F=3.85)	Yes (F=4.76)
	Test of FE vs RE	FE (Х² 61. 3) FE (Х²	.34) RE (Х² 11.63) RE (Х² 10.69)	FE (Х² 1.46)

* p<0.1; ** p<0.05; *** p<0.01

Table 11 -

 11 Additional specification: biodiesel production before 2006 in UMICs Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity. Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. However, results for a non-instrumented panel are the same in terms of significance and magnitude. The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.Tableau 12 -Additional specification: ethanol production after 2006 in UMICs Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of heteroskedasticity.

	Variables	Forestloss10%		Restrained sample	
			Forestloss10% Forestloss30% Forestloss50% Forestloss75%
	log(biodiesel+1)	0.928	0.737	0.779	0.709	0.765
		(2.72)***	(2.34)**	(2.46)**	(2.37)**	(0.72)
	log(pop)	-0.874	0.782	0.961	0.473	0.692
		(0.42)	(0.38)	(0.46)	(0.23)	(0.31)
	log(gdppc)	-4.863	-2.710	-7.092	-4.712	0.260
		(0.98)	(0.53)	(1.35)	(0.82)	(0.05)
	log(gdppc) squared	0.240	0.147	0.448	0.280	0.006
		(0.78)	(0.45)	(1.35)	(0.79)	(0.02)
	e_rain	0.022	0.076	0.060	0.123	0.163
		(0.36)	(1.03)	(0.79)	(1.70)*	(2.07)**
	e_temp	0.012	0.021	0.016	-0.006	0.054
		(0.29)	(0.44)	(0.31)	(0.13)	(1.06)
	log(cer_yd)	0.032	0.003	-0.135	-0.184	-0.164
		(0.10)	(0.01)	(0.32)	(0.42)	(0.37)
	log(reer)	0.106	-0.253	-0.515	-0.332	-0.591
		(2.42)**	(1.21)	(1.94)*	(1.01)	(0.92)
	log(co_pr + 1)	-0.274	-0.295	-0.190	-0.175	0.010
		(1.28)	(1.25)	(0.80)	(0.70)	(0.05)
	log(ng_pr + 1)	0.119	0.066	0.041	0.029	0.099
		(0.84)	(0.48)	(0.30)	(0.19)	(0.63)
	r2	0.17	0.19	0.24	0.24	0.29
	Adjusted r2	-0.10	-0.08	-0.03	-0.04	0.01
	Nomber of obs.	204	167	156	150	132
	Nomber of countries	34	28	26	25	22
	Time dummies	Yes (F=4.36)	Yes (F=3.89)	Yes (F=4.47)	Yes (F=3.86)	Yes (F=4.56)
	Test of FE vs RE FE (Х² 60. 0) FE (Х² 3.8 )	RE (Х² 8.49)	RE (Х² 9.80) FE (Х² 1.1 )

* p<0.1; ** p<0.05; *** p<0.01 * p<0.1; ** p<0.05; *** p<0.01

Biodiesel and ethanol production display a moderate level of pairwise correlation (0.51). First, they are made of different types of feedstock (e.g., palm oil, soybean, jatropha for biodiesel production and sugarcane, cassava or maize for ethanol production) which result in various types of land-use and may be related to different local characteristics. For example, one possible feedstock for biodiesel is oil palm, for which the plantations are represented as forest area in the Hansen dataset(Tropek et al., 

2014). Second,[START_REF] Choumert | The biofuel-development-nexus: A metaanalysis[END_REF] highlight the difference on their impact on economic development, which may again result in differences in tree cover loss.2 As the use of a fixed-effect model relies on within-group transformation of the dependent variables, significant variation among individuals is needed. Even though some of our variables have higher between variation, the within variance stays relatively high considering the measurement units of the variables.

We have divided the initial forest cover of the country in 2000[START_REF] Hansen | High-Resolution Global Maps of 21st-Century Forest Cover Change[END_REF] by its total surface at each level of canopy cover(Food and Agriculture Organization, 2015) 

It could be argued that extreme meteorological events such as hurricanes could directly impact on forests while falling down trees and therefore initiate forest clearing. However, data on wind speed are average values and hardly account for such extreme events.

On the one hand, the development of wind energy could be complementary to biofuel production because this renewable energy is generally not sufficient to reach countries' targets on GHG emissions[START_REF] Panwar | Role of renewable energy sources in environmental protection: a review[END_REF], IEA, 2015). Policies designed to integrate multiple objectives are thus increasing(IPCC, 2015) in emerging countries and to a lesser extent in developing countries(IEA, 2015, IEA, 2016[START_REF] Mukasa | Development of Wind Energy in Africa[END_REF] where there is a great need to
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In South America, Brazilian's bioethanol production has been reinforced with the introduction of "flex-fuel" vehicles in 2003 and rising oil prices, leading Brazil to implement their national biodiesel production plan in 2005(Sorda et al., 2010, Zhou and Thomson, 2009). In Colombia and Argentina, where ethanol production has developed rapidly, 5% mandatory blending targets for the use of biodiesel in fuels by 2008 and 2010 were introduced in 2005 and 2006. In South East Asia, Malaysia launched its national biofuels policy in 2006(Sorda et al., 2010, Zhou and Thomson, 2009) and other countries such as Indonesia, Thailand and the Philippines developed the biodiesel and the bioethanol industry through the introduction of targets for the use of biofuels in transport in2005 and 2007 (Zhou and Thomson, 2009).
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