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Abstract  
 
In this article, we explore the role of biofuel production on deforestation in developing and 
emerging countries. Since the 2000s biofuel production has been rapidly developing to 
address issues of economic development, energy poverty and reduction of greenhouse gas 
(GHG) emissions. However, the sustainability of biofuels is being challenged in recent 
research, particularly at the environmental level, due to their impact on deforestation and 
the GHG emissions they can generate as a result of land use changes. In order to isolate the 
impact of bioethanol and biodiesel production among classic determinants of deforestation, 
we use a fixed effects panel model on biofuel production in 112 developing and emerging 
countries between 2001 and 2012. We find a positive relationship between bioethanol 
production and deforestation in these countries, among which we highlight the specificity of 
Upper-Middle-Income Countries (UMICs). An acceleration of incentives for the production of 
biofuels, linked to a desire to strengthen energy security from 2006 onwards, enables us to 
highlight higher marginal impacts for the production of bioethanol in the case of developing 
countries and UMICs. However, these results are not significant before 2006 for developing 
countries, and biodiesel production appears to have an impact on deforestation before 2006 
on both subsamples. These last two results seem surprising and could be related to the role 
of biofuel production technologies and the crop yields used in their production. 
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1 Introduction 

The Bioenergy with Carbon Capture and Storage (BECCS) has a favorable carbon footprint 

and can, under certain conditions, boost growth, reduce dependence on fossil fuel imports, 

increase investments in agriculture and boost agricultural productivity (Arndt et al., 2010). For 

these reasons, biofuels are at the heart of various initiatives aimed at developing renewable 

energies. The United Nations’ Sustainable Development Goals (SDG) no 7 “Ensure access to 

affordable, reliable, sustainable and modern energy for all” by 2030 (UNDP, 2016) and the 

Sustainable Energy for All initiative (SEforALL), launched by former UN Secretary-General Ban 

Ki-Moon, aim to eradicate energy poverty and transform global energy systems to contribute to 

universal prosperity (Sustainable Energy for all, 2016). In addition, during the Paris Climate 

Conference, known as COP21, 40% of voluntary national contributions concerned measures to 

de-carbonize energies by introducing, for example, biofuels into the energy mix of the countries 

concerned (Gota et al., 2015). These initiatives have boosted biofuel production from 1,700 

barrels per day in 2001 to 4,700 barrels per day in 2012. Despite this progress, investment in 

BECCS will need to increase fourfold to contribute significantly to the fight against climate 

change according to the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2015). 

However, the production of biofuels is not without risk because of the “Agriculture, Forests 

and Other Land Uses” (AFOLU) sector, which is currently responsible for a quarter of global 

greenhouse gas emissions (GHG) (IPCC, 2015). Indeed, the crops destined for biofuel production 

induce land use change which can lead to deforestation. This land reallocation can be both 

indirectly detrimental to agricultural land as well as directly detrimental to forest land. In the 

former case, poverty reduction targets may be threatened by rising food prices. In the latter 

case, the sustainability of biofuel energies is called into question by the GHG emissions caused by 

deforestation linked to the production of biofuels. The main question is whether GHG emissions 

prevented by the use of biofuels as an energy source compensate for emissions caused by the 

loss of forest cover. One of the most important concerns is changes in indirect land use. Indeed, 
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in developing and emerging countries, the main driver of biofuel expansion is indirect land use 

change. The decline of forest is related to the displacement of agricultural activities caused by 

the expansion of crops for the production of biofuels. This phenomenon is indirect and difficult 

to detect, especially since it only appears over a long period and can take place on an 

international scale (Andrade de Sá et al., 2013, Arima et al., 2011). In the United States, for 

instance, some land use dedicated to the production of food items has been moved to forest 

areas in developing countries (Searchinger et al., 2008). 

The analysis of the biofuel-deforestation nexus is complex. The impact of biofuels on 

deforestation through land use change depends primarily on the type of crops used (Gao et al., 

2012). The heterogeneity of the types of raw materials used in the production of bioethanol and 

biodiesel implies the existence of various transmission channels between biofuel production and 

deforestation. Not all crops are subject to the same type of land use changes and some are 

exploited on already agricultural or marginal land, especially in industrialized countries. 

Moreover, yield and price levels differ significantly by crop, which has an impact on production 

conditions and on the extent of land use change (Lapola et al., 2010). High crop yields allow an 

increase in the production of biofuels by an intensification of the exploitation of agricultural raw 

materials. In the case of indirect land use change, the productivity of the displaced agricultural 

activity comes into place. These changes depend partly on raw material market prices and on 

the demand elasticity (Lapola et al., 2010, Arima et al., 2011, Andrade de Sá et al., 2013). There 

are numerous studies at the global and national levels on the biofuel-deforestation nexus, but 

they are mainly based on simulations. Econometric studies are scant and mainly based on case 

studies at the subnational level. These studies allow easier access to accurate information about 

the types of raw materials used, their prices, yields and the share allocated to the production of 

biofuels (Gao et al., 2011).  

To the best of our knowledge, however, no studies have yet been conducted within a cross-

country panel framework. Firstly, this paper contributes to the literature by filling this gap and 

by providing empirical insights into the impact of biofuels on deforestation in developing and 
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emerging countries. We use a new data-set based on time-series analysis of satellite images on 

112 countries between 2001 and 2012, offering a unique level of precision concerning forest 

losses (Hansen et al., 2013). To address the endogeneity problem of the biofuel variable, we use 

panel econometric methods with instrumental variables. Secondly, this study is the first to 

analyse the effect of biofuels on deforestation according to the type of biofuel (bioethanol or 

biodiesel), the level of development, the density of forest cover and the acceleration of biofuel 

production. Our results show that bioethanol production contributes to increased deforestation 

in our sample of countries, and the effect is greater in low-density forest areas that may have 

already undergone anthropogenic changes. In other words, the development of bioethanol is 

more detrimental to degraded forests than to primary forests. Finally, the effect of bioethanol is 

significant over the period 2007-2012 and displays greater marginal effects than for the entire 

period. In contrast, we find no significant effect of biodiesel on deforestation in the total sample. 

By restricting the sample to Upper Middle Income Countries (UMICs) for the period 2001-2006, 

the effect of biodiesel on deforestation becomes positive and significant. 

This article is organized as follows: Section 1 presents the literature review. We focus our 

attention on the contributions of empirical and geographical analyses on the relationship 

between biofuel production, land use change and deforestation. In Section 2, we present the 

empirical analysis by describing the construction of our database and our empirical model. 

Section 3 presents and discusses the results. Section 4 concludes. 

2 Biofuel production, land use change and deforestation 

2.1 Geographical analyses 

Most articles that study biofuel production are based on geographical analyses and use 

remote sensing techniques (Rudorff et al., 2010, Adami et al., 2012, Ferreira et al., 2014). The 

mappings used take into account all of the physical characteristics of the crops concerned and 

make it possible to observe direct change in land use over a period of time. They provide 

qualitative and quantitative information on the development of biofuels and the loss of forest 
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cover, but do not allow to investigate the classic determinants of deforestation (Gao et al., 2011). 

These biofuel production studies were mainly carried out on Brazil during the first decade of the 

2000s and analysed the country’s capacity to meet the demand for biofuels (Rudorff et al., 2010, 

Adami et al., 2012). Rudorff et al. (2010) show that in 2008/2009, 56.5% of the additional land 

required for sugarcane production expanded to pasture land, 40.2% to arable land and less than 

3.5% to other land types, including forest areas. Adami et al. (2012) found that these figures are 

respectively 70%, 25% and 0.6% for the forest areas. The authors found that it would therefore 

not be necessary for Brazil to resort to further deforestation in the coming years to meet the 

demand for biofuels (Adami et al., 2012). However, Ferreira et al. (2014) show that the 

expansion of cultivated areas leads to a restructuration of land use and of the agrarian structure 

in the state of Sao Paulo and thus to a change in the state of the forest cover, especially when 

biofuel production activities are less productive. The authors map out 23 years, from 1986 to 

2009 to analyse the evolution of land use over time and find that it is mainly Brazil's biofuel 

production policies that provide incentives to produce ethanol and, more generally, sugar, which 

has contributed to this agrarian restructuration. 

Some studies use empirical techniques to confirm findings from mapping, measure and 

analyze changes in indirect land use and study the factors behind it (Barona et al., 2010, Arima et 

al., 2011, Castiblanco et al., 2013). Barona et al. (2010) use a geographical analysis to observe 

the displacement of land use over time (Ferreira et al., 2014), and regression analysis (Ordinary 

Least Square (OLS)) to capture the relationship between the expansion of cattle breeding and 

deforestation between 2000 and 2006 in Amazônia Legal. They find that the expansion of cattle 

breeding is responsible for deforestation rather than the exploitation of soybeans which is an 

underlying cause of deforestation. Arima et al. (2011) conducted a study on the same 

geographical area between 2003 and 2008 using mapping methods as well as statistical methods 

more adapted to the analysis of deforestation. The use of a spatial regression model allows them 

to capture the link between the expansion of mechanized agriculture and the conversion of 

pastures to forest frontiers. Extensive grazing activities are currently shifting to the cheapest 
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land, that is, to forest areas, because of the expansion of mechanized farming. In order to control 

for the effect of variables specific to the geographical area and capture indirect long-term land 

reallocation linked to the expansion of soybean crops, the authors then run a panel model in 

which they introduce the lagged interest variable for a period. Thus, between 2003 and 2008, 

land allocated to soybean production is estimated to have spread over more than 39,000 km², 

mostly on agricultural land. When they do not control for indirect long-term land use change, a 

10% decrease in this figure reduces deforestation by more than 4,000 hectares and by 25,000 

hectares otherwise. 

Finally, Castiblanco et al. (2013) use cartographic analysis to observe the change in land use 

in Colombia between 2002 and 2008, followed by a temporal model to determine the factors 

behind this phenomenon and the country's capacity to meet the demand for biodiesel by 2020. 

Palm plantations would tend to spread over pasture land, agricultural land and then to a lesser 

extent to forest land. A logit spatial model finally allows the authors to determine the probability 

of the expansion of palm oil crops on the territory by 2020. Because of the fragility of the 

ecosystems concerned, the authors conclude that the country should not pursue its objectives of 

accelerating the development of biodiesel by 2020. 

2.2 Empirical analyses 

Gasparri et al. (2013) and Gollnow and Lakes (2014) confirm the existence of direct and 

indirect land use changes using exclusively empirical methods, although their work is not 

focused on the biofuel issue. Gasparri et al. (2013) focus on the role of soybean expansion in 

Northern Argentina from 1972 to 2011 due to the global acceleration in the demand for meat. 

The authors find a link between the expansion of soybean crops and deforestation, which may 

involve the intensification of cattle breeding. However, the strength of this link depends on the 

incentive policies put in place by the State and the macroeconomic context observed during the 

periods under consideration. The authors begin by constructing a random effects panel model 

over 6-time periods and 17 departments to identify the role of soybean crops as a driver of 
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deforestation and to analyze the effect of competing agricultural activities. The use of a temporal 

model for the Anta sector, one of the most deforested zones in Argentina, allows the authors to 

identify the major role of livestock production linked to the demand for meat and the role of 

soybean prices. The authors confirm the existence of an indirect change in land use and highlight 

the effects of soybean crop income supplements on the acceleration of deforestation. Gollnow 

and Lakes (2014) assume that there is a link between deforestation and soybean expansion 

through the displacement of livestock and test the strength of this link before and after the 

implementation of the plan to prevent and control deforestation through the PPCDAm (Plano de 

Ação para Prevenção e Controle do Desmatamento na Amazônia Legal - Action Plan for 

Prevention and Control of the Legal Amazon Deforestation) in 2004. They carry out their study 

on the municipalities of Brazil over a 9-year period from 2001 to 2012 and use the same method 

as Gasparri et al. (2013). They confirm the results stated by Gasparri et al. (2013) and find a 

close link between soybean expansion and deforestation by the displacement of land allocated to 

cattle. However, this correlation decreases after the implementation of the PPCDAm treaty from 

2005 onwards, which is well in line with the important role of state policies in land allocation 

decisions (Gasparri et al., 2013). 

Our paper more specifically builds on Andrade de Sá et al. (2013), who integrate the 

production of biofuels into an equation accounting for the classic determinants of deforestation. 

They rely on Pfaff (1999) and assume that the factors of deforestation are those that increase the 

rents associated with the expansion of agriculture: increase in the price of outputs, better agro-

ecological conditions, lower input prices, better transport infrastructure, etc. They challenge the 

spatial econometric methods used in the literature that impose a structure of displacement in 

land use. In order to describe the process of indirect land use change, the authors proceed in 

several stages: (i) estimation of the indirect link between sugar cane exploitation in Sao Paulo 

and deforestation in the Amazon by the Generalized Method of Moments with the Arellano-Bond 

estimator; and (ii) estimation of the direct link between sugar cane exploitation and cattle 

expansion and then between cattle expansion and deforestation with a fixed effects panel 
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estimator. With the Arellano-Bond estimator, the authors explain the number of hectares of land 

deforested by past deforestation, cattle herd and number of cultivated hectares of sugar cane, 

while controlling for potential endogeneity bias. The authors find a significant effect of cattle 

livestock on deforestation and the addition of interaction terms between cattle and sugarcane is 

indicative of an indirect land use change. In addition, the effect of bovine livestock on 

deforestation is sensitive to the number of hectares of sugarcane cultivated. The introduction of 

the lagged variables makes it possible to show that the effects of cattle expansion on 

deforestation are much greater over the long term than over the short term, which recalls the 

results of Arima et al. (2011). Thus, an additional livestock unit would induce 3 hectares of 

deforestation over the short and medium term and 4 hectares over the long term when the 

indirect effect of sugar cane is taken into account. Fixed-effect estimators confirm the existence 

of the indirect land use change. The authors find a negative correlation between the expansion of 

sugar cane and the presence of livestock in Sao Paulo and a positive correlation between the 

expansion of areas allocated to cattle breeding and loss of forest cover in the Amazon. 

3 Data and econometric specification 

3.1 Data 

This section proposes a focus on the definition and measurement of deforestation and biofuel 

production. Descriptive statistics are provided in Table 5 in the Appendix.  

3.1.1 Measuring forest cover loss 

Defining “deforestation” is a crucial issue. In this paper, we consider the data issued by 

remote sensing methodology that burgeoned in the wake of the seminal presentation of Hansen 

et al. (2013). As a consequence, the term “forest loss” is preferred to “deforestation”. The 

definition of “forested areas” is different from that used in the Global Forest Resource 

Assessments (FRAs) conducted under the auspices of the Food and Agriculture Organization of 

the United Nations (FAO), which are rather based on a land use definition (Keenan et al., 2015). 

FRA data has attracted many criticisms such as the lack of homogeneity in the measurement 
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methodology (see e.g. Grainger, 2008). The Hansen data are deemed to be based on a consistent 

definition of forests over time and space. Forests are defined according to a minimum threshold 

of percentage of tree cover (10%, 15%, 20%, 25%, 30%, 50%, 75%). “Forest loss” is reported 

when the percent of tree canopy cover falls below the threshold, using a resolution of 30 by 30 

meters. Though the Hansen data have been criticized (e.g., Tropek et al., 2014), they are 

increasingly recognized as being more reliable than previous datasets. They, therefore, deserve 

greater attention in analyses of the drivers of forest dynamics (Hansen et al., 2014). The main 

implication of using such data is taking different thresholds of tree cover since the extent of 

forest is sensitive to it (Sexton et al., 2016). In addition, it is not possible to compute net forest 

losses as the difference between forest losses minus forest gains. It is worth noting that remote 

sensing measures of forest cover do not currently enable a distinction to be made between 

natural forests and tree plantations. Hansen’s definition of forests encompasses “all vegetation 

taller than 5m in height” (Hansen et al., 2013 - Supplementary material).   

3.1.2 Measuring biofuel production 

We use aggregate biofuel production data from the United States Energy Information 

Administration (US EIA) (EIA, 2011) from 2000 to 2012. Descriptive statistics are provided in 

the Appendix (Table 5). These data are broken down into ethanol and biodiesel production and 

expressed in thousands of barrels per day. For the US EIA, biodiesel production comprises any 

fuel produced from biomass raw materials. Biodiesel production includes biofuels derived from 

soybean, canola or any other vegetable, animal or recycled oils and ethanol production includes 

biofuels produced from sugar and corn-based agricultural crops (EIA, 2011). Given the 

specificities of countries concerning biofuel production, our database is heterogeneous, which 

implies the existence of several outliers among our observations (Figure 4 in the Appendix).   

3.2 Empirical evidence of the effect of biofuel expansion on forest loss 
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Our database is made up of 112 developing and emerging countries over the 2001-2012 

period. Countries are classified according to their minimum level of forest cover for each degree 

of canopy cover. We follow the World Bank classification to distinguish the UMICs.  

3.1.3 Basic econometric specification 

The basic specification is a panel data model in which the dependent variable is            , 

and represents the measure of forest loss taken from the Hansen dataset. % indicates the type of 

forest according to the density of canopy cover (10%, 30%, 50%, 75%): 

                                           
          (3) 

Our interest variable is         . This variable is broken down into bioethanol production 

        and biodiesel production          . We make a distinction between both variables to 

avoid misleading comparisons between them.1  

A fixed-effect model seems more suitable than a random one when we expect a constant 

unobserved heterogeneity over time to have an impact on the dependent variable, as may be the 

case in our sample.               stand for the constant, country and year fixed-effects, 

respectively.       is the error term. Country fixed effects account for all characteristics such as 

distance to the Equator, landlockedness, and the quality of institutions that have an impact on 

forest cover loss but that do not vary much over the period under consideration. The use of a 

fixed-effect model is particularly suitable when the independent variables show a high intra-

individual variance2 (Table 5 in the Appendix) and when the sample is not random, as is the case 

with developing and emerging countries. Year dummies control for common unobservable 

                                                       
1 Biodiesel and ethanol production display a moderate level of pairwise correlation (0.51). First, they are made of 
different types of feedstock (e.g., palm oil, soybean, jatropha for biodiesel production and sugarcane, cassava or maize 
for ethanol production) which result in various types of land-use and may be related to different local characteristics. 
For example, one possible feedstock for biodiesel is oil palm, for which the plantations are represented as forest area 
in the Hansen dataset (Tropek et al., 2014). Second, Choumert et al. (2017) highlight the difference on their impact on 
economic development, which may again result in differences in tree cover loss.   
 
2 As the use of a fixed-effect model relies on within-group transformation of the dependent variables, significant 
variation among individuals is needed.  Even though some of our variables have higher between variation, the within 
variance stays relatively high considering the measurement units of the variables. 
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variables such as the price of raw materials and fossil energies.   is the vector of control 

variables.  

To analyse the relationship between biofuel production and forest cover loss in countries in 

the dataset with different types of forest coverage, we choose to gradually restrain our sample 

by introducing a filter for a minimum threshold of percentage of tree cover that a country 

presents at each level of canopy cover       .3 In the regressions where the sample is 

restrained, only the countries that have at least 10% forest cover at the studied level of canopy 

cover are included.  We also include the regression without the restrained sample.  

3.1.4 Dealing with potential endogeneity  

Since biofuel production and land allocation decisions can be taken simultaneously, biofuel 

production can be suspected of endogeneity. Although any potential endogeneity is partly taken 

into account with country fixed-effects and temporal dummies, we tackle this issue further with 

instrumental variables.  

Biofuel production is instrumented by wind speed and by the lagged biofuel production. 

Wind speed is a proxy for a given country’s potential in wind energy production. Data on wind 

speed comes from the ERA Interim database from the European Center for Medium-Range 

Meteorological Forecasts (ECMWF). It is expressed in meters per second and has been calculated 

at a 10 meter high speed (Dee et al., 2011). It is supposed to have no impact on deforestation 

except through its effect on biofuel production.4 This variable is considered as exogenous since it 

may represent a complementary or substitutable strategy to the development of biofuels as a 

renewable energy.5 Moreover, lagged biofuel production would not have any effect on 

                                                       
3 We have divided the initial forest cover of the country in 2000 (Hansen et al., 2013) by its total surface at each level 
of canopy cover (Food and Agriculture Organization, 2015) 

4 It could be argued that extreme meteorological events such as hurricanes could directly impact on forests while 
falling down trees and therefore initiate forest clearing. However, data on wind speed are average values and hardly 
account for such extreme events.  
 
5 On the one hand, the development of wind energy could be complementary to biofuel production because this 
renewable energy is generally not sufficient to reach countries’ targets on GHG emissions (Panwar et al., 2011, IEA, 
2015). Policies designed to integrate multiple objectives are thus increasing (IPCC, 2015) in emerging countries and to 
a lesser extent in developing countries (IEA, 2015, IEA, 2016, Mukasa et al., 2013) where there is a great need to 
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deforestation at time t in our specification as it only occurs after the change in land use. In 

addition, our model does not account for indirect land-use changes as it can only be observed 

over a longer period (Andrade de Sá et al., 2013).  

3.1.5 Control variables 

All socio-economic, agricultural and energy variables of the countries in our sample are 

defined and precisely described in Table 3 in the Appendix. Their descriptive statistics are also 

reported in Table 5. These control variables can be categorized into three distinct groups.  

We first use socio-economic data on Gross Domestic Product (GDP) and population from the 

World Bank development indicators (World Bank, 2015). We use the following variables that 

represent socio-economic characteristics of countries to control for underlying causes of 

deforestation (Angelsen and Kaimowitz, 1999, Geist and Lambin, 2002); GDP per capita      , 

squared GDP per capita        and population    . The GDP per capita variable in its level and 

its square are introduced to capture the existence of an Environmental Kuznets Curve (EKC) 

(Grossman et Krueger, 1995), although its existence has been debated in the literature 

(Choumert et al., 2013). The     variable stands for the size of the country; it has not been 

shown to have a clear-cut effect on deforestation in the literature (Angelsen et Kaimowitz, 1999, 

Pfaff, 1999).6 

Second, we use the following control variables to account for the profitability of agricultural 

activities: standardized rainfall        and temperatures shocks       , cereal yields        

and Real Effective Exchange Rates (REERs)      Other agricultural activities compete with 

biofuel production in terms of land use, especially when an increase in the associated rent has an 

impact on decisions of land use and deforestation (Pfaff, 1999, Andrade de Sá et al., 2013). We 

                                                                                                                                                                         
improve both climate change mitigation and energy security. Here, the development of biofuel production could 
attract investments and make the development of the wind sector more profitable (IEA, 2015, Keeley and Ikeda, 
2017). On the other hand, as both these energies can be used for the same purpose, they can be substitutes due to the 
existence of constraints on land availability and investment capacities (IEA, 2016). 
6
 Variables related to population density do not always exhibit high significance because of their ambiguous role on 

deforestation (Angelsen et Kaimowitz, 1999, Pfaff, 1999). In addition, this variable is often subject to endogeneity 
issues and to a high degree of collinearity with the other variables in the model (Angelsen and Kaimowitz, 1999, Pfaff, 
1999). Indeed, it often loses its significance when many variables are added to the model as it responds to many other 
factors (infrastructures for example) (Pfaff, 1999). 
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use climatic data on precipitations and temperatures from the Climatic Research Unit of the 

University of East Anglia (Santoni, 2016) to draw an index of standardized climatic shocks 

defined as the standardized difference of precipitations and temperatures to their long-term 

annual average. This allows us to capture potential “el Niño effects”. These phenomena can 

induce deregulation of climatic conditions in tropical countries, leading to significant impact on 

deforestation and agricultural activities such as droughts, fire… (Alencar et al., 2015). The cereal 

yields variable is taken from the World Bank development indicators (World Bank, 2015) and 

allows us to approximate the profitability of agricultural competing land uses (Lapola et al., 

2010, Arima et al., 2011, Andrade de Sá et al., 2013, Searchinger et al., 2008). We introduce the 

REER variable to represent country competitiveness, excluding the oil sector. This variable was 

constructed from the 2016 CEPII database for the international trade analysis (Gaulier and 

Zignano, 2010). A depreciation of REERs induces an increase in the relative price of competing 

and of internationally tradable activities for the production of biofuels (wood, energy…) and may 

lead to a rise of the pressure on forest. This effect should be relevant for developing and 

emerging countries (Leblois et al., 2017) in which REERs variations are temporary due to their 

instability (Richards et al., 2012, Arcand et al., 2008). Indeed, in developed countries, a stable 

and sustainable increase in relative prices should increase investment opportunities in the 

forestry sector and have a positive effect on afforestation (Arcand et al., 2008).  

Third, the energy supply potential of the countries in our sample is taken into account with 

crude oil reserves   _   and natural gas reserves   _   variables that are taken from the US EIA 

and represent the estimated quantities of energetic resources that are highly likely to exist 

based on available geological data and existing technologies (EIA, 2011). Since biofuels can be 

considered as a substitute for fossil energies, the match between demand and supply for fossil 

fuels may thus modify the influence of biofuels on deforestation. Gas and crude oil reserve 

variables represent the potential of countries for fossil fuel production. Those that have larger 

fossil fuel reserves should be more likely to respond to energy security requirements, especially 

when they are subject to high energy needs. 
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4 Results and discussion 

The results from the basic specification (equation 3) are provided in Table 1 below. We find 

that a 1% increase in bioethanol production should lead, ceteris paribus, to an average 0.143% 

forest cover loss, i.e., more than 5 million hectares over the entire period compared to the 

existing forest cover in 2000. This effect diminishes with the increase in the threshold on the 

canopy density percentage. It falls from 0.126% for countries that contain at least 10% of forest 

with a 10% level of canopy cover (i.e., approximately 4,500,000 hectares of forest cover loss) to 

0.118% for countries that contain at least 10% of forest with a 30% level of canopy cover (less 

than 3,500,000 hectares). When we restrain the sample to take into account only countries with 

the highest threshold of canopy cover, the effect of bioethanol production becomes insignificant. 

Direct change in land use should thus only occur on less dense forest area where anthropogenic 

activities have likely already taken place. Moreover, countries that hold the highest threshold of 

canopy cover are not always similar to those that produce the greatest amount of bioethanol, 

and vice-versa. Consequently, when we restrain the sample, some countries that were among 20 

of the world’s largest biofuel producers (including Pakistan, Kazakhstan, Turkey, Argentina, 

India and China) no longer fulfil the condition of the minimum density of canopy cover that has 

to be reached in order to be included in the analysis (at least 10% of forest with a 30%, 50% and 

75% threshold of canopy cover). This reinforces the idea that changes in land use may occur on 

agricultural land, at least at the initial stages of land use changes.  

The rapid development of biofuel production during the last decade may also be one of the 

underlying causes of deforestation (Angelsen et Kaimowitz, 1999, Gasparri et al., 2014). Indeed, 

the effect of biofuel production on forest cover loss can occur as a result of a country’s rise of 

income allowing for higher investment capacities and a more intensive use of forests (Gasparri 

et al., 2014). It might also occur through a positive effect on the growth and development of the 

country, such a hypothesis being reinforced by the positive and significant effect of the real GDP 

per capita on deforestation. In addition, the negative and significant effect of its squared shape 

indicated the presence of an increasingly pronounced EKC (Grossman et Krueger, 1995) as a 
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stricter definition of deforestation is used. This phenomenon may confirm the existence of a 

forest transition, more pronounced in countries that host the densest forests. Thus, in these 

countries, the loss of forest cover slows down and reverses for lower levels of economic 

development than in countries that have less dense forests. This result seems consistent with a 

change in land-use, which is not likely to take place in forest with the highest level of canopy 

cover.  

The negative effect of an increase in REERs on forest cover loss indicates that the effect of 

agricultural production on deforestation declines when the competitiveness of the economy is 

slowed down by the increase in relative prices of agricultural activities (Arcand et al., 2008). A 

REER appreciation makes the profitability of the export sector decreasing which penalize 

logging and agricultural activities. This result could be linked to agricultural activities being 

complementary to biofuel production and seems relevant only for countries that contain at least 

10% of forest with a 10% to 30% threshold level of canopy cover. Again, the densest forests do 

not appear to be affected by direct land use change or thus by the profitability of agricultural 

activities. 

We do not find any effect of biodiesel production7 over forest cover loss in developing 

countries. One possible explanation may be related to the way the Hansen database is 

constructed (Tropek et al., 2014). In some countries (e.g., Malaysia and Indonesia) biodiesel 

production could result in forest cover gain due to the extension of palm oil plantations. In 

addition, our sample remains heterogeneous, which can attenuate the results obtained on 

biofuel production. Indeed, in Table 1, we take into account countries subject to varying issues in 

terms of economic development, natural resource exploitation and energy security. Still, 

following Gasparri et al. (2014), biodiesel production might not be likely to generate sufficient 

revenues to intensify the exploitation of forested area or to accelerate growth and development 

in the country.  

                                                       
7 Results are available upon request. 
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Table 1 – Basic specification: ethanol production in developing countries 

Variables Forestloss10% 
Restrained sample 

Forestloss10% forestloss30% Forestloss50% Forestloss75% 

log(ethanol+1) 0.143 0.126 0.118 0.081 0.003 
 (2.33)** (2.00)** (1.91)* (1.29) (0.04) 

log(pop) -0.458 -0.201 0.304 0.208 1.189 
 (0.82) (0.33) (0.51) (0.32) (1.69)* 

log(gdppc) 2.674 3.104 2.446 3.991 5.869 
 (3.12)*** (3.59)*** (2.76)*** (3.78)*** (4.94)*** 

log(gdppc) 
squared 

-0.180 -0.205 -0.160 -0.256 -0.308 

 (2.95)*** (3.14)*** (2.41)** (3.40)*** (3.85)*** 
e_rain -0.003 0.018 0.011 0.007 -0.017 

 (0.10) (0.68) (0.46) (0.28) (0.63) 
e_temp 0.018 0.019 0.017 0.022 0.053 

 (1.00) (0.96) (0.89) (0.99) (2.37)** 
log(cer_yd) -0.049 -0.206 -0.125 0.037 -0.073 

 (0.48) (1.47) (0.83) (0.20) (0.33) 
log(reer) 0.034 -0.197 -0.292 -0.165 -0.339 

 (0.87) (2.01)** (2.07)** (0.99) (1.61) 
log(co_pr + 1) -0.173 -0.143 -0.202 -0.259 -0.078 

 (1.73)* (1.15) (1.59) (1.97)** (0.89) 
log(ng_pr + 1) 0.007 -0.038 0.002 0.056 0.118 

 (0.08) (0.45) (0.03) (0.59) (1.85)* 

r2 0.14 0.21 0.25 0.26 0.35 
Adjusted r2 0.03 0.11 0.15 0.16 0.25 

Number of obs. 1056 843 751 631 487 
Number of 
countries 

92 73 64 54 42 

Time dummies8 Yes (F=5.26) Yes (F=5.88) Yes (F=4.79) Yes (F=4.23) Yes (F=3.52) 
Test of fixed 

effect (FE) vs 
random effect 

(RE) 9 

FE (Х²  5.0) FE (Х² 17.8) FE (Х²  3.9) FE (Х² 46.7) FE (Х² 104.8) 

* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in a logarithm form to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm 
variables with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroscedasticity. 

 

4.1 The specific case of Upper Middle Income Countries 

Many UMICs are endowed with large stocks of tropical primary forests. They have an 

intermediate position that makes dealing with low and high-income countries an issue for 

interpretation of the results. UMICs could more likely rely on their natural capital, which can, in 

turn, result in greater biofuel production at the expense of forested areas. This risk is even 

                                                       
8 We conduct a Fisher test for the significance of the temporal dummies. 
 
9 We run a xtoverid over-identification test which provides equivalent results to the Hausman FE vs RE effect test 
when taking into account the presence of heteroskedasticity in the model (Arellano, 1993). However, the inclusion of 
temporal dummies is not supported. 
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greater as UMICs have shown accelerated adoption of biofuels in their energy policies 

(Castiblanco et al., 2013). Figure 1 below confirms this. UMICs, however, differ from lower 

middle income or low income countries, as their development level would allow their 

inhabitants to exhibit a positive willingness to pay for environmental protection (Vincent et al., 

2014, Tait et al., 2016), which may lead to greater incentives for governments to preserve the 

environment, in particular with the introduction of targets on the use of renewable energies 

(Zhou and Thomson, 2009).  

Figure 1 – Biofuel production according to country income level

 

Source: Authors’ calculation from the US EIA (EIA, U., 2011) 

Results presented in Table 2 below demonstrate the specific forest dynamics of UMICs. 

Indeed, we can observe that the effect of bioethanol production is strongly significant compared 

to results we obtain on all developing countries. An average 1% increase in bioethanol 

production per day would result in an average 0,214% loss of forest cover, i.e., more than 

4,900,000 hectares, compared to the existing forest cover in 2000. Marginal coefficients remain 

stable when we use a stricter definition of deforestation but only up to a 50% level of canopy 

cover, where forest cover loss over our period would then be more than 3,400,000 hectares. In 

UMICs, biofuel production would imply a land use change on higher density forest than in the 

initial case, that is all developing countries. Nevertheless, the fact that biofuel production is not 

significant in countries that hold at least 10% forest with a 75% level of canopy cover allows us 
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to confirm that land use change should not impact densest forests. As for developing countries, 

the REER has a negative impact on deforestation, which implies that its appreciation results in a 

decline in the profitability of agricultural and logging activities for exports and therefore in a 

reduction of the effect of biofuel production on deforestation. 

Table 2 – Bioethanol production in UMICs 

Variables Forestloss10% 
Restrained sample 

Forestloss10% Forestloss30% Forestloss50% Forestloss75% 

log(ethanol+1) 0.214 0.193 0.197 0.210 0.064 
 (3.66)*** (3.18)*** (3.24)*** (3.17)*** (0.93) 

log(pop) -0.862 -0.189 -0.180 -0.284 0.591 
 (1.12) (0.21) (0.20) (0.31) (0.66) 

log(gdppc) -1.407 -0.281 -1.827 -2.247 0.479 
 (0.58) (0.11) (0.68) (0.78) (0.15) 

log(gdppc) 
squared 

0.066 -0.005 0.091 0.120 -0.027 

 (0.45) (0.03) (0.55) (0.68) (0.14) 
e_rain -0.077 -0.018 -0.034 -0.012 -0.005 

 (2.20)** (0.44) (0.84) (0.28) (0.12) 
e_temp 0.020 0.043 0.046 0.040 0.073 

 (0.84) (1.60) (1.64) (1.41) (2.50)** 
log(cer_yd) -0.124 -0.282 -0.267 -0.307 -0.359 

 (0.73) (1.23) (1.12) (1.28) (1.50) 
log(reer) 0.045 -0.469 -0.629 -0.718 -0.767 

 (1.19) (3.13)*** (3.57)*** (3.04)*** (2.76)*** 
log(co_pr + 1) -0.224 -0.156 -0.143 -0.111 0.037 

 (2.35)** (1.12) (0.99) (0.77) (0.26) 
log(ng_pr + 1) -0.069 -0.053 0.033 0.014 0.054 

 (0.62) (0.46) (0.26) (0.10) (0.56) 

r2 0.23 0.31 0.35 0.32 0.34 
Adjusted r2 0.11 0.19 0.23 0.20 0.22 
Number of 

obs. 
411 332 315 303 267 

Number of 
countries 

35 29 27 26 23 

Time dummies Yes (F=5,75) Yes (F=6,29) Yes (F=7,08) Yes (F=6,43) Yes (F=5,48) 
Test of FE vs RE FE (Х² 98,71) FE (Х² 25,06) FE (Х² 25,95) FE (Х² 29,82) FE (Х² 42,19) 
* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  

 

We now analyze whether the temporal heterogeneity occurring over our period could 

partially explain the insignificant effect of biodiesel production on deforestation.10 Indeed, 

                                                       
10 One other possible reason is that the Hansen dataset, despite being more reliable, makes the distinction between 
forest cover and plantations difficult to account for. This could be problematic as the largest biodiesel producers are 
Indonesia, Malaysia and Thailand, whose biodiesel production is mainly based on palm oil feedstock. 
Results are available upon request. 
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Gasparri et al. (2013) and Gollnow et Lakes (2014) observe that the effect of the policies 

implemented, as well as the macroeconomic context of the country, reveal coupling and 

decoupling periods between deforestation and expansion of mechanized agriculture. Similarly, 

Ferreira et al. (2014), show that agrarian restructuration that occurred in the State of Sao Paulo 

was partly linked to the incentive for ethanol production implemented by the Brazilian state 

beginning in the 1980s. 

4.2 Acceleration of production since 2007 

In order to account for the temporal heterogeneity over our period, we divide our sample 

into sub-periods, taking 2006 as the reference date. We run our baseline regression on all 

developing countries and on UMICs before 2006 and from 2007. Results are provided by 

threshold levels of canopy cover in the Appendix (table 6 to 12) in order to confirm the stability 

of results when a restricted definition of deforestation is used.  

Several elements suggest that countries are not subject to the same challenges during these 

two sub-periods. We notice a difference in the rate of increase in biofuel production from 2006, 

especially for the production of biodiesel (Figure 2 below).11 Fostering the use of renewable 

energies and accelerating biofuel development since 2006 could be linked to a strong motivation 

to maintain energy security (Zhou et Thomson, 2009, Wianwiwat and Asafu-Adjaye, 2013). 

Indeed, we observe a great increase in crude oil prices during the 2005-2008 period followed by 

oil price instability since the 2008 financial crisis (Figure 3 below). The acceleration in biofuel 

development since 2006 is confirmed by the numerous incentives that have been implemented 

for biofuel production in developing countries and mostly in UMICs over this period (Sorda et al., 

2010, Zhou and Thomson, 2009). These measures mainly concern the acceleration of bioethanol 

                                                       
11 A Chow test run on our specification estimated using OLS indicated the existence of a structural break in bioethanol 
and biodiesel production on developing countries and on UMICs. 
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production and to a lesser extent biodiesel production in countries where this kind of biofuel 

had already been developed previously.12 

Figure 2 - Evolution of biofuel production 

 

Source: Authors’ calculation from the US EIA data (EIA, U., 2011) 

Figure 3 - Evolution of crude oil prices 

 

Source: Authors’ calculation from BP Global data (BP Global, 2015) 

                                                       
12 In South America, Brazilian's bioethanol production has been reinforced with the introduction of "flex-fuel" vehicles 
in 2003 and rising oil prices, leading Brazil to implement their national biodiesel production plan in 2005 (Sorda et al., 
2010, Zhou and Thomson, 2009). In Colombia and Argentina, where ethanol production has developed rapidly, 5% 
mandatory blending targets for the use of biodiesel in fuels by 2008 and 2010 were introduced in 2005 and 2006.  In 
South East Asia, Malaysia launched its national biofuels policy in 2006 (Sorda et al., 2010, Zhou and Thomson, 2009) 
and other countries such as Indonesia, Thailand and the Philippines developed the biodiesel and the bioethanol 
industry through the introduction of targets for the use of biofuels in transport in 2005 and 2007 (Zhou and Thomson, 
2009). 
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When looking at developing countries before 2006, our results in Table 6 in the Appendix 

indicate a significant impact of biodiesel production on forest cover loss, even for countries that 

hold at least 10% of forest with a 75% level of canopy cover (Table 7 in the Appendix). Marginal 

effects are much higher than in the case of bioethanol production, which can be an indication of 

a larger direct land-use change for this type of biofuel. An average 1% increase of biodiesel 

production per day in developing countries would lead to an average 0.573% loss of forest cover 

or to an average 1.137% when taking a stricter definition of deforestation. These results are 

consistent with those found by Castiblanco et al. (2013), suggesting that biofuel crops mainly 

expand on agricultural and pastured land, and to a lesser extent on forested land.  

If we restrain the sample to UMICs before 2006, biodiesel production remains significant 

(Tables 9 and 11 in the Appendix) with a higher marginal impact than for the entire sample. 

However, in all developing countries, the impact of biodiesel production in terms of land-use 

change seems to occur on forests with a higher level of canopy cover (Table 7 in the Appendix). 

This result is surprising and may be explained by lower yields for biofuel crops leading to larger 

changes in land-use in the least productive countries that hold forests with higher levels of 

canopy cover. 

After 2006 in developing countries and in UMICs, the production of bioethanol remains 

significant and leads to a decline of forest cover from the lowest to the highest levels of canopy 

cover (Tables 8 and 12 in the Appendix). Marginal effects are higher than for the entire period, 

which would indicate an acceleration in bioethanol development. In UMICs, bioethanol 

production is also significant before 2006 (Table 10 in the Appendix), which confirms its major 

role in total biofuel production. 

We also note that the acceleration in biodiesel development only occurs from the second 

period, making the results on biodiesel over the first period surprising. This result could be 

explained by less advanced biodiesel production technologies based on lower yield crops before 

2006. Comparing our baseline specification over two different sub-periods in order to account 
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for temporal heterogeneity allows us to demonstrate the existence of direct land-use changes in 

countries that contain forests with higher levels of canopy cover. 

5 Conclusion 

Biofuel development is at the heart of current debates on the use of renewable energy as a 

response to climate change, poverty and energy insecurity in developing and emerging countries 

(UNDP, 2016, Sustainable Energy for all, 2016, Gota et al., 2015, Choumert et al., 2017). 

Moreover, the effectiveness of this renewable energy on climate mitigation and on the 

enhancement of energy security is questioned both due to its direct and indirect effects on the 

displacement of agricultural activities toward forest areas.  

The objective of this study was to explore the role of biofuels among classic determinants of 

deforestation in developing and emerging countries through the land-use change phenomenon. 

To the best of our knowledge, no studies have been conducted on this issue within a cross-

country panel framework. In order to fill this gap in the literature, we conduct a fixed-effect 

panel analysis on 112 countries between 2001 and 2012 that allows us to account for country-

specific determinants of deforestation. Our results allow us to extend the conclusions made by 

Rudorff et al. (2010) and Adami et al. (2012) who highlight the existence of a marginal direct 

land use change toward forest areas in Brazil between 2008 and 2009. Our results are also close 

to those of Gasparri et al. (2013) who find that biofuel production, and more specifically 

bioethanol production, has an effect on forest cover loss through its capacity to provide large 

amounts of revenue. However, our finding does not hold for higher density forest areas, which 

means that the development of bioethanol should not encroach on densest forests which are 

more likely to host primary forest, or only marginally. In order to account for the spatial 

heterogeneity in our sample, we restrict it to the specific case of UMICs and find a greater effect 

of biofuel production on higher-density forest areas. Then, to account for the temporal 

heterogeneity occurring over our period, we divide our sample into sub-periods and conduct the 

analysis from 2007 and before 2006. Results are surprising since biodiesel production appears 
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to be significant before 2006 in all developing and emerging countries and starts to become 

more pronounced from 2007. This could be linked to less effective biodiesel production 

technologies before 2006, resulting in a larger displacement of land dedicated to biodiesel 

production. 

Our results confirm the existence of direct land-use change on a global scale and call into 

question the relevance of biofuel production as a renewable energy, especially with indirect land 

use change occurring over long periods (Andrade de Sá et al., 2013). Moreover, the numerous 

measures that have been implemented to enhance biofuel production may have accelerated the 

agrarian restructuration that took place in Brazil over the past decade (See Ferreira et al., 2014). 

Therefore, high marginal coefficients obtained on bioethanol production after 2007 confirm the 

threat inflicted by such measures on forest areas in developing and emerging countries 

(Gasparri et al., 2013). 

In order to broaden the scope of our study, it would be interesting to take into consideration 

the existence of indirect land-use changes. This would first necessitate obtaining precise 

information on the yields, prices and hectares of the share of raw material that enters the 

production of biofuels over a much longer period (Gao et al., 2011). The same information would 

be needed on displaced agricultural activities (Gao et al., 2011, Andrade de Sá et al., 2013, Arima 

et al., 2011). However, this data, when available, does not display the level of aggregation needed 

within a cross-country panel framework. Another way to reinforce the relevance of our study 

would be to include world prices of biofuel and fossil energies. Indeed, numerous studies 

highlight the strong effects of these prices in the relationship between biofuel production and 

forest cover loss (Hargrave et Kis-Katos, 2012, Angelsen and Kaimowitz, 1999,  Gasparri et al., 

2013). However, a fixed-effect panel framework does not support the introduction of such 

variables, which remain in the temporal dummies. A final extension of this work would be to add 

a variable describing the initial state of the forest at each period in a dynamic setting to account 

for this particular aspect of deforestation.  
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7 Appendix 

Figure 4 - Average biofuel production per day over the period 2000-2012 

 

 

 

Source: Authors’ calculation from the US. EIA (EIA, U., 2011)  
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Table 3 - Description of variables 

Name Description Units Availability Source Notes 

rain 
Total annual 

rainfall  
mm 

1901-
2014 

Extracted by Olivier 
Santoni (Santoni, 2016) 
from the Climatic Research 
Unit ts 3.23 from the 
database of the East Anglia 
University (Harris et al., 
2014) 

 
temp 

Average annual 
temperatures  

°C 

e_rain 

Standardized 
difference of 

annual rainfalls 
to their long-
term average 

Mm 

2000-
2014 

Authors’ calculation from 
(Santoni, 2016) 

Computing method: 
 
- Average of « temp » and « rain » 
calculated from 1901 to 2014 
- Difference of « temp » and « rain » 
calculated from their long-term 
average in absolute value. 
- Division by the standard 
deviation 

e_temp 

Standardized 
difference of 

annual 
temperatures to 
their long-term 

average 

°C 

sur_area 
Total country’s 

surface 
1000 

hectares 
1960-
2012 

FAO (Food and Agriculture 
Organization, 2015) 
http://faostat3.fao.org/do
wnload/R/RL/E 

The size of the country includes 
inland waters but excludes 
extraterritorial maritime areas. 
Possible variations in data may be 
related to updates and revisions. 

wind 
Wind speed at 10 

meters height 
m/s 

1979-
2014 

Extracted from the 
European Center for 
Medium range Weather 
Forecasts  (Dee et al., 
2011) 
http://apps.ecmwf.int/dat
asets/data/interim-full-
mnth/levtype=sfc/ 

 

pop Total population - 

1960-
2012 

 

World Development 
Indicator (World Bank, 
2016) 
http://data.worldbank.org
/indicator/SP.POP.TOTL 

 

gdppc GDP per capita 
constant 

2005 USD 

World Development 
Indicator (World Bank, 
2016) 
http://data.worldbank.org
/indicator/NY.GDP.PCAP.K
D 

World bank data have been 
discounted in constant 2010 USD 
after the completion of this article 

cer_yd Cereal yield 

Kg per 
hectare of 
cultivated 

land 

World Development 
Indicator (World Bank, 
2016) 
http://data.worldbank.org
/indicator/AG.YLD.CREL.K
G 

Included wheat, rice, but, barley, 
oats, rye, millet, sorghum, 
buckwheat and cereal mix 

Études et Documents n° 19, CERDI, 2017

http://faostat3.fao.org/download/R/RL/E
http://faostat3.fao.org/download/R/RL/E
http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=sfc/
http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/NY.GDP.PCAP.KD
http://data.worldbank.org/indicator/NY.GDP.PCAP.KD
http://data.worldbank.org/indicator/NY.GDP.PCAP.KD
http://data.worldbank.org/indicator/AG.YLD.CREL.KG
http://data.worldbank.org/indicator/AG.YLD.CREL.KG
http://data.worldbank.org/indicator/AG.YLD.CREL.KG


35 
 

co_pr 
Crude oil proved 

reserve  
Billion 
barrels 

1980-
2015 

International Energy 
Statistics from the US EIA 
(EIA, U., 2011) 
http://www.eia.gov/cfapp
s/ipdbproject/IEDIndex3.c
fm?tid=5&pid=57&aid=6 Estimated quantities of energy 

resources with a high probability of 
existing, taking into account 
existing geological and technical 
data. 

ng_pr 
Natural gaz 

proved reserve 

Billion 
cubic 
meter 

International Energy 
Statistics from the US EIA 
(EIA, U., 2011) 
http://www.eia.gov/cfapp
s/ipdbproject/iedindex3.cf
m?tid=3&pid=3&aid=6&ci
d=regions&syid=2000&eyi
d=2015&unit=TCF 

reer 
Real Effective 
Exchange Rate 

Non-oil 
exports 

and 
imports  

1995-
2015 

Authors’ calculation  from 
the 2016 CEPII basis for 
the international trade 
analysis, 
weighting HS6 from the 
CEPII (Gaulier and 
Zignano, 2010) 
http://www.cepii.fr/CEPII
/fr/bdd_modele/presentat
ion.asp?id=1 

Computing method: 
 

      

 ∏ (
      

         
   

   

          

       
)
  

 (1)  

with: 

       ∏(
      

         
)      ( )

  

   

 

 
Equation (1) represents the 
weighted average of the country’s 
        Nominal Effective 
Exchange Rate (NEERs) relative to 
its 10 top partners      (2) and 
multiplied by the country’s 
Consumer Price Index     on the 

one of its partner.      represents 
the weighting of each partner 
country according to his weight in 
the country’s exports and imports 
from 2008 to 2012. 
16 countries do not have exchange 
rate or CPI during the considered 
period and are not taken into 
account (Botswana, Belarus, 
Kosovo, Lesotho, Moldova, 
Namibia, North Korea, Russia, 
Somalia, Serbia, Swaziland, 
Tajikistan, Turkmenistan, Timor-
Leste, Ukraine and Uzbekistan). 
 
An increase in REER indicates a 
loss in trade competitiveness 
linked to the appreciation of the 
countries’ currency unit. 
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Table 4 – List of the countries in our sample 

Developing 
countries 

At least 10% of 
canopy cover 

At least 30% of 
canopy cover 

At least 50% of 
canopy cover 

At least 75% of 
canopy cover 

Afghanistan 
    

Albania* Albania* Albania* Albania* Albania* 
Algeria* 

    
Angola* Angola* Angola* Angola* 

 
Argentina* Argentina* Argentina* 

  
Armenia Armenia Armenia 

  
Azerbaijan* Azerbaijan* Azerbaijan* Azerbaijan* 

 
Bangladesh Bangladesh Bangladesh Bangladesh 

 
Belarus* Belarus* Belarus* Belarus* Belarus* 
Belize* Belize* Belize* Belize* Belize* 
Benin Benin 

   
Bhutan Bhutan Bhutan Bhutan Bhutan 
Bolivia Bolivia Bolivia Bolivia Bolivia 

Bosnia and 
Herzegovina* 

Bosnia and 
Herzegovina* 

Bosnia and 
Herzegovina* 

Bosnia and 
Herzegovina* 

Bosnia and 
Herzegovina* 

Botswana* 
    

Brazil* Brazil* Brazil* Brazil* Brazil* 
Bulgaria* Bulgaria* Bulgaria* Bulgaria* Bulgaria* 

Burkina Faso Burkina Faso 
   

Burundi Burundi Burundi 
  

Cambodia Cambodia Cambodia Cambodia Cambodia 
Cameroon Cameroon Cameroon Cameroon Cameroon 

Central African 
Republic 

Central African 
Republic 

Central African 
Republic 

Central African 
Republic 

Central African 
Republic 

Chad 
    

China* China* China* China* 
 

Colombia* Colombia* Colombia* Colombia* Colombia* 
Congo Congo Congo Congo Congo 

Congo, Dem. Rep. Congo, Dem. Rep. Congo, Dem. Rep. Congo, Dem. Rep. Congo, Dem. Rep. 
Costa Rica* Costa Rica* Costa Rica* Costa Rica* Costa Rica* 

Cote d'Ivoire Cote d'Ivoire Cote d'Ivoire Cote d'Ivoire 
 

Dominica* Dominica* Dominica* Dominica* Dominica 
Dominican 
Republic* 

Dominican 
Republic* 

Dominican 
Republic* 

Dominican 
Republic* 

Dominican 
Republic* 

Ecuador* Ecuador* Ecuador* Ecuador* Ecuador* 
Egypt 

    
El Salvador El Salvador El Salvador El Salvador El Salvador 
Equatorial 

Guinea* 
Equatorial 

Guinea* 
Equatorial 

Guinea* 
Equatorial 

Guinea* 
Equatorial 

Guinea* 
Eritrea 

    
Ethiopia Ethiopia Ethiopia 

  
Gabon* Gabon* Gabon* Gabon* Gabon* 

Georgia* Georgia* Georgia* Georgia* Georgia* 
Ghana Ghana Ghana Ghana 

 
Guatemala Guatemala Guatemala Guatemala Guatemala 

Guinea Guinea Guinea 
  

Guinea-Bissau Guinea-Bissau Guinea-Bissau 
  

Guyana* Guyana* Guyana* Guyana* Guyana* 
Honduras Honduras Honduras Honduras Honduras 

India India India 
  

Indonesia Indonesia Indonesia Indonesia Indonesia 
Iran* 
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Developing 
countries 

At least 10% of 
canopy cover 

At least 30% of 
canopy cover 

At least 50% of 
canopy cover 

At least 75% of 
canopy cover 

Iraq* 
    

Jordan* 
    

Kazakhstan* 
    

Kenya Kenya 
   

Kosovo Kosovo Kosovo Kosovo Kosovo 
Kyrgyzstan 

    
Laos Laos Laos Laos Laos 

Lebanon* 
    

Lesotho 
    

Liberia Liberia Liberia Liberia Liberia 
Libya* Libya* 

   
Macedonia* Macedonia* Macedonia* Macedonia* Macedonia* 
Madagascar Madagascar Madagascar Madagascar 

 
Malawi Malawi Malawi 

  
Malaysia* Malaysia* Malaysia* Malaysia* Malaysia* 

Mali 
    

Mauritania 
    

Mexico* Mexico* Mexico* Mexico* Mexico* 
Moldova Moldova Moldova 

  
Mongolia* 

    
Morocco 

    
Mozambique Mozambique Mozambique Mozambique 

 
Myanmar Myanmar Myanmar Myanmar Myanmar 
Namibia* 

    
Nepal 

    
Nicaragua Nepal Nepal Nepal Nepal 

Niger Nicaragua Nicaragua Nicaragua Nicaragua 
Nigeria Nigeria Nigeria 

  
North Korea North Korea North Korea North Korea 

 
Pakistan 

    
Panama* Panama* Panama* Panama* Panama* 

Papua New Guinea 
Papua New 

Guinea 
Papua New 

Guinea 
Papua New 

Guinea 
Papua New 

Guinea 
Paraguay* Paraguay* Paraguay* Paraguay* Paraguay* 

Peru* Peru* Peru* Peru* Peru* 
Philippines Philippines Philippines Philippines Philippines 
Romania* Romania* Romania* Romania Romania* 

Russia* Russia* Russia* Russia* Russia* 
Rwanda Rwanda Rwanda 

  
Senegal Senegal 

   
Serbia* Serbia* Serbia* Serbia* Serbia* 

Sierra Leone Sierra Leone Sierra Leone Sierra Leone 
 

Somalia 
    

South Africa* South Africa* 
   

Sri Lanka Sri Lanka Sri Lanka Sri Lanka Sri Lanka 
Suriname* Suriname* Suriname* Suriname* Suriname* 
Swaziland Swaziland Swaziland Swaziland 

 
Syria 

    
Tajikistan 

    
Tanzania Tanzania Tanzania Tanzania 

 
Thailand* Thailand* Thailand* Thailand* Thailand* 

The Gambia The Gambia 
   

Timor-Leste Timor-Leste Timor-Leste Timor-Leste Timor-Leste 
Togo Togo 

   
Tunisia 
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Developing 
countries 

At least 10% of 
canopy cover 

At least 30% of 
canopy cover 

At least 50% of 
canopy cover 

At least 75% of 
canopy cover 

Turkey* Turkey* Turkey* Turkey* 
 

Turkmenistan* 
    

Uganda Uganda Uganda Uganda 
 

Ukraine Ukraine Ukraine Ukraine Ukraine 
Uzbekistan 

    
Venezuela* Venezuela* Venezuela* Venezuela* Venezuela* 

Vietnam Vietnam Vietnam Vietnam Vietnam 
Yemen 

    
Zambia Zambia Zambia Zambia 

 
Zimbabwe Zimbabwe 

   
* Upper Middle 
Income Countries 
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Table 5 – Descriptive statistics 

Variables 

 
Mean Std. Dev. Min Max Observations 

 overall 4.310592 44.7136 0 908.6192 N =    2603 

ethanol between 
 

38.60318 0 441.0822 n =     202 
 within 

 
22.42655 -331.2316 471.8476 T-bar = 12.8861 

 overall .8592422 4.843732 0 64 N =    2625 

biodiesel between 
 

3.650156 0 35.03346 n =     202 
 within 

 
3.223976 -29.87422 41.08304 T-bar =  12.995 

 overall 3.09e+07 1.24e+08 9419 1.35e+09 N =    2769 

pop between 
 

1.24e+08 9690.231 1.31e+09 n =     213 
 within 

 
5396437 -7.64e+07 1.34e+08 T =      13 

 overall 11604.03 18430.79 134.8159 158602.5 N =    2514 

gdppc between 
 

19360 146.0822 131555.2 n =     198 
 within 

 
1745.581 -1322.893 38651.33 T-bar =  12.697 

 overall .8626394 .6613087 .000233 5.815677 N =    2808 

e_rain between 
 

.188711 .561871 2.488386 n =     216 
 within 

 
.6339319 -.7128776 4.18993 T =      13 

 overall 2.072608 1.226348 .0005008 7.07183 N =    2834 

e_temp between 
 

.8431126 .6680627 5.612913 n =     218 
 within 

 
.8922446 -.4736174 5.141408 T =      13 

 overall 3070.902 3668.727 110.1 74205.6 N =    2288 

cer_yd between 
 

2843.159 307.7462 28701.55 n =     177 
 within 

 
2319.333 -23630.64 48574.96 T-bar = 12.9266 

 overall 398.7347 8067.366 1.425421 270094.3 N =    2160 

reer between 
 

3788.362 81.23111 49060.42 n =     167 
 within 

 
7123.033 -48614.22 221432.6 T-bar = 12.9341 

 overall 6.327095 27.85623 0 267.02 N =    2606 

co_pr between 
 

26.92608 0 263.6262 n =     204 
 within 

 
6.491859 -126.7321 115.3553 T-bar = 12.7745 

 overall 30.08607 150.0153 0 1700 N =    2608 

ng_pr between 
 

148.2701 0 1683.077 n =     203 
 within 

 
19.24908 -426.3985 253.9715 T-bar = 12.8473 

The between variance between represents the inter-individual variance of the observations, whereas the within 
variance represents the intra-individual variance of the observations. 
N: total number of observations 
n : number of countries 
T: number of years 
T-bar: Average number of years due to missing observations 
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Table 6 – Additional specifications: developing countries, before and after 2006 

variables 

Forestloss10% - restrained sample 

before 2006 after 2006 

Ethanol 
production 

Biodiesel 
production 

Ethanol 
production 

Biodiesel 
production 

log(ethanol+1) 0.128  0.386  
 (1.39)  (2.64)***  

log(biodiesel+1)  0.573  0.002 
  (2.35)**  (0.03) 

log(pop) -1.012 -1.069 -1.313 -1.434 
 (0.69) (0.73) (1.04) (1.10) 

log(gdppc) 3.955 4.388 3.414 3.032 
 (1.80)* (2.01)** (1.67)* (1.42) 

log(gdppc) squared -0.278 -0.316 -0.222 -0.169 
 (1.75)* (1.99)** (1.54) (1.12) 

e_rain 0.089 0.089 -0.056 -0.061 
 (2.01)** (2.01)** (1.61) (1.72)* 

e_temp 0.010 0.007 0.041 0.037 
 (0.31) (0.21) (1.54) (1.39) 

log(cer_yd) -0.164 -0.167 -0.282 -0.233 
 (0.70) (0.72) (1.48) (1.18) 

log(reer) -0.195 -0.199 0.018 -0.018 
 (1.60) (1.63) (0.06) (0.06) 

log(co_pr+1) -0.359 -0.350 -0.060 -0.019 
 (1.66)* (1.67)* (0.36) (0.11) 

log(ng_pr+1) 0.046 0.028 0.306 0.216 
 (0.38) (0.23) (1.99)** (1.41) 

r2 0.10 0.11 0.07 0.07 
Adjusted r2  -0.12 -0.12 -0.17 -0.17 

Number of obs. 431 431 411 417 
Number of 
countries 

72 72 70 70 

Time dummies Yes (F=3.37) Yes (F=3.43) Yes (F=3.14) Yes (F=3.06) 
Test of FE vs RE RE (Х² 3.84) RE (Х² 2.48) FE (Х² 21.10) FE (Х² 32.52) 

* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. 
However, results for a non-instrumented panel are the same in terms of significance and magnitude. 
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Table 7 – Additional specification: biodiesel production before 2006 in developing countries 

Variables Forestloss10% 
Restrained sample 

Forestloss10% Forestloss30% Forestloss50% Forestloss75% 

log(biodiesel+1) 0.635 0.573 0.602 0.552 1.137 
 (2.51)** (2.35)** (2.34)** (2.24)** (2.08)** 

log(pop) -1.846 -1.069 -0.279 -0.235 2.281 
 (1.26) (0.73) (0.17) (0.15) (1.46) 

log(gdppc) 5.277 4.388 3.830 6.892 9.094 
 (2.47)** (2.01)** (1.67)* (2.91)*** (3.57)*** 

log(gdppc) 
squared 

-0.391 -0.316 -0.258 -0.464 -0.516 

 (2.52)** (1.99)** (1.57) (2.81)*** (2.88)*** 
e_rain 0.074 0.089 0.069 0.073 0.085 

 (1.74)* (2.01)** (1.67)* (1.71)* (1.93)* 
e_temp 0.016 0.007 -0.044 -0.065 -0.008 

 (0.56) (0.21) (1.27) (1.90)* (0.21) 
log(cer_yd) 0.009 -0.167 -0.085 0.049 0.007 

 (0.05) (0.72) (0.33) (0.17) (0.02) 
log(reer) 0.057 -0.199 -0.246 0.011 -0.458 

 (1.23) (1.63) (1.26) (0.05) (1.15) 
log(co_pr + 1) -0.367 -0.350 -0.379 -0.376 -0.201 

 (1.80)* (1.67)* (1.75)* (1.65) (1.02) 
log(ng_pr + 1) 0.079 0.028 0.001 0.021 0.122 

 (0.66) (0.23) (0.01) (0.16) (1.01) 

r2 0.08 0.11 0.10 0.14 0.24 
Adjusted r2  -0.14 -0.12 -0.14 -0.09 0.02 

Nomber of obs. 531 431 378 318 246 
Number of 
countries 

89 72 63 53 41 

Time dummies Yes (F=3.76) Yes (F=3.43) Yes (F=2.28) Yes (F=2.67) Yes (F=3.72) 
Test of FE vs RE RE (Х² 15.13) RE (Х² 2.48) RE (Х² 11.08) FE (Х² 23.80) FE (Х² 59.93) 

* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. 
However, results for a non-instrumented panel are the same in terms of significance and magnitude. 
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Table 8 - Additional specification: ethanol production after 2006 in developing countries 

variables Forestloss10% 
Restrained sample 

Forestloss10% Forestloss30% Forestloss50% Forestloss70% 

log(ethanol+1) 0.414 0.386 0.350 0.361 0.332 
 (2.90)*** (2.64)*** (2.56)** (2.15)** (1.97)* 

log(pop) -1.551 -1.313 0.270 1.727 2.124 
 (1.38) (1.04) (0.23) (1.45) (1.56) 

log(gdppc) 1.824 3.414 2.778 3.956 6.785 
 (0.97) (1.67)* (1.40) (1.64) (2.28)** 

log(gdppc) 
squared 

-0.149 -0.222 -0.195 -0.264 -0.453 

 (1.32) (1.54) (1.38) (1.60) (2.28)** 
e_rain -0.043 -0.056 -0.028 -0.045 -0.103 

 (1.38) (1.61) (0.89) (1.32) (2.84)*** 
e_temp 0.044 0.041 0.071 0.086 0.100 

 (1.86)* (1.54) (2.99)*** (3.19)*** (3.28)*** 
log(cer_yd) -0.148 -0.282 -0.166 -0.048 0.094 

 (1.11) (1.48) (0.98) (0.26) (0.42) 
log(reer) -0.074 0.018 -0.219 -0.111 0.073 

 (0.28) (0.06) (0.77) (0.35) (0.19) 
log(co_pr + 1) -0.085 -0.060 -0.107 -0.159 -0.189 

 (0.49) (0.36) (0.63) (0.94) (1.21) 
log(ng_pr + 1) 0.451 0.306 0.332 0.336 0.342 

 (2.45)** (1.99)** (2.14)** (2.28)** (2.15)** 

r2 0.07 0.07 0.08 0.12 0.19 
Adjusted r2  -0.16 -0.17 -0.16 -0.13 -0.06 

Nomber of obs. 522 411 373 313 241 
Number of 
countries 

89 70 63 53 41 

Time dummies Yes (F=3.90) Yes (F=3.14) Yes (F=2.48) Yes (F=2.30) No (F=1.46) 
Test of FE vs RE FE (Х² 60.29) FE (Х² 21.10) RE (Х² 13.88) FE (Х² 19.84) FE (Х² 43.16) 
* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Table 9 – Additional specification: UMICs before and after 2006 

Variables 

Restrained sample – forestloss10% 

Before 2006 After 2006 

Ethanol 
production 

Biodiesel 
production 

Ethanol 
production 

Biodiesel 
production 

log(ethanol+1) 0.204  0.461  
 (1.66)*  (2.71)***  

log(biodiesel+1)  0.737  0.134 
  (2.34)**  (1.56) 

log(pop) 0.759 0.782 3.883 4.196 
 (0.36) (0.38) (1.99)** (2.03)** 

log(gdppc) -3.321 -2.710 17.482 20.200 
 (0.60) (0.53) (2.33)** (2.72)*** 

log(gdppc) squared 0.192 0.147 -1.133 -1.283 
 (0.55) (0.45) (2.46)** (2.77)*** 

e_rain 0.080 0.076 -0.093 -0.094 
 (1.09) (1.03) (1.92)* (1.84)* 

e_temp 0.028 0.021 0.088 0.088 
 (0.61) (0.44) (2.36)** (2.31)** 

log(cer_yd) 0.019 0.003 -0.188 -0.128 
 (0.04) (0.01) (0.88) (0.58) 

log(reer) -0.251 -0.253 0.165 -0.151 
 (1.19) (1.21) (0.35) (0.33) 

log(co_pr+1) -0.252 -0.295 -0.460 -0.456 
 (0.95) (1.25) (2.27)** (1.89)* 

log(ng_pr+1) 0.065 0.066 0.307 0.102 
 (0.48) (0.48) (0.67) (0.21) 

r2 0.20 0.19 0.34 0.31 
Adjusted r2  -0.07 -0.08 0.10 0.07 

Number of obs. 167 167 165 165 
Number of 
countries 

28 28 28 28 

Time dummies Yes (F=3.83) Yes (F=3.89) Yes (F=7.42) Yes (F=6.48) 

Test of FE vs RE FE (Х²   .34) FE (Х²  3.8 ) FE (Х² 59.96) FE (Х² 34.18) 
* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. 
However, results for a non-instrumented panel are the same in terms of significance and magnitude. 
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Table 10 – Additional specification: ethanol production before 2006 in UMICs 

variables Forestloss10% 
Restrained sample 

Forestloss10% Forestloss30% Forestloss50% Forestloss75% 

log(ethanol+1) 0.275 0.204 0.236 0.256 -0.287 
 (2.29)** (1.66)* (1.83)* (1.87)* (1.23) 

log(pop) -1.019 0.759 0.863 0.190 2.342 
 (0.49) (0.36) (0.41) (0.09) (1.09) 

log(gdppc) -5.508 -3.321 -8.106 -5.605 0.717 
 (1.06) (0.60) (1.39) (0.89) (0.14) 

log(gdppc) 
squared 

0.286 0.192 0.518 0.338 -0.013 

 (0.89) (0.55) (1.42) (0.87) (0.04) 
e_rain 0.028 0.080 0.064 0.128 0.180 

 (0.46) (1.09) (0.86) (1.81)* (2.40)** 
e_temp 0.019 0.028 0.023 -0.002 0.053 

 (0.49) (0.61) (0.47) (0.04) (1.05) 
log(cer_yd) 0.061 0.019 -0.114 -0.167 -0.231 

 (0.19) (0.04) (0.27) (0.39) (0.53) 
log(reer) 0.104 -0.251 -0.518 -0.295 -0.117 

 (2.43)** (1.19) (1.91)* (0.98) (0.27) 
log(co_pr + 1) -0.225 -0.252 -0.128 -0.088 -0.032 

 (0.98) (0.95) (0.47) (0.31) (0.14) 
log(ng_pr + 1) 0.118 0.065 0.038 0.020 0.177 

 (0.87) (0.48) (0.27) (0.14) (1.33) 

r2 0.18 0.20 0.25 0.24 0.29 
Adjusted r2  -0.07 -0.07 -0.02 -0.03 0.02 

Nomber of obs. 204 167 156 150 132 
Number of 
countries 

34 28 26 25 22 

Time dummies Yes (F=4.31) Yes (F=3.83) Yes (F=4.37) Yes (F=3.85) Yes (F=4.76) 
Test of FE vs RE FE (Х² 61. 3) FE (Х²   .34) RE (Х² 11.63) RE (Х² 10.69) FE (Х²  1.46) 

* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. 
However, results for a non-instrumented panel are the same in terms of significance and magnitude. 
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Table 11 - Additional specification: biodiesel production before 2006 in UMICs 

Variables Forestloss10% Restrained sample 

  Forestloss10% Forestloss30% Forestloss50% Forestloss75% 

log(biodiesel+1) 0.928 0.737 0.779 0.709 0.765 
 (2.72)*** (2.34)** (2.46)** (2.37)** (0.72) 

log(pop) -0.874 0.782 0.961 0.473 0.692 
 (0.42) (0.38) (0.46) (0.23) (0.31) 

log(gdppc) -4.863 -2.710 -7.092 -4.712 0.260 
 (0.98) (0.53) (1.35) (0.82) (0.05) 

log(gdppc) 
squared 

0.240 0.147 0.448 0.280 0.006 

 (0.78) (0.45) (1.35) (0.79) (0.02) 
e_rain 0.022 0.076 0.060 0.123 0.163 

 (0.36) (1.03) (0.79) (1.70)* (2.07)** 
e_temp 0.012 0.021 0.016 -0.006 0.054 

 (0.29) (0.44) (0.31) (0.13) (1.06) 
log(cer_yd) 0.032 0.003 -0.135 -0.184 -0.164 

 (0.10) (0.01) (0.32) (0.42) (0.37) 
log(reer) 0.106 -0.253 -0.515 -0.332 -0.591 

 (2.42)** (1.21) (1.94)* (1.01) (0.92) 
log(co_pr + 1) -0.274 -0.295 -0.190 -0.175 0.010 

 (1.28) (1.25) (0.80) (0.70) (0.05) 
log(ng_pr + 1) 0.119 0.066 0.041 0.029 0.099 

 (0.84) (0.48) (0.30) (0.19) (0.63) 

r2 0.17 0.19 0.24 0.24 0.29 
Adjusted r2  -0.10 -0.08 -0.03 -0.04 0.01 

Nomber of obs. 204 167 156 150 132 
Nomber of 
countries 

34 28 26 25 22 

Time dummies Yes (F=4.36) Yes (F=3.89) Yes (F=4.47) Yes (F=3.86) Yes (F=4.56) 
Test of FE vs RE FE (Х² 60. 0) FE (Х²  3.8 ) RE (Х² 8.49) RE (Х² 9.80) FE (Х²  1.1 ) 
* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity.  
Since the instrumentation strategy is not robust before 2006, the results for this period should be taken with caution. 
However, results for a non-instrumented panel are the same in terms of significance and magnitude. 
The explanatory power of the model is weak, which leads us to obtain negative values for the adjusted r2. This result is 
reinforced by the sub-period division which, combined with the instrumentation, induces too few degrees of freedom.  
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Tableau 12 – Additional specification: ethanol production after 2006 in UMICs 

Variables Forestloss10% 
Restrained sample 

Forestloss10% Forestloss30% Forestloss50% Forestloss75% 

log(ethanol+1) 0.431 0.461 0.468 0.528 0.535 
 (2.59)** (2.71)*** (2.74)*** (2.79)*** (2.66)*** 

log(pop) 1.304 3.883 3.686 3.779 4.641 
 (0.76) (1.99)** (1.87)* (1.91)* (2.27)** 

log(gdppc) 4.261 17.482 16.720 15.482 18.942 
 (0.62) (2.33)** (2.19)** (1.84)* (2.03)** 

log(gdppc) 
squared 

-0.301 -1.133 -1.086 -1.017 -1.270 

 (0.75) (2.46)** (2.32)** (1.97)* (2.24)** 
e_rain -0.054 -0.093 -0.094 -0.087 -0.119 

 (1.29) (1.92)* (1.88)* (1.71)* (2.47)** 
e_temp 0.090 0.088 0.090 0.090 0.074 

 (2.84)*** (2.36)** (2.25)** (2.18)** (1.96)* 
log(cer_yd) -0.229 -0.188 -0.217 -0.217 -0.157 

 (1.42) (0.88) (0.99) (0.99) (0.69) 
log(reer) 0.171 0.165 0.102 0.080 0.619 

 (0.40) (0.35) (0.19) (0.15) (1.14) 
log(co_pr + 1) -0.346 -0.460 -0.474 -0.471 -0.590 

 (2.02)** (2.27)** (2.28)** (2.30)** (3.08)*** 
log(ng_pr + 1) 0.324 0.307 0.523 0.507 0.094 

 (0.83) (0.67) (1.00) (0.96) (0.17) 

r2 0.27 0.34 0.33 0.34 0.37 
Adjusted r2  0.04 0.10 0.10 0.09 0.13 

Nomber of obs. 207 165 159 153 135 
Number of 
countries 

35 28 27 26 23 

Time dummies Yes (F=7.95) Yes (F=7.42) Yes (F=6.76) Yes (F=6.28) Yes (F=5.39) 
Test of FE vs RE FE (t=56.22) FE (t=59.98) FE (t=69.24) FE (t=77.74) FE (t=62.18) 
* p<0.1; ** p<0.05; *** p<0.01 
Our variables are in logarithm to linearize the model, except for e_rain and e_temp. We add +1 to the logarithm variables 
with 0 in order to keep them. Standard deviations have been corrected to make them robust to the presence of 
heteroskedasticity. 
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