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u(y) Å 1
h
(0ghxxx / rg)S y 22 0 yhD / V . [2]Coating processes are of technological interest. We focus here

on the extraction of a vertical plate out of a wetting liquid. We
first summarize the Landau-Levich-Derjaguin theory, including

The flux of liquid per unit width of the plate isthe gravity corrections which have been proposed in particular by
White and Tallmadge. We propose a new numerical solution to
the problem. Then, we discuss further developments: for liquids

Q Å *
h

0
udy Å hV / h 3

3h
(ghxxx 0 rg) . [3]of low viscosity, it is shown that above a threshold in capillary

number, the film is thickened because of inertia. A simple scaling

In the steady-state regime, Q is a constant determined by
argument is proposed for predicting the location of the threshold.

Key Words: fluid coating; thin liquid films; wetting. matching the dynamic meniscus with the flat film (h Å e ,
h * Å h 9 Å 0; u Å V ):

1. INTRODUCTION Q Å eV 0 rge 3 /3h. [4]

When a plate is drawn out of a wetting liquid bath (viscos- Introducing the latter expression in Eq. [3] and then Eq.
ity h, surface tension g, and specific mass r) at a velocity [2] yields the surface velocity. In particular, it is easy to
V, it comes out coated with a liquid film whose thickness e show that a stagnation point exists at the surface, at a thick-was first derived by Landau, Levich, and Derjaguin (1, 2) . ness h* given by
At low velocities, the fabrication of the film takes place in
a thin region (thickness on the order of e) called the dynamic
meniscus, which joins the static meniscus to the film (Fig. h* Å S3 0 e 2k 2

Ca De , [5]
1) . In the dynamic meniscus, the interface (of profile h(x))
is slightly curved and the flow nearly vertical. So the lubrica-
tion approximation can be used and the Navier-Stokes equa- where k01 Å

q
g /rg is the capillary length and Ca the capil-

tion reduces to lary number (Ca Å hV /g) .
The next step of the calculation consists of matching the

dynamic meniscus with the static one, by expressing thathuyy Å px / rg Å 0ghxxx / rg , [1]
there is no pressure difference between them at the point
where they match. But the location of this point is unknown,where u(y) is the velocity profile inside the dynamic menis-
so Landau, Levich, and Derjaguin performed an asymptoticcus, p the Laplace pressure, and g the acceleration of gravity.
matching, requiring the equality of the second derivativesThe subscripts mean partial derivation.
of the profiles:As seen in Eq. [1] , two different physical processes make

the liquid flow in the dynamic meniscus: gravity (the plate
is vertical) and capillary suction (the dynamic meniscus is S d 2hdx 2Ddyn.hr`

Å S d 2hdx 2Dstatichr0

. [6]curved). Equation [1] can be integrated using two boundary
conditions: ( i) no slippage at the wall: u(y Å 0) Å V ; ( ii )
free liquid–air interface: uy(y Å h) Å 0. Hence a parabolic The static limit is the curvature at the top of the (static)
profile for the velocity is obtained: meniscus, whose value is

q
2k. To calculate the other limit,

the curvature of the dynamic meniscus must be studied at
1 To whom correspondence should be addressed. large thicknesses. Dimensionless coordinates are introduced:
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h Å eY

x Å e Ca01/3X . [7]

Taking Eq. [4] into account, Eq. [3] becomes:

Y - Å 3 1 0 Y
Y 3 / e 2k 2

Ca
Y 3 0 1
Y 3 . [8]

To determine the first limit in Eq. [6] , the latter equation
must be integrated once. The integration is difficult to
achieve with all the terms; we are looking for a constant
limit for Y 9, and Y - obviously does not tend to zero as Y
goes to infinity in Eq. [8] because of the gravity term.
It is first noted that two asymptotic solutions can be found

according to the dominant mechanism causing the drainage FIG. 2. Profile of the dynamic meniscus in dimensionless coordinates
defined in [7] , obtained by numerical integration of [9] . Insert: curvaturein the dynamic meniscus, capillary suction or gravity, respec-
Y 9 vs Y, obtained by integration of [9] .tively expressed by the third derivative and the k 2 term in

Eq. [8] .

Equation [9] can be integrated numerically once. The result
is drawn in Fig. 2 and the sought-after limit is found:2. THE VISCO-CAPILLARY REGIME

The LLD solution. If drainage by gravity can be ne- S d 2YdX 2Ddyn.
Yr`

Å 1.34, [10]glected, Eq. [8] reduces to a differential equation free of
any parameter,

which can be written, reintroducing h and x (see Eq. [7]) ,
as

Y - Å 3 1 0 Y
Y 3 , [9]

S d 2hdx 2Ddyn.hr`

Å 1.34 Ca
2/3

e
. [11]

with the conditions Y r 1, Y * r 0, and Y 9 r 0 for X r ` .

The static limit in Eq. [6] being
q
2k, the Landau–Levich–

Derjaguin (or LLD) law is finally obtained:

e Å 0.94 k01 Ca2/3 . [12]

Domain of validity. Gravity was neglected in Eq. [8] .
If e is given by Eq. [12], the approximation is justified if
we have:

Ca1/3 ! 1. [13]

Hence, Eq. [12] is practically valid for very small capillary
numbers (Ca õ 1003) . Conversely, Ca Å 1 is expected to
be the threshold above which drainage in the dynamic menis-
cus is mainly due to gravity.
Length of the dynamic meniscus. Close to the flat film,FIG. 1. Withdrawal of a plate out of a quiescent wetting liquid bath.

Eq. [8] can be linearized. Setting Y Å 1 / e (with e ! 1)The static meniscus is strained on a length l and a film of thickness e is
entrained. leads to
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e- Å 03eS1 0 e 2k 2

Ca D . [14]

Making k 2 Å 0 yields a linear equation of solution: e Å esX,
with s Å 031/3 (about 01.44). With the natural variables,
the profile of the dynamic meniscus can be written

h(x) Å eS1 / expS0 x
l DD , with [15]

l É 0.69 e Ca01/3 . [16]

l is the characteristic length of the dynamic meniscus pic-
tured in Fig. 1. For very low capillary numbers (Eq. [13]) ,
we have e ! l ! k01 ; the extension of the dynamic meniscus
is small compared with the size of the static meniscus but
much larger than the film thickness, which justifies the lubri-
cation approximation. Conversely, as Ca approaches unity,
e and l both become on the order of the capillary length.

FIG. 3. Profile of a liquid film on a solid drained by gravity. e is the3. THE VISCO-GRAVITATIONAL REGIME initial thickness of the film and l the region close to the top where the film
is thinned.

A convenient way to derive the asymptotic entrainment
law in the gravity regime involves considering Eq. [14].
Without the capillary term (e- Å 0), we immediately find top of the film (in this region, the flux of liquid is a constant

given by Eq. [18]) and (ii) at the top of the film, Jeffreys
has sought a power law solution for Eq. [19] (h(x , t) Åe Å k01

q
Ca. [17]

Axatb) . If the origin of the x-axis is fixed at the top of the
film, it is found that the profile is:This asymptotic regime was first predicted by Derjaguin (3)

using dimensional arguments: when the withdrawal velocity
is important, capillarity becomes negligible and the thickness

h(x , t) Å
r

hx
rgt

. [20]should no longer depend on the surface tension. Looking for
a power law e Å k01Ca n independent of g gives n Å 1

2, as
found in [17]. This kind of slow thinning (h Ç t01/2 ) is known as a Reyn-
We can then be interested in the way the film gets thinner olds-type law.

because of gravity after it is drawn. The thinning law of a Figure 3 summarizes these results. As time goes on, a
vertical film of initial thickness e was first derived by Jef- parabolic profile grows at the top of the film and matches
freys (4) . If the wall is immobile and the x-axis directed the lower part, which remains at the initial thickness. The
downward, the flux (per unit width of the plate) is given by extension l of the thinned zone is determined by matching
Eq. [3]: the solution of Eq. [20] with h Å e . It is thus found that l

increases linearly with time:
Q Å rgh 3

3h
, [18]

l Å rg
h
e 2t . [21]

where h is now the film thickness depending on time and
position x . The film dries upstream, so it gets thinner from Returning to the coating problem, we finally conclude
the top. Conservation of matter yields: that two types of withdrawal can be described, as sketched

in Fig. 4. If e õ k01
q
Ca, the thinned zone progresses more

slowly than the film is made (dl /dt õ V ), so that theÌh
Ìt Å 0 ÌQ

Ìx Å 0 rg
h
h 2 ÌhÌx . [19] film is flat everywhere but at the top (Fig. 4a) . This case

corresponds to the regime of entrainment limited by capil-
larity (see Section 2) . If e Å k01

q
Ca, the thinned zoneEquation [19] has two kinds of solutions: ( i) a solution

of constant thickness h Å e , which is valid far below the progresses at the same velocity as the plate. The entrained
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film is thinned everywhere, with a parabolic profile (Fig.
4b) , and the Derjaguin equation (Eq. [17]) is only valid
at the place where the film arises. The gravitational regime
appears again as a borderline case; the film thickness cannot
be larger than k01

q
Ca.

4. THE CROSSOVER BETWEEN THE TWO REGIMES

According to the mechanism causing the drainage in the
dynamic meniscus, two asymptotic laws of liquid entrainment
by a moving vertical plate have been found. At low capillary
number (Caõ 1003) , the entrainment is limited by capillarity
and described by Eq. [12]. At high capillary number, gravity
is the principal cause of drainage and the entrainment law
given by Eq. [17]. The latter regime is valid when Ca1/3 is
much larger than unity (see condition in Eq. [13]), and thus
for Ca ú 103. The crossover between the two regimes is
especially broad since it concerns six orders of magnitude in
capillary number. Therefore, it is worth studying the whole
Eq. [8] with both the capillary and gravitational terms.
A first approach was performed by White and Tallmadge

(5). Using Eq. [14], the linearized form of Eq. [8], they
looked for an equivalent profile solution of the Landau prob-
lem. By this ingenious method, they finally obtained as a
thickness dependence on the capillary number the simplest
interpolation between the capillary and gravitational regimes:

Ca Å 1.09 e 3/2k 3/2 / e 2k 2 . [22]

Here we propose a numerical solution of Eq. [8] and com-
pare it with Eq. [22]. Following White and Tallmadge, the
dimensionless quantity T Å ek /

q
Ca is introduced and treated

as a parameter. Then Eq. [8] becomes

Y - Å 1 0 Y
Y 3 {3 0 T 2(Y 2 / Y / 1)}. [23]

According to the value of T , we discuss the possibility
for Eq. [23] to have a solution which matches the flat film,
when X r /` , Y r 1, Y * r 0, and Y 9 r 0. For T ú 1,

FIG. 4. Coating of a plate vertically withdrawn out of a reservoir. a)there is no solution becoming flat at infinity. For T Å 1, it Visco-capillary regime, which corresponds to the LLD law [12]; the film
can easily be seen in Eq. [23] that Y cannot be larger than is flat everywhere but at the top, where it is thinned. b) Visco-gravitational

case, in which the film thickness is given locally by the Deryaguin lawunity. Thus, the law e Å k01
q
Ca is found again as an asymp-

[17]; above this point, the whole film is thinned and has the parabolictotic regime.
profile given by [20].For 0õ Tõ 1, the profile Y ( X ) can be deduced from the

numerical integration of Eq. [23]. The procedure consists of
starting from a point close to the flat film, whose coordinates contact line, rims indeed develop at the liquid front (and

often break into vertical rivulets) ; that is the case for a filmare calculated from the linearized Eq. [14]. Then, the profile
is integrated step by step using a Runge-Kutta method. Such (bounded at its bottom by a contact line) flowing down a

vertical plate (6) .a profile is pictured in Fig. 5. It is very different from the
Landau case (Fig. 2b). A bump appears at small X , which When going from large X ( the film) to small X ( the reser-

voir) in Fig. 5, the second derivative of the profile passesis clearly unphysical in our problem. In other cases where
the film has not to match a reservoir, but is bounded by a through a maximum Y 9M before changing its sign at the
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inflection point I. We propose matching the two menisci at
this point. Such a matching allows us again to find the Lan-
dau solution at the limit T r 0 (corresponding to Ca r 0
or to the absence of gravity) . At this limit, Y 9M tends towards
1.34 and Eq. [12] is recovered. This choice for the matching
possibly overestimates the film thickness, since the maxi-
mum value of Y 9 yields a maximum value for e .
Equation [6] is then used to determine the film thickness

e . (Of course, this point is questionable; as Ca tends towards
unity, the dynamic meniscus sweeps into the static one and
finally makes it disappear.) Thus we write, as in the Landau
case:

e Å Y 9Mq
2

k01Ca2/3 . [24]

The resulting T(Ca) dependence is drawn in Fig. 6, where
it is compared with Eqs. [12], [17], and [22], and with the
experimental data of Gutfinger and Tallmadge (7) and Spiers FIG. 6. Film thickness scaled by the Derjaguin thickness (T Å
et al. (8) . Though the numerical calculation possibly over- ek /

q
Ca) as a function of the capillary number. In the same figure are

estimates the film thickness, the results are found to be below presented the LLD law [12], the Derjaguin law [17], the White and Tall-
madge cross-over [22], and the numerical integration of [23]. The squaresthe others.
are the experimental results of Gutfinger et al. (7) and the circles those ofA limitation of the calculation is that the expression of
Spiers et al. (8) , both obtained with glycerol–water solutions.the curvature we used is only valid when the slope of the

interface is small. This condition is not satisfied at the match-
For a given value of Ca, the above equation can be numeri-ing point. We introduce the exact curvature expression
cally integrated following the same procedure as above.
Then, the maximum T (for Y as large as possible) is sought

C Å 0 h 9

(1 / h * 2) 3/2
. [25] by matching with the equation of the static meniscus, which

can be written
Then, Eq. [23] becomes

Y 9 0
q
2T Ca01/6 ( (1 / Ca2/3Y * 2) 1/2 / Ca 1/3Y *)1/2

1 (1 / Ca2/3Y * 2) 5/4 Å 0. [27]Y - Å 1 0 Y
Y 3 (3 0 T 2(Y 2 / Y / 1))

Results are drawn in Fig. 7. In Fig. 7a, an example of a
1 (1 / Ca 2/3Y * 2) 3/2 / 3Ca2/3Y*Y 9 2

1 / Ca2/3Y * 2
. [26] profile is displayed. It can be seen that the matching with a

reservoir is more realistic. In Fig. 7b, these numerical results
are shown to fit in a satisfactory way the data of Spiers et al.
(8) at low capillary numbers (0.01 õ Caõ 0.2). Then, when
approaching Ca Å 1, some discrepancies can be observed. We
now discuss the main causes of these discrepancies.

5. THE VISCO-INERTIAL REGIME

Inertial effects may become nonnegligible at high with-
drawal velocity. A Reynolds number associated with the
flow inside the dynamic meniscus can be defined by taking
as a characteristic length the thickness of the film (Re Å
rVe /h) . Considering that the thickness is given by the LLD
law (Eq. [12]) , the Reynolds number can be writtenFIG. 5. Profile of the dynamic meniscus obtained by a numerical inte-

gration of Eq. [23] for T Å 0.71. The main variation from Fig. 2 is the
fact that the profile is not monotonous any longer, but presents a bump.
The region beyond the inflection point I (dotted line) is unphysical in our Re É FCa5/3 , with F Å 1

h 2

r
rg 3

g
. [28]

problem.
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which, as seen above, both Reynolds and capillary numbers
are large.

(a) Inertial Effects at Low Capillary Number

The inertial term of the Navier-Stokes equation must be
incorporated in the Landau theory, which leads to a modified
equation for the profile. The principle of the calculation was
first proposed by Esmail and Hummel (10) and developed
recently by de Ryck (11) and Koulago (12): it consists of
supposing that the flow inside the meniscus still has a para-
bolic profile, but that the effective pressure which provokes
it is unknown. Writing the Navier-Stokes equation (with the
usual boundary conditions) allows a more general expression
for the profile of the dynamic meniscus to be found. Written
with the dimensionless variables of Landau, it reads:

F Y 9

(1 / Ca2/3Y * 2) 3/2G* Å 1 0 Y
Y 3 {3 0 T 2(Y 2 / Y / 1)}

/ 1
5
FCa11/6TSY 2 0 2

3
(3 0 T 2) 2D Y*

Y 3 . [29]

The first part of the equation is Eq. [23], written with the
whole expression for the curvature, given by Eq. [25]. The
second term in the right member is the inertial contribution,
which logically includes the number F . This term is not
negligible in the case in which we are interested, since F
was shown to be large for liquids of low viscosity.
Equation [29] can be integrated as explained above, which

allows us to determine the maximum of the curvature. Then
matching provides the film thickness, which can be ex-

FIG. 7. (a) Profile of the dynamic meniscus obtained from an integra- pressed as a function of the capillary number. The results
tion of [26] with T Å 0.5 and Ca Å 0.044. The circle gives the location are displayed in Fig. 8 for F Å 2 1 105 (water) and F Å
of the matching point (Equation [27] is verified). (b) For the same coordi- 104 ( long alkane).nates as above (T versus Ca), numerical results from [26] are compared A remarkable feature can be observed in Fig. 8: inertiawith the data of Spiers et al. (8) .

provokes a thickening of the film above a threshold in capil-
lary number. The threshold Ca* depends on the nature of
the liquid: the higher F , the smaller Ca*. A simple way toThe prefactor F depends only on the nature of the fluid,

and varies mainly with the liquid viscosity. For a very vis- understand this effect physically is the following: the plate
puts the liquid close to it in motion, and the effect of inertiacous silicone oil (h Å 100 P) , F is equal to 3 1 1004 , and

Re becomes larger than 1 if Ca is larger than 130 (which is indeed to project the liquid at the exit of the dynamic
meniscus out of the reservoir, and thus to thicken the film.corresponds to V ¢ 25 cm/s) . For water, F is much larger

(F Å 2 1 105) , and a Reynolds number of order one is This argument helps to understand the limitation of this ef-
fect: at still higher velocities, the problem may become un-obtained for a very small capillary number (Ca Å 7 1 1004 ,

which corresponds to V Å 5 cm/s) . stationary. The plate does not spend enough time in the bath
to put a thick layer of liquid in motion, so the film is limitedThus, for liquids of low viscosity, inertia must be consid-

ered even at a very low capillary number (which justifies in to the viscous boundary layer which develops in the bath.
In this case, the thickness decreases with the velocity.this case taking Eq. [12] to define Re in Eq. [29]) . We

focus on this situation of practical importance (since water, Such effects were recently reported in fiber withdrawal
experiments (13). The thickening effect was observed andwith or without surfactants, is often used as a lubricant) ,

which was not considered by previous authors. Soroka and found to be more spectacular than in Fig. 8 since gravity (a
natural factor for limiting the thickness) could be neglectedTallmadge (9) and Esmail and Hummel (10) studied the

effect of inertia in plate coating for viscous liquids, for (experiments were performed at small Bond numbers) . Be-
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and small capillary numbers) , which is due to Tallmadge
and Stella (14). Data on the coating of a plate with water
are reported, and indeed a sharp increase of the film thickness
above the LLD law is observed. A remarkable point (stressed
by the authors) is the fact that the discrepancy is found at
very low capillary numbers (thicknesses were reported for
1004 õ Ca õ 1003) , in agreement with our description. Of
course, new data would be useful to test our predictions
quantitatively.
Note finally that the diverging behavior in Fig. 8 exhibits

some inflection (and saturation). The last point for each
curve may have no real significance; it corresponds to condi-
tions for which the numerical integration of Eq. [29] be-
comes hard to achieve, since solutions have oscillations
which make matching difficult. That is why our results stop
at that point; it was impossible to produce a meaningfulFIG. 8. Effect of inertia on the film thickness, obtained by integrating
solution for any further increase in capillary number.Eq. [29] numerically. T Å ek /

q
Ca is plotted vs the capillary number Ca

for three different values of the number F (defined in Eq. [28]): (1) F Å
0 (liquid of large viscosity); (2) F Å 104 (corresponding to a long alkane); (b) When Ca ¢ 1and (3) F Å 2 1 105 (corresponding to pure water) . When F is large, the
effect of inertia is to increase the film thickness above a threshold in capil-

We do not describe the case where both Reynolds andlary number.
capillary numbers are larger than unity. Spiers et al. (8)
who have made attempts to describe this case, have shown

sides, a scaling argument was proposed (and checked experi- that the incorporation of the strain-rate component in the
mentally) , for predicting the location of the threshold: inertia equilibrium condition of the liquid–air interface leads to a
provokes a large thickening when the dynamic pressure (of slight thickening of the film. On the other hand, Esmail and
order rV 2) is equal to the Laplace pressure (of order g /r , Hummel (10) incorporated the same term in their inertial
with r being the fiber radius) . For a plate, we expect inertia theory of free coating. Their results, performed for F ranging
to be important in a similar way when rV 2 becomes of the between 0 and 77, do not show a diverging behavior.
same order as rgk01 , the hydrostatic pressure in the menis-
cus, which gives as a threshold:

6. SUMMARY AND CONCLUDING REMARKS

Ca* É 1
q
F
. [30] We proposed a numerical solution of the gravity-corrected

Landau theory for plate coating, based on a new matching
and on the consideration of the exact expression of the curva-

Another way to derive this threshold consists of consider- ture in order to obtain realistic profiles. Then, we discussed
ing the inertial term in Eq. [29], which must be considered an improvement of practical importance: if the withdrawal
when the quantity FCa11/6T is of order one. Since we are at velocity becomes higher than a threshold, inertia must be
low capillary number, the thickness (in the expression of T ) taken into account. We discussed the particular case of liq-
is given by the LLD law (e É Ca2/3) , which finally yields uids of low viscosity (aqueous solutions) , for which the
Eq. [30]. For water, we find Ca* Å 2 1 1003 (or V É 16 capillary number can remain much smaller than unity even
cm/s) , in good agreement with the threshold observed in if the Reynolds number becomes of order one (or larger) .
curve 3 of Fig. 8. For F Å 104, the difference from the curve In that case, a thickening of the film is predicted because of
without inertia appears at around Ca*Å 0.01, as predicted by the influence of inertia, which ejects the fluid out of the
Eq. [30]. Ca* may be written as reservoir. The observations of Tallmadge and Stella could

be related to this effect, but new specific experiments would
V * É

q
k01g , [31] be useful to test it.

The case where both the velocity and the capillary num-
bers are large is the most complicated and remains to beshowing that inertia becomes important when the withdrawal

velocity is close to the minimal velocity of capillaro-gravita- fully solved. In this case, the lubrication approximation is
no longer justified (a two-dimensional flow must be takentional waves (typically 10–30 cm/s) .

To the best of our knowledge, there is only one experiment into account) and the matching with a static meniscus be-
comes questionable.corresponding with these features (large Reynolds numbers
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