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Le problème étudié a donc deux familles de solution : (i) à basse vitesse, le dépôt résulte d'un compromis entre viscosité et capillarité, si bien qu'il est sensible à la présence dans le bain d'hétérogénéités (tensioactifs, gouttes d'huile) ; (ii) à plus grande vitesse, l'inertie doit être prise en compte et l'épaisseur du film est alors liée aux propriétés de volume du liquide (densité et viscosité).

1. For slow withdrawals out of pure viscous liquids, the data are found to be fitted by the famous Landau law: then, the coating results from a balance between viscosity and capillarity. For quicker withdrawals, the thickness of the entrained film suddenly diverges, at a velocity on order 1 m/s. Inertia is shown to be responsible for this effect. At still higher velocities, the thickness decreases with the velocity because the solid can only entrain the viscous boundary layer.

2. For complex fluids, surface effects are found in the low velocity regime: out of a surfactant solution, films are thicker than predicted by Landau, by a factor of order 2. The thickening factor is shown to be fixed by the Marangoni flow due to the presence of surfactants; out of an emulsion, the film can be enriched with oil , which can be understood by a simple model of capture; out of a polymer solution, a strong swelling of the film is observed if normal stresses are present.

Introduction générale

Le dépôt dynamique de liquide sur un solide est une opération banale dans la vie courante (ruissellements, peinture) comme dans la pratique industrielle (lubrification, encrage des rouleaux d'imprimerie, dépôt d'émulsion photosensible sur les films photographiques). Dans cette étude, qui résume cinq années de recherches sur ce thème, nous nous restreignons principalement au cas où le solide est une fibre de rayon inférieur au millimètre. C'est là une commodité expérimentale (objet sans arête, gravité négligeable, existence d'un paramètre de contrôle qui est le rayon du fil) en même temps qu'un souci pratique : juste après leur extrusion, les fibres (qu'elles soient de verre ou de polymère) sont ensimées, c'est-à-dire lubrifiées à très grande vitesse (généralement plusieurs dizaines de mètres par seconde) par une solution aqueuse. Ce procédé donne de la cohésion aux mèches et permet dans une large mesure d'éviter la casse des fils dans les opérations ultérieures (comme le bobinage) en supprimant les contacts solide/solide. La lubrification peut être aussi l'occasion d'amener sur la fibre des composés spécifiques, comme des promoteurs d'adhésion pour les fibres destinées à être incorporées dans des matériaux composites. Dans le monde textile, cette opération est souvent réalisée indépendamment de la première et à plus faible vitesse (typiquement 1 mètre par seconde) : on parle alors d'encollage. Dans tous les cas, il s'agit de maîtriser la quantité de liquide que la fibre emmène avec elle : c'est la question à laquelle nous tentons de répondre dans ce travail.

Une première réponse a été proposée en 1942 par Landau, Levich et Derjaguin, qui ont calculé l'épaisseur du dépôt en fonction des principaux paramètres du problème (la vitesse de tirage, le rayon de la fibre, la viscosité et la tension superficielle du liquide). Nous nous sommes donc intéressés dans un premier temps à préciser la validité de la théorie de Landau : le chapitre 1, consacré aux faibles vitesses de dépôt, présente en grand détail cette théorie ainsi que des résultats expérimentaux en bon accord avec elle. Les trois chapitres suivants permettent de classifier les différentes anomalies révélées par l'expérience. Le chapitre 2 examine le cas des dépôts rapides, pour lesquels l'inertie du fluide entre en jeu. Trois effets différents sont décrits et discutés. Au chapitre 3, nous nous intéressons au cas (important en pratique) où le bain est une eau savonneuse ; là aussi, des effets originaux ont été observés, en particulier un épaississement du film dû au pouvoir qu'a alors la surface libre de tracter de la matière. Le chapitre 4, enfin, présente quelques 1 La loi de Landau 1. Le mouillage statique : généralités 1. .1. La tension de surface [START_REF] Adamson | Physical chemistry of surfaces[END_REF][START_REF] Rowlinson | Molecular theory of capillarity[END_REF][START_REF] Bouasse | Capillarité et phénomènes superficiels[END_REF] 

Le coût d'une interface

Considérons deux phases en équilibre, un liquide et sa vapeur par exemple, séparées par une interface d'aire A. Les molécules du liquide en volume sont entourées de leurs semblables alors que celles voisines de l'interface, qui voient un environnement moins favorable, sont dans un état d'énergie plus élevé : l'interface porte une énergie E positive et proportionnelle au nombre de molécules à la surface, donc à l'aire A, qui s'écrit :

E = γA.
La tension de surface γ est l'énergie par unité de surface de l'interface. Son origine microscopique permet de la comprendre comme une énergie de cohésion V que divise une surface moléculaire : pour des interactions faibles (V ∼ kT , l'énergie thermique), et une distance intermoléculaire a de quelques Å, on obtient : γ ∼ kT /a 2 ∼ 20 mJ/m 2 , qui est bien la tension typique d'une huile. Un liquide de plus forte cohésion aura une tension plus élevée : toujours à 20 • C et dans la même unité, les tensions de l'eau et du mercure valent 72,8 et 486,5. Une tension de surface est aussi, comme son nom l'annonce, une force par unité de longueur qui s'exprime en N/m plutôt qu'en J/m 2 , ou en dyn/cm, l'unité CGS (1 dyn/cm = 10 -3 N/m). Une expérience classique (Fig. 1) permet de comprendre la tension comme force.

Une lame de savon est tendue sur un cadre dont l'un des côtés, de longueur L, est mobile. Pour le déplacer d'une quantité dx, il faut fournir une énergie dE liée à l'augmentation de surface des deux faces : dE = 2γ(Ldx). Cette énergie élémentaire est le travail de la force qui s'exerce sur le côté mobile : cette force vaut donc F = 2γL. On en déduit que γ est la force par unité de longueur qui s'applique sur le contour de l'interface : dans le plan tangent à l'interface, elle est orientée perpendiculairement à son contour. On doit appliquer une force opposée, s'il l'on veut maintenir fixe la partie mobile du cadre. L dx F Figure 1. Film de savon suspendu sur un cadre solide dont un côté, de longueur L, est mobile. La force F est la force qu'il faut appliquer sur ce côté pour le maintenir fixe.

[Soap film on a rigid frame with a mobile side (length L). A force F must be applied to maintain this side at rest.]

La loi de Laplace

La traversée d'une interface courbe (sous tension) s'accompagne d'un saut de pression. Pour le montrer, écrivons l'équilibre mécanique d'une gouttelette sphérique de rayon R (Fig. 2). [Liquid droplet (radius R and internal pressure p1) in the air (pressure p0).] L'augmentation du rayon de la goutte d'une longueur élémentaire dr implique un accroissement de la surface, et donc une énergie superficielle dE valant :

dE = 8πRdrγ.
Cette énergie élémentaire est le travail de la force de tension, qui vaut donc 8πRγ. L'équilibre de la goutte s'écrit en égalant les forces de pression p 1 et p 0 à l'intérieur et à l'extérieur de la goutte et la force de tension. En notant ∆p le saut de pression à la traversée de l'interface (∆p = p 1p 0 ), on en déduit la loi de Laplace : ∆p = 2γ/R.

(1.1)

La surpression dans une goutte d'eau de 100 µm de rayon vaut 1,5 kPa, la pression sous 15 cm d'eau. Pour une surface quelconque, l'équation de Laplace se généralise ainsi :

∆p = γ 1 R 1 + 1 R 2 (1.2)
où R 1 et R 2 sont les rayons de courbures principaux au point de l'interface considéré. Si l'interface est axisymétrique, R 1 et R 2 s'explicitent. On a :

1

R 1 = -r zz (1 + r 2 z ) 3/2 et 1 R 2 = 1 r(1 + r 2 z ) 1/2
(1.3) où z est l'axe de symétrie, r(z) l'équation de l'interface et les indices des dérivées par rapport à z.

1. .2. Le mouillage [START_REF] Adamson | Physical chemistry of surfaces[END_REF][START_REF] Rowlinson | Molecular theory of capillarity[END_REF][START_REF] De Gennes | Wetting: statics and dynamics[END_REF] Beaucoup de situations impliquent trois phases qui sont souvent un liquide, un solide et une vapeur. Trois tensions interfaciales sont alors en jeu, notées γ SV , γ SL , et γ LV (on posera γ LV = γ), les indices désignant le solide, le liquide et la vapeur. Le mouillage est l'une de ces situations : on pose une goutte sur un solide et on veut prévoir comment cette goutte s'étalera. Le paramètre que l'on construit compare l'énergie de surface du solide sec (γ SV ) à celles du solide mouillé par un film macroscopique (γ SL + γ). Cette quantité est le paramètre d'étalement, noté S : S = γ SVγ SLγ.

Si le paramètre d'étalement S est positif, la goutte s'étale complètement : le mouillage est total. C'est le cas de l'eau sur un verre très propre ou des huiles minérales sur des métaux. Si S est négatif, la goutte ne mouille que partiellement le solide : elle le rejoint avec un angle de contact non nul, noté θ e (Fig. 3). Si en outre elle est assez petite pour que la gravité puisse être négligée, elle forme une calotte sphérique.

6 e J J J SV SL Figure 3. Gouttelette liquide placée sur un solide qu'elle ne mouille que partiellement. L'angle d'équilibre θe au voisinage de la ligne de contact est fonction des trois tensions de surface γ, γSV et γSL en présence.

[Liquid droplet on a solid in partial wetting: the equilibrium angle θe close to the contact line is a function of the three interfacial tensions γ, γSV and γSL.]

L'angle de contact θ e est donné par l'équilibre des forces capillaires qui agissent sur la ligne de contact. En projetant sur le solide, on obtient la relation de Young :

cos θ e = 1 + S γ (1.4)
où le cosinus de l'angle de contact n'est défini que si le paramètre d'étalement est négatif. Dans le cas contraire (S 0), l'angle est nul.

On peut aussi projeter les forces capillaires perpendiculairement au solide. La résultante verticale des trois forces capillaires tire sur le solide, à l'endroit de la ligne de contact. Le solide est donc pincé, à cet endroit, sur une épaisseur d'ordre γ/E où E est le module de Young du solide (typiquement 1 Å, pour un solide dur [START_REF] Shanahan | L'arête produite par un coin liquide près de la ligne triple de contact solide/liquide/fluide[END_REF]).

Pour un solide, un liquide et une vapeur donnés, la relation de Young définit l'angle de contact de manière univoque. Pourtant, on constate souvent que l'angle est mal défini : la valeur mesurée dépend de la manière dont l'interface étudiée a été obtenue. Si c'est par avancée du front de liquide (c'est le cas pour une goutte posée sur un solide), on observe un angle d'avancée θ a ; si la mesure est faite après que le front de liquide a reculé, c'est un angle de reculée θ r que l'on obtient, avec : θ r ≤ θ e ≤ θ a .

(1.5) D'une manière générale, l'angle peut prendre toutes les valeurs comprises entre θ r et θ a . Cette hystérèse de l'angle de contact est due principalement aux défauts de la surface solide (rugosité, hétérogénéités chimiques de surface). Sa description est l'objet de nombreuses études, à la fois théoriques [START_REF] Joanny | A model for contact angle hysteresis[END_REF] et expérimentales [START_REF] Johnson | Contact angle hysteresis. I. Study of an idealized rough surface[END_REF].

.3. Deux ménisques ascensionnels

Les principes que nous venons d'énoncer permettent de comprendre quelques phénomènes familiers comme les ménisques ascensionnels. Quand une interface liquide/vapeur rencontre une paroi solide, un ménisque se forme au voisinage de la ligne triple (là où coexistent le solide, le liquide et la vapeur). Nous nous intéressons à la forme et à la hauteur de ce ménisque pour deux solides : une paroi verticale plane (Fig. 4) et une fibre (Fig. 5).

Ménisque le long d'une paroi plane [START_REF] Adamson | Physical chemistry of surfaces[END_REF] La condition de raccord de l'interface libre avec le solide impose une déformation de la surface. En tout point de l'interface, les pressions de Laplace et hydrostatique s'équilibrent :

p 0 + γ/R = p 0 -∆ρgz (1.6) 
où ∆ρ est la différence de densité entre le liquide et la phase qui le surmonte, g l'accélération de la pesanteur et R le rayon de courbure (négatif ici). Cette équation fait apparaître la longueur caractéristique du problème. Notée κ -1 , la longueur capillaire s'écrit :

κ -1 = γ ∆ρg • (1.7)
κ -1 vaut 2,7 mm pour l'eau et 1,5 mm pour une huile silicone et fixe l'échelle des phénomènes capillaires : une goutte plus petite que κ -1 sera la calotte sphérique [Liquid meniscus along a vertical plate. Because of the Young condition (the liquid surface must meet the solid with an angle θe), the liquid close to the contact line is above the reservoir (for θe < 90 • ). The height of the meniscus is named h.]

de la figure 3, tandis qu'une très grosse goutte s'aplatit en flaque, à cause de la gravité.

Si l'on y explicite le rayon de courbure, l'équation (1.6) se réécrit :

z (1 + z 2 ) 3/2 = κ 2 z.
Une intégration, effectuée avec pour condition z = z = 0 en x = +∞, donne :

1 √ 1 + z 2 = 1 - 1 2 κ 2 z 2 .
Or le raccord à la paroi se fait avec l'angle de Young ; on alors : z = -cotg θ e , d'où l'on tire la hauteur h du ménisque :

h = √ 2κ -1 1 -sin θ e . (1.8) 
Si le mouillage est total, le ménisque monte jusqu'à :

h = √ 2κ -1 .
(1.9)

Pour de l'eau sur du verre propre, h vaut 4 mm. La courbure C en haut du ménisque se déduit de l'équation (1.6), en faisant z = h. Toujours dans le cas du mouillage total, on obtient :

C = - √ 2κ.
(1.10)

Ménisque sur une fibre [START_REF] Quéré | Fibres et capillaires mouillés[END_REF] Considérons à présent une fibre (rayon b) partiellement immergée dans un liquide (Fig. 5). Si b est très petit devant la longueur capillaire, on pourra négliger la gravité. Par rapport au cas du plan (Fig. 4), l'altitude h du ménisque est modifiée par l'existence d'une courbure perpendiculaire au plan de la figure.

[Liquid meniscus along a fiber. If compared with the plate case (Fig. 4), the height is modified because of the existence of a curvature perpendicular to the figure plane.]

Le ménisque est alors une surface de courbure nulle :

1 R 1 + 1 R 2 = 0. (1.11)
Sa hauteur n'est alors plus fixée par κ -1 , mais par b, nouvelle longueur du problème. L'équation (1.11) peut s'intégrer, à l'aide de l'équation (1.3) : le ménisque est une chaînette axisymétrique :

r = b cos θ e ch z -z 0 b cos θ e (1.12) 
où z 0 est la position du sommet du ménisque, définie sur la figure 5. Ce profil ne peut plus comme précédemment être raccordé à un réservoir plan : en l'absence de gravité, l'altitude z n'est pas limitée. Il est naturel de restreindre l'extension radiale du ménisque à la longueur capillaire, qui fixe l'échelle où la gravité de nouveau intervient. On obtient alors une bonne approximation de la hauteur du ménisque qui s'écrit, dans le cas mouillant (θ e = 0) :

h ∼ b argch κ -1 b ∼ b ln 2κ -1 b • (1.13)
Le ménisque s'élève donc de quelques fois le rayon. Pour κ -1 ∼ 1 mm et b ∼ 10 µm, on trouve : h ∼ 50 µm. Par une méthode de raccord asymptotique, James a proposé une expression analytique de la hauteur du ménisque [START_REF] James | The meniscus on the outside of a small circular cylinder[END_REF]. Dans la limite b κ -1 , pour θ e plus petit que π/2 et en notant c la constante d'Euler (c = 0,577), h s'écrit :

h ∼ = b cos θ e ln 4κ -1 b(1 + sin θ e )
c .

Le mouillage dynamique

Dans ce deuxième paragraphe, nous rappelons les équations de l'hydrodynamique des films minces. Puis, nous résumons la théorie de Landau du mouillage dynamique. Nous discutons les limites de ce modèle, et l'étendons au cas des fibres et de la vidange d'un capillaire. D'autres géométries de dépôt sont répertoriées dans la revue de Ruschak [START_REF] Ruschak | Coating flows[END_REF].

.1. Hydrodynamique pour le mouillage

Équations générales [START_REF] Paterson | A first course in fluid dynamics[END_REF] Nous considérons une lame liquide d'épaisseur h(x) s'écoulant sur un solide plan de cote y = 0 (Fig. 6). Le liquide est newtonien, de viscosité η, de tension de surface γ et de masse volumique ρ. Autour du liquide se trouve une phase vapeur à la pression p 0 et de viscosité négligeable. Nous cherchons à déterminer le champ de vitesse v au sein du fluide. Les équations de conservation de la quantité de mouvement et de la masse s'écrivent : 

ρ ∂v ∂t + v • grad v = f -grad p + η∆v (1.14a) div v = 0 (1.

Approximation de lubrification

Supposons en outre le film mince (d'épaisseur h négligeable devant la longueur caractéristique L le long de l'écoulement). Si U et V sont les ordres de grandeurs des composantes longitudinale et transversale de la vitesse, l'équation (1.16) s'écrit aux dimensions :

U L ∼ V h •
On a donc : V U et au premier ordre en (h/L), la vitesse transversale peut être négligée. Si en outre le nombre de Reynolds (qui compare le terme inertiel au terme visqueux dans l'équation de Navier-Stokes) est petit devant 1, l'équation (1.15) devient :

η ∂ 2 u ∂y 2 = ∂p ∂x + ρg, (1.17a) 
∂p ∂y = 0.

(1.17b)

La pression est donc uniforme dans l'épaisseur du film et elle est fixée par la loi de Laplace ( Éq. (1.2)). Or, au même ordre en (h/L), la courbure de l'interface ( Éq. (1.3a)) se réduit à -h xx , où chaque indice indique une dérivation par rapport à x. La pression dans le film, si elle ne comporte que la contribution de Laplace, s'écrit donc :

p = p 0 -γ ∂ 2 h ∂x 2 • (1.18)
2. .2. Dépôt sur une plaque tirée d'un liquide mouillant Équation du ménisque dynamique [START_REF] Levich | Physical hydrodynamics[END_REF] Les paramètres qui fixent l'efficacité du dépôt dynamique de liquide ont été identifiés dans l'article pionnier de Goucher et Ward [START_REF] Groenveld | High capillary number withdrawal from viscous newtonian liquids by flat plates[END_REF]. Si le solide est tiré lentement du bain de liquide, le film qu'il entraîne est mince (en effet, il n'existerait pas en l'absence d'entraînement, si nous oublions l'existence possible d'un film microscopique de mouillage). Ce sont donc les interfaces qui jouent les rôles primordiaux :

(i) l'interface solide/liquide, car la condition aux limites qui lui est associée provoque le dépôt : à cause de sa viscosité, le liquide près du solide va à la vitesse du solide, et donc part avec lui ;

(ii) l'interface liquide/vapeur, qui est déformée par le mouvement du solide, ce à quoi la tension superficielle du liquide s'oppose.

Les forces visqueuse et capillaire jouent donc des rôles antagonistes. Le nombre qui compare ces forces (écrites par unité de longueur) s'appelle le nombre capillaire, noté Ca :

Ca = ηV γ • (1.19)
Dans la limite des petits nombres capillaires, Landau, Levich et Derjaguin ont proposé une solution analytique (en raccourci, loi de Landau) au problème du mouillage dynamique [START_REF] Landau | Dragging of a liquid by a moving plate[END_REF][START_REF] Derjaguin | On the thickness of the liquid film adhering to the walls of a vessel after emptying[END_REF]. Leur raisonnement se fonde sur la figure 7. [Solid plate drawn out of a liquid bath; e is the thickness of the film entrained by the plate, the length of the dynamic meniscus (zone of transition between the static meniscus and the film) and h its thickness. The position of the static meniscus when there is no movement (V = 0) is drawn in dotted line.]

Trois régions s'y distinguent : en bas, un morceau du ménisque statique non perturbé par les écoulements ; en haut, le film, d'épaisseur constante (inconnue) h = e ; entre les deux, une zone de raccord, ou ménisque dynamique, où le film se forme. On suppose son épaisseur (d'ordre e) petite devant son extension . L'interface y est peu courbée et le mouvement du liquide pratiquement vertical. L'équation de Navier-Stokes se réduit à l'équation (1.17), et s'écrit, à l'aide de l'équation (1.18) :

ηu yy = -γh xxx + ρg (1.20)
où u est la composante de la vitesse parallèle à la plaque et h(x) la position de l'interface libre. Cette équation s'intègre en considérant le non-glissement à la paroi solide (u(y = 0) = V ) et l'absence de contrainte visqueuse à la surface libre (u y (y = h) = 0). On obtient un profil de vitesse parabolique :

u = -γh xxx + ρg η y 2 2 -yh + V. (1.21)
Le flux de liquide vaut donc (par unité de largeur de la plaque) :

Q = h 0 udy = hV + h 3 3η (γh xxx -ρg). (1.22)
En régime stationnaire, le flux est constant et vaut (on fait h = e dans l' Éq. (1.22)) : 

Q = eV - ρge 3 3η • (1.
d 2 h dx 2 dyn h→∞ = d 2 h dx 2 statique h→0
.

(1.25)

Au signe près, la deuxième de ces limites est la courbure en haut du ménisque statique. Donnée par l'équation (1.10), elle vaut √ 2κ. Le calcul s'achève donc par l'étude de la courbure du ménisque dynamique à grande épaisseur afin de déterminer la première limite dans l'équation (1.25). Il faut intégrer l'équation (1.22). On commence par effectuer le changement de variables :

h = eY et x = e Ca -1/3 X. (1.26)
Compte tenu de l'équation (1.23), l'équation (1.22) devient :

Y = 3 1 -Y Y 3 + e 2 κ 2 Ca Y 3 -1 Y 3 • (1.27)

La loi de Landau

Si le film est mince (e 2 κ 2 Ca), on peut négliger dans l'équation (1.27) le terme de gravité. On obtient ainsi une équation différentielle indépendante de tout paramètre :

Y = 3 1 -Y Y 3 (1.28)
assortie des conditions définies par l'équation (1.24) (pour X → ∞, on a :

Y → 1, Y → 0 et Y → 0).
La dernière étape consiste à intégrer numériquement une fois l'équation (1.28). On peut ainsi tracer la variation de Y avec Y , comme sur la figure 8. Pour Y grand, Y tend rapidement vers une limite, qui est la valeur recherchée. On trouve :

d 2 Y dX 2 dyn Y →∞ = 1,34 (1.29) 
ce qui s'écrit, en réintroduisant h et x :

d 2 h dx 2 dyn h→∞ = 1,34 Ca 2/3 e •
En rassemblant ce résultat avec l'équation (1.25), nous obtenons la loi de Landau qui exprime l'épaisseur du dépôt en fonction des différents paramètres :

e = 0,94κ -1 Ca 2/3 . (1.30)
Pour parvenir à ce résultat, le drainage par gravité a été négligé dans l'équation (1.27). En utilisant l'équation (1.30), on trouve que cette approximation est justifiée si :

Ca 1/3 1.
En pratique, l'équation (1.30) n'est donc susceptible d'être vérifiée qu'à très petit nombre capillaire (Ca < 10 -3 ). Dans la limite inverse des grands nombres capillaires, on attend que ce soit la gravité qui limite l'épaisseur du film (loi de Derjaguin, exprimée plus bas).

Longueur du ménisque dynamique

Près du film plat, on peut linéariser l'équation (1.29). En posant Y = 1+ε (ε 1), on obtient :

ε = -3ε (1.31) 
dont la solution (acceptable) est : ε = exp(-3 1/3 X). Le ménisque dynamique se raccorde au film plan avec un profil exponentiel :

h(x) = e 1 + exp - x
avec pour longueur caractéristique :

≈ 0,92κ -1 Ca 1/3 . (1.32)
Dans la limite Ca 1/3 1, on a bien : e κ -1 : le ménisque dynamique est petit devant le ménisque statique, mais grand devant l'épaisseur du film (ce qui justifie l'usage de l'approximation de lubrification).

Validité du raccord asymptotique

On peut s'interroger sur la validité de l'audacieux raccord asymptotique ( Éq. (1.25)) qui fonde la loi de Landau. Nous avons déterminé numériquement l'épaisseur inconnue h * où se fait le raccord en égalant en ce point la dérivée troisième du profil de chaque ménisque. On peut alors calculer la valeur (Y ) * de la courbure à cet endroit, et en déduire l'épaisseur du dépôt grâce au raccord (non-asymptotique) des courbures des deux ménisques :

e = 1 √ 2 (Y ) * κ -1 Ca 2/3 .
La figure 9 compare la solution numérique de la solution analytique de Landau. On a porté le rapport de la première sur la seconde (noté α) en fonction du nombre capillaire, dans un intervalle où la solution de Landau est censée être valable (Ca < 10 -3 ). L'accord entre les deux méthodes est remarquable, puisque les deux valeurs ne diffèrent que de quelques %. La méthode asymptotique surestime logiquement l'épaisseur du film (puisque l'on surévalue la courbure), et son usage apparaît (tout aussi logiquement) d'autant plus fondé que le nombre capillaire est petit. Le succès de la méthode asymptotique est dû à la rapidité avec laquelle la courbure converge quand l'épaisseur augmente : on constate bien sur la figure 8 que prendre comme valeur au raccord quelques fois l'épaisseur (Y d'ordre 10) ou l'infini n'induit pas de grande différence sur la courbure. En revanche, nous discuterons plus loin (en particulier dans l'annexe A) le cas épineux des grands nombres capillaires : l'équation (1.27) montre que la dérivée de la courbure ne tend plus vers 0 quand l'épaisseur augmente, si bien que le raccord asymptotique doit être abandonné.

La loi de Derjaguin

Quand on se rapproche de Ca = 1, à la fois l'épaisseur et la longueur du ménisque dynamique deviennent de l'ordre de la longueur capillaire ( Éqs. (1.30, 1.32)) : le ménisque dynamique envahit le ménisque statique, si bien que les effets liés à la courbure deviennent négligeables devant la gravité. L'épaisseur ne doit alors plus dépendre de la tension de surface.

Derjaguin a donc proposé de chercher une loi de puissance pour l'épaisseur (e ∼ κ -1 Ca n ) indépendante de γ : ceci impose n = 1/2. Levich [START_REF] Levich | Physical hydrodynamics[END_REF] indique que Derjaguin a en outre évalué la constante dans cette loi (elle vaut 1). L'épaisseur en régime de gravité (Ca > 1) s'écrit donc :

e = κ -1 √ Ca. (1.33)
Nous discutons en annexe comment le passage se fait du régime capillaire (loi de Landau) au régime de gravité (loi de Derjaguin).

Un pur régime de Derjaguin est toutefois peu plausible : dans la limite des grands nombres capillaires, il sera en général nécessaire de considérer l'inertie du fluide. En supposant que l'épaisseur suit la loi de Landau ( Éq. (1.30)), le nombre de Reynolds construit à partir de l'épaisseur (Re = ρeV /η) s'écrit :

Re = Ca 5/3 Λ
où Λ est un nombre qui ne dépend que des caractéristiques du liquide :

Λ = η 2 g ργ 3 •
Le nombre capillaire à partir duquel on a Re = 1 s'écrit : Ca * = Λ 3/5 . Il vaut 0,07 pour une huile silicone de 20 cP et 100 fois moins pour l'eau. Les vitesses correspondantes sont faibles : 7 cm/s pour l'huile et 5 cm/s pour l'eau. Le régime gravitationnel sera donc très souvent perturbé par l'inertie, dont les effets sur l'épaisseur du film sont étudiés au chapitre 2.

Drainage des films

Une fois fabriqué, le film n'est plus soumis qu'à la gravité. Jeffreys a calculé comment il se draine [START_REF] Jeffreys | The draining of a vertical plate[END_REF]. La paroi solide étant immobile, et en orientant l'axe des x vers le bas, le flux de liquide dans le film ( Éq. (1.24)) s'écrit :

Q = ρgh 3 3η
où h est l'épaisseur du film, qui dépend maintenant à la fois du temps t et de la position x : le film, qui n'est pas alimenté, s'amincit par le haut. La conservation de la matière impose :

∂h ∂t = - ∂Q ∂x = - ρg η h 2 ∂h ∂x •
Une solution de cette équation est l'épaisseur constante initiale h = e : le bas du film est une zone plate. En haut, le film s'amincit et Jeffreys a proposé de rechercher une solution en loi de puissance : h = Ax α t β . On trouve ainsi, en fixant l'origine des x en haut du film :

h(x,t) = ηx ρgt • (1.34)
Le film d'épaisseur initiale e se drainant par gravité adopte donc le profil schématisé sur la figure 10 : parabolique en haut, plan ensuite. L'égalité h = e dans l'équation (1.34) donne l'extension L de la zone amincie. Elle progresse linéairement avec le temps :

L(t) = ρg η e 2 t. (1.35) 
Or, dans le problème de Landau (plaque verticale), le film se draine aussitôt qu'il est fabriqué. Il se draine par le haut et la zone amincie progresse à la vitesse v déduite l'équation (1.35) :

v = ρge 2 η •
À faible vitesse (Ca 1), l'épaisseur est donnée par la loi de Landau ( Éq. (1.30)) et la zone amincie progresse moins vite que le film ne se fabrique (on a : v = Ca 1/3 V ) : le film est presque tout entier plat. Dans le régime gravitationnel en revanche (Ca 1) où l'épaisseur est donnée par l'équation (1.33), la zone amincie progresse exactement à la vitesse de fabrication du film (v = V ), qui est donc entièrement parabolique (Fig. 11). Le film n'a donc l'épaisseur de Derjaguin e D ( Éq. (1.33)) que juste à la sortie du réservoir. [Drawing a plate at large Ca (and neglecting inertia) : the film is thinned everywhere, with a parabolic profile (Eq. (1.34)). Its thickness is given by the Derjaguin equation (1.33) only at the point where it comes out of the bath.]

.3. Mouillage d'un fil

Loi d'entraînement

Nous nous demandons à présent comment les résultats établis jusqu'ici se transposent au cas d'un fil tiré d'un bain de liquide mouillant (Fig. 12). Si le rayon du fil est petit devant la longueur capillaire, la gravité est négligeable, et l'épaisseur du film résulte d'un compromis entre entraînement visqueux et rappel capillaire (c'est cette situation de gravité négligeable qui permet de représenter la fibre à l'horizontale sur la Fig. 12).

La pression qui règne dans le ménisque statique est la pression atmosphérique p 0 (voir l' Éq. (1.11)). En revanche, la pression de Laplace dans le film vaut p 0 + γ/(b + e). Le ménisque dynamique (longueur ) est donc le siège d'un gradient de pression qui s'écrit (pour e b) :

∇p ∼ γ/ b. (1.36)
Ce gradient provoque un écoulement régi à faible vitesse par la loi de Poiseuille :

ηV ∼ e 2 γ/ b.

(1.37) On estime enfin la longueur en raccordant le ménisque statique, de courbure nulle, au ménisque dynamique dont la courbure comporte deux termes de signe contraire : l'un lié à la courbure de la fibre, l'autre à la dérivée seconde du profil. Toujours aux dimensions, ce raccord s'écrit : La loi (1.40) prédit aussi l'épaisseur du film laissé par une goutte se déplaçant dans un capillaire de rayon b (Fig. 13), toujours dans la limite des faibles épaisseurs. Elle porte alors le nom de loi de Bretherton [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF]. Cette expression diverge pour Ca = 1,34 -3/2 ∼ = 0,64. À grande épaisseur, la surpression dans le film s'estompe et plus rien (dans ce modèle) ne s'oppose à l'entraînement du réservoir entier par la fibre. En pratique, certains facteurs risquent de limiter la divergence. L'épaisseur du film par exemple ne peut excéder l'ouverture R du réservoir d'où l'on tire la fibre. La gravité devra également être prise en compte dès que (b + e) est du même ordre que la longueur capillaire κ -1 .

γ b - γe 2 ∼ 0. ( 1 
Dans le cas de la vidange d'un tube (Fig. 13), il convient (au premier ordre) de remplacer le rayon b par (b-e) si bien que l'épaisseur du film tend vers une fraction du rayon du tube, à grand nombre capillaire. Ce régime de convergence capillaire a été étudié expérimentalement par Taylor [START_REF] Taylor | Deposition of viscous fluid on the wall of a tube[END_REF] et a fait l'objet d'un traitement théorique par Reinelt et Saffman [START_REF] Reinelt | The penetration of a finger into a viscous fluid in a channel and tube[END_REF].

Expériences

Après une revue des expériences de mouillage dynamique menées sur les fibres et dans les capillaires, nous présentons notre montage expérimental ainsi qu'une première série de résultats nous permettant de préciser les conditions de validité de la loi de Landau.

.1. Revue

Le premier travail date de 1922. Goucher et Ward [START_REF] Goucher | The thickness of liquid films formed on solid surfaces under dynamic conditions[END_REF], deux ingénieurs de la General Electric, comparent l'enduction d'une plaque et d'une fibre. L'expérience consiste à tirer le solide hors d'un bain de cire d'abeille fondue puis à le peser, une fois la cire solidifiée. Ils identifient les paramètres du problème et proposent comme loi expérimentale, dans le cas des fils : e = 4,8bCa.

En 1966, White et Tallmadge [START_REF] White | A Theory of Withdrawal of Cylinders from Liquid Baths, A.I[END_REF] mesurent par pesée ou à partir de photographies la quantité de liquide entraînée par un fil (rayon de 140 µm ou plus) ou un petit cylindre (millimétrique). Les fils sont enduits de glycérine ou d'huile (de moteur ou minérale) à des nombres capillaires proches de l'unité (0,03 < Ca < 1). Sur cet intervalle, leurs résultats avec les fils minces s'accordent assez bien avec la loi (1.41).

En 1973, Carroll et Lucassen [START_REF] Carroll | Capillarity-controlled entrainment of liquid by a thin cylindrical filament[END_REF] étudient l'entraînement d'huile par une fibre en Téflon. L'épaisseur est déterminée en dissolvant le film dans une autre huile et en titrant le mélange par gravimétrie. La loi qu'ils proposent, sur un petit intervalle en nombre capillaire, s'écrit :

e e + b = A √ Ca.
Ils s'intéressent ensuite à l'influence des tensioactifs sur l'épaisseur du film entraîné. Ils relèvent que la constante A est multipliée par un facteur 2,5 quand des tensioactifs sont présents en solution (effet d'épaississement). En 1989 enfin, nous avons étudié l'entraînement d'alcane par un fil polymère [START_REF] Quéré | Making van der Waals films on fibers[END_REF]. L'épaisseur est mesurée après dissolution du film et titrage par chromatographie en phase gazeuse. La sensibilité de la méthode permet d'explorer le domaine des très faibles nombres capillaires (Ca < 10 -5 ) : la fibre entraîne alors un film microscopique, si bien que l'on ne peut plus négliger l'effet des forces de van der Waals, dont l'action, dans ce cas, est d'épaissir le film. L'épaisseur finalement adoptée par ce dernier résulte d'un compromis entre forces de van der Waals et capillaire. À plus grande vitesse (2 × 10 -4 < Ca < 4 × 10 -3 ), l'épaisseur croît comme Ca 2/3 , mais le coefficient mesuré est supérieur de 30 % à sa valeur théorique.

Si l'on compare l'ensemble de ces résultats (sauf les points à très faible Ca) à l'équation (1.41) (Fig. 14), on observe que l'allure générale est bonne, mais que les [Entrainment of liquid by a fiber: summary of the principal experimental results. The film thickness (divided by the fiber radius) is plotted versus the capillary number, in a log-log scale. The curve in full line is equation (1.41).] épaisseurs mesurées sont systématiquement plus grandes que prévu, d'un facteur allant jusqu'à 2,5.

La situation est un peu différente dans le cas des capillaires, comme le montre la figure 15, où les données expérimentales sont comparées à la loi de Bretherton ( Éq. (1.40)).

Dans l'intervalle 10 -4 < Ca < 10 -2 , théorie et expériences sont en bon accord. En revanche, des écarts apparaissent à faible nombre capillaire (Ca < 10 -4 ) pour les expériences de Bretherton [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF], de Marchessault et Mason [START_REF] Marchessault | Flow of Entrapped Bubbles through a Capillary[END_REF] et de Chen [START_REF] Chen | Measuring the Film Thickness Surrounding a Bubble inside a Capillary[END_REF]. Notons que les expériences menées par Taylor [START_REF] Taylor | Deposition of viscous fluid on the wall of a tube[END_REF] dans la limite où Ca se rapproche de 1 ne sont pas reportées sur la figure 15. L'effet du confinement devient alors sensible et l'épaisseur tend vers une fraction du rayon du tube.

Il est frappant de constater que les déviations apparaissent là où la théorie devrait donner les meilleurs résultats (pour Ca 1). Pour en rendre compte, Bretherton a invoqué les forces de van der Waals, dont nous avons mentionné plus haut qu'elles pouvaient avoir un effet épaississant sur le film ; en fait, dans ces expériences où l'épaisseur du film, supérieure au micron, est plus grande que leur portée, elles sont négligeables. La rugosité de surface peut également intervenir, en piégeant le liquide. Dans les expériences de Chen, la présence de cannelures dans le capillaire explique bien le comportement à faible Ca : l'épaisseur mesurée est alors égale à la rugosité du capillaire [START_REF] Chen | Measuring the Film Thickness Surrounding a Bubble inside a Capillary[END_REF]. Mais la rugosité ne permet pas d'expliquer les anomalies de Bretherton, qui dépendent du liquide utilisé. Au chapitre 4, nous discuterons en détail le rôle joué par les tensioactifs, principale cause des déviations constatées sur les figures 14 et 15.

.2. Principe de l'expérience

La matière première

Nous avons donc mis au point une expérience de mouillage dynamique de fibres, en tentant d'éviter au mieux deux des écueils relevés, qui sont la rugosité du support solide et la présence de contaminants.

Pour le liquide, nous avons choisi des huiles silicones (série 47 V de Rhône-Poulenc), mouillantes et peu contaminables à cause de leur faible tension de surface (γ ∼ 20 dyn/cm). Toutes leurs caractéristiques, mesurées au laboratoire, sont résumées dans le tableau 1.

Tableau 1. Caractéristiques des différentes huiles silicones utilisées dans les expériences de retraits lents. Ces huiles appartiennent à la série 47Vn, où n désigne leur viscosité cinématique ν, exprimée en centistokes. On a également indiqué les valeurs de la viscosité dynamique η, de la masse volumique ρ et de la tension superficielle γ.

[Characteristics of the different silicone oils used in the slow withdrawal series of experiments. These oils belongs to the so-called 47Vn family, where n is the kinematic viscosity ν, expressed in centistokes. The values of the dynamic viscosity η, density ρ and surface tension γ have also been reported.] 47V20 47V100 47V300 47V500 47V12500 Les fibres utilisées sont des fils de nickel (rayon b = 63,5 µm et 88,5 µm), et dans certains cas de molybdène (b = 12,5 µm) ou de tungstène (b = 50 µm et 12,5 µm) (provenance Johnson-Matthey). Une observation au microscope électronique à balayage (Fig. 16) révèle une faible densité de défauts, essentiellement des cannelures de profondeur inférieure à 0,5 µm.

Le dispositif expérimental

Pour mesurer l'épaisseur des films, nous avons imaginé le montage schématisé sur la figure 17.

Le réservoir est un tube en Téflon de longueur L (L = 1,5 cm) et de rayon R (R = 2 mm), disposé à l'horizontale et suspendu à une balance. Le liquide y reste [Experimental set-up: a fiber passes at a speed V through a liquid reservoir, whose mass is recorded versus time.] piégé car R est de l'ordre de la longueur capillaire. Le fil, maintenu en tension par un contrepoids, traverse ce tube. Il est entraîné à la vitesse souhaitée (de 0,1 mm/s à 5 m/s) par un moteur continu muni d'un tachymètre. Dans le même temps, on mesure la masse du réservoir de liquide en fonction du temps.

La mesure

La figure 18 montre un enregistrement de la masse m du réservoir en fonction du temps t, pour une goutte d'huile silicone 47V20 traversée à 3 cm/s par un fil de nickel de rayon b = 63,5 µm.

Dès que la fibre est mise en mouvement (point A), la masse décroît linéairement avec le temps. Au point B, on arrête l'expérience. De la pente ∆m/∆t de la décroissance, on déduit l'épaisseur e (constante) du film emporté par la fibre. On a en effet :

e 2 + 2eb = - 1 πρV ∆m ∆t • (1.42)
Sur l'exemple de la figure 18, on déduit de cette façon : e = 8,0 ± 0,3 µm. La sensibilité du capteur de la balance est ∆m = 0,1 mg. L'épaisseur minimale mesurable dépend du rayon de la fibre et de la longueur de fibre qui a défilé. Pour 1 mètre de fil de 50 µm de rayon tiré d'un bain d'eau, elle vaut 0,3 µm. La plus petite épaisseur que nous ayons été amené à mesurer est 0,2 µm, supérieure à la portée des forces de van der Waals dont l'effet sera donc négligeable dans toutes nos expériences. L'évaporation peut également limiter la sensibilité de l'expérience. [A typical recording obtained with the set-up drawn in Figure 17. The mass of the bath is plotted versus time. The experiment is done with a silicone oil 47V20 from which a nickel wire (b = 63.5 µm) is drawn at V = 3 cm/s. Between A and B, the wire is moved, so that it entrains a film of constant thickness: it is observed that the reservoir mass decreases linearly with time.] Pour l'eau (ou tout autre liquide volatil), les mesures ont été faites en atmosphère saturée (on dispose pour cela une boîte autour du tube-réservoir), afin que la perte de masse par évaporation reste inférieure à la perte de masse par entraînement et qu'elle demeure stable pendant la durée de l'expérience.

.Premiers résultats

Le régime visco-capillaire [START_REF] De Ryck | Le mouillage dynamique d'une fibre[END_REF][START_REF] De Ryck | Fibres tirées d'un bain[END_REF] La figure 19 rassemble les résultats obtenus la série d'huiles silicones répertoriée dans la tableau 1. Le fil est en nickel et son rayon b vaut 63,5 µm, sauf pour un point (celui à plus grand nombre capillaire), obtenu avec un fil de tungstène de rayon b = 12,5 µm. Les vitesses de tirage sont comprises entre 150 µm/s et 5 cm/s. Les résultats sont très reproductibles comme en témoignent les barres d'erreur placées sur la figure, sauf à petit nombre capillaire où l'on atteint la limite de sensibilité de l'expérience.

La ligne continue est l'équation (1.41). L'accord entre théorie et expérience est donc excellent, quelque soit l'huile employée. C'est le résultat central de ce chapitre : pour un système modèle (retraits lents, fibres lisses, huiles mouillantes [Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for several silicone oils (see Tab. 1), and for a nickel wire of radius b = 63.5 µm (except for the higher point, obtained with a molybdenum wire of radius b = 12.5 µm). The curve in full line is equation (1.41).] et peu contaminables), la loi de Landau ajuste l'expérience, sur trois ordres de grandeur en nombre capillaire. L'épaisseur résultant d'un compromis entre entraînement visqueux et rappel capillaire, nous appelons ce régime visco-capillaire. L'accord subsiste dans la zone de divergence, car l'épaisseur entraînée reste petite devant la longueur capillaire et le rayon R du réservoir. C'est pour satisfaire cette condition que le point à plus grand nombre capillaire a été obtenu avec un fil plus fin (b = 12,5 µm).

Une remarque de détail

La surface libre du réservoir a une courbure qui dépend de l'angle de contact du liquide sur le Téflon (voir Fig. 20) : pour un liquide mouillant, elle est égale à -2/R. [Zoom on the exit of the bath: for a wetting liquid, the reservoir meniscus has an hemispherical shape of radius R, except close to the fiber (of radius much smaller than R, itself supposed smaller than the capillary length).] , 0-Figure 21. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites avec de l'eau pure et le même fil de nickel que ci-dessus (Fig. 19). La ligne en pointillés est l'équation (1.41).

[Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done with pure water and the same nickel wire as above (Fig. 19). The curve in dotted line is equation (1.41) On relève donc deux anomalies successives. À faible nombre capillaire, le fil entraîne moins de liquide que prévu : le chapitre 2 est consacré à l'analyse de ce phénomène ; au-delà de Ca = 0,01, au contraire, l'épaisseur du dépôt augmente brusquement : nous interprétons au chapitre 3 ce comportement. [Withdrawal of a plate (at speed V ) out of a bath of partially wetting liquid (for V = 0, the liquid makes with the solid a contact angle θe). At low velocity, the liquid meets the solid with an angle θ(V ) (θ < θe), so that the solid comes out dry. Above a threshold in velocity Vm, a liquid film is entrained.] 2. Modèles 2. .1. Approche moléculaire L'idée de base, due à Yarnold et Mason [32], consiste à décrire ce qui se passe au voisinage de la ligne de contact par des processus d'adsorption et de désorption activés thermiquement. Les molécules voisines de la ligne de contact peuvent sauter du liquide à la surface du solide (à une fréquence K + ), ou inversement (fréquence K -). À l'équilibre (coin au repos), ces deux fréquences sont égales, et leur valeur commune notée K 0 .

Les sauts se font sur des sites, dont on note n le nombre par unité de surface et λ la distance moyenne (on les suppose distribués de façon isotrope, si bien que l'on a : n ∼ 1/λ 2 ). La ligne avance quand on applique la force f γ , ce qui modifie les barrières énergétiques associées aux sauts moléculaires [28] : le travail de la force (écrit par unité de déplacement de l'unité de longueur de ligne) se partage, par site, en f γ /2n utilisé pour abaisser la barrière des sauts dans la direction du mouvement et en f γ /2n pour augmenter celle dans la direction antagoniste.

La fréquence des sauts vaut donc :

K ± = K 0 exp ± f γ λ 2 2kT .
La relation entre vitesse (V = (K + -K -)λ) et angle s'en déduit aisément :

V (θ) = 1 2 λK 0 sh f γ (θ)λ 2 2kT (2.2)
où la vitesse qui norme V est petite (pour K 0 = 10 4 s -1 et λ = 1 nm, λK 0 = 10 µm/s).

La fonction V (θ) s'annule bien en θ = θ e et est linéaire au voisinage de l'équilibre (V ∼ θθ e ). À grande vitesse, l'argument du sinus hyperbolique est grand, si bien que cosθ est linéaire en lnV . Ce point est en accord avec de nombreuses données expérimentales [28], ce qui permet de déduire les valeurs de λ et de K 0 .

L'équation (2.2) n'admet pas de solution en angle pour toutes les vitesses : la fonction θ(V ) décroît quand la vitesse augmente, jusqu'à atteindre 0 pour une vitesse V m donnée par l'expression : 

V m = 2K 0 λsh γ(1 -cos θ e )λ 2 2kT . ( 2 
V m = K 0 λ γλ 2 2kT θ 2 e .
(2.3b)

.Approche hydrodynamique

Dans le modèle de de Gennes [29] (ainsi que dans les approches de Cox [33] et de Voinov [34]), le travail de la force capillaire est dissipé par viscosité. Si les angles sont petits, la force capillaire ( Éq. (2.1)) se développe en :

f γ ∼ γ 2 (θ 2 e -θ 2 ). (2.4)
La force de friction visqueuse f η , également considérée par unité de longueur, s'écrit :

f η = η ∂u ∂y dx.
Le profil de vitesse se calcule dans l'approximation de lubrification, avec les conditions u(0) = V et u y (h(x)) = 0, où h(x) est le profil du coin (Fig. 22). À partir de l'équation (1.21) et en écrivant que le flux total de liquide est nul (il n'y a pas de film entraîné), on trouve :

u(y) = 1 2 V 3 y -h(x) h(x) 2 -1 .
Près de la ligne de contact où le profil s'écrit : h(x) ∼ θx, la force de friction vaut :

f η = 3ηV θ dx x • (2.5) 
L'intégrale divergente dans l'équation (2.5) s'évalue au prix de deux coupures :

(i) l'extension du ménisque dynamique défini sur la figure 22, d'une part, qui est au plus la hauteur du ménisque statique, de l'ordre de la longueur capillaire κ -1 pour une plaque et de son rayon b pour une fibre ;

(ii) une longueur moléculaire, d'autre part (on note a la taille d'une molécule) ; cette seconde coupure revient à supposer un glissement du liquide à la paroi, sur une distance d'ordre a.

On pose µ = ln(κa) pour une plaque (ou ln(b/a) pour un fil). Sa dépendance logarithmique permet de traiter µ comme une constante qui vaut en pratique environ 10. Dans ces conditions, une bonne approximation de la force visqueuse est : Si V est inférieur à V m , l'équation (2.7) a une solution : le solide sort sec, comme sur la figure 22. Dans le cas contraire, le coin de liquide n'est pas capable de résister à la dissipation visqueuse. Un film est entraîné, si bien tout se passe comme si le solide était mouillant. On attend a priori que l'épaisseur du film soit dès lors donnée par la loi de Landau (ou une de ses variantes). L'épaisseur du dépôt devrait donc, en régime sec, présenter une discontinuité autour de la vitesse seuil d'entraînement d'un film V m .

f η = 3µ ηV θ • (2.6) 
2. .3. Bilan [START_REF] Brochard-Wyart | Dynamics of partial wetting[END_REF][START_REF] Ruckenstein | Dynamics of partial wetting[END_REF] Dans une synthèse des deux modèles, de Gennes [START_REF] Brochard-Wyart | Dynamics of partial wetting[END_REF] [Results of the experiment described in Figure 24 for a nickel wire (b = 63,5 µm) and pure water (γ = 72 mN/m). The force is plotted versus the displacement of the fiber, and the advancing and receding contact angles are measured at the moment when the fiber touches the liquid surface.]

Nous interprétons donc le comportement à faible nombre capillaire sur la figure 21 comme une transition entre les régimes sec et mouillé. Le seuil de transition donné par l'équation (2.8) (utilisée, à nouveau, avec l'angle statique de reculée) vaut, pour θ r = 30 • , Ca m ≈ 6 × 10 -4 . Cette valeur est proche, en effet, de celle à partir de laquelle on commence à entraîner un film.

Le retrait d'un fil de tungstène (b = 50 µm) du même bain d'eau confirme cette interprétation. Le tungstène est mouillé par l'eau à la reculée (la mesure donne : θ r = 0 • ), et l'anomalie constatée à faible Ca avec le nickel disparaît (Fig. 26). [Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for a tungsten wire (b = 50 µm) drawn out of pure water. For this system, the static receding angle is zero, and logically the dry regime disappears (if compared with Fig. 21). The curve in full line is equation (1.41).]

En revanche, la déviation qui a lieu à grande vitesse (à partir de Ca ∼ 0,01, soit pour V > 70 cm/s) est à nouveau observée dans cette expérience. Comme sur la figure 21, l'épaisseur croît rapidement avec le nombre capillaire. Pourtant, ni l'allure de cette croissance, ni surtout sa localisation en nombre capillaire n'évoquent la divergence capillaire rencontrée dans le régime de Landau ( Éq. (1.41) et Fig. 19). Cet effet, non relevé par les précédents auteurs, mérite donc une étude spécifique. C'est l'objet du chapitre suivant. On le voit : pour un fil tiré d'un bain d'eau pure, l'épaisseur du film croît très fortement avec la vitesse, quand le nombre capillaire dépasse 0,01. L'allure de la courbe évoque une loi de divergence, mais il ne s'agit pas de la divergence capillaire qui se produit lorsque le nombre capillaire approche l'unité et dont l'allure est beaucoup plus molle ( Éq. (1.41) et Fig. 19).

Tirages à grande vitesse

Pour s'assurer du caractère général de l'effet, nous avons réitéré l'expérience avec une huile silicone légère, l'hexaméthyldisiloxane (de formule CH 3 -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -CH 3 ). Sa tension vaut 15,9 dyn/cm, sa viscosité 0,48 cP et sa densité 0,76. Cette huile est très volatile : nous avons mesuré la perte de masse par évaporation hors du réservoir, qui vaut -69 µg/s à 22 • C. La figure 28 Les données sont comparées à la loi de Landau ( Éq. (1.40) ou (1.41)), tracée en trait plein, et des tirets délimitent la région au-dessous de laquelle l'évaporation est dominante. Comme pour l'eau, on observe une divergence de l'épaisseur à partir de Ca ∼ = 0,01, ce qui correspond ici à V ∼ = 30 cm/s.

Interprétation

Alors que la figure 27 (ou 28) explore la même plage de nombres capillaires que la figure 19, le comportement observé est très différent. Le nombre capillaire ne suffit donc pas à lui seul pour décrire toutes les expériences. Or la déviation est liée à des vitesses de tirage élevées : les vitesses sur la figure 19 sont d'au plus 5 cm/s tandis que le régime divergent apparaît autour de 70 cm/s (Fig. 27) et de 30 cm/s (Fig. 29). Il est donc naturel de suspecter l'inertie du fluide d'être à l'origine de cette anomalie.

Raisonnons aux dimensions. L'équation de Navier-Stokes s'écrit :

-ρ V 2 = - γ b + η V e 2 (3.1)
où est l'extension du ménisque dynamique. Les signes du gradient de pression et du terme de viscosité sont opposés, comme nous l'avons souligné au premier chapitre ( Éq. (1.37)). Quant au terme convectif, il est négatif car l'effet de l'inertie (qui projette le liquide hors du réservoir) est antagoniste de celui de la pression de Laplace (qui ramène le liquide dans le bain). L'équation (3.1) se reformule en:

ηV ∼ e 2 γ b -ρV 2
où l'on reconnaît la loi de Poiseuille (1.37), écrite avec une pression effective p = γ/b -ρV 2 . La longueur du ménisque dynamique est également modifiée (ce point est omis par erreur dans la Réf. [START_REF] De Ryck | Quick Forced Spreading[END_REF]). En appliquant la loi de Bernoulli, le raccord de pression entre les ménisques statique et dynamique s'écrit, toujours aux dimensions et dans la limite e b:

γ b - γe 2 ∼ ρV 2 . (3.2) 
En rassemblant les équations (3.1, 3.2), on obtient une loi dimensionnelle pour l'épaisseur : À basse vitesse, l'inertie est négligeable (W 1), et l'équation (3.4) se réduit à la loi de Landau. À mesure que W augmente, l'épaisseur s'écarte de cette loi, pour diverger quand il atteint l'unité. Dans le même temps, le ménisque dynamique s'étire ; des équations (3.2, 3.3), on déduit :

e ∼ b Ca 2/3 1 -W (3.3) avec W = ρV 2 b γ • (3.
∼ b Ca 1/3 1 -W •
La vitesse V * pour laquelle la divergence se produit s'obtient en faisant W = 1. On trouve ainsi :

V * ∼ γ ρb 1/2 . (3.5)
V * est en pratique de l'ordre du mètre par seconde. On peut finalement tracer en fonction de la vitesse l'épaisseur donnée par l'équation (3.3), en prenant pour le liquide : γ = 50 dyn/cm, η = 1 cP et ρ = 1 g/cm 3 et pour la fibre : b = 65 µm. C'est la figure 29, qui reproduit bien l'allure du comportement observé expérimentalement. [Film thickness (normalized by the fiber radius) versus the withdrawal velocity, deduced from equation (3.3) (with γ = 50 dyn/cm, η = 1 cP, ρ = 1 g/cm 3 and b = 65 µm). In a log-log plot, the behaviour is linear (slope 2/3) at small velocity; then, the film thickness diverges for a finite velocity noted V * .]

Test en rayon

Un moyen simple de tester la validité du modèle présenté ci-dessus consiste à faire varier le rayon du fil. Sur la figure 30 On peut aussi tester directement l'équation (3.3) : sur la figure 31 : l'épaisseur de Landau ( Éq. (1.40)) divisée par la valeur mesurée (données de la Fig. 30) est tracée en coordonnées normales en fonction du nombre de Weber.

Cette représentation, qui permet de tester la forme de la divergence, est en bon accord qualitatif avec l'équation (3.3) : les données s'alignent sur une droite décroissante, qui coupe l'axe des nombres de Weber pour une valeur d'ordre unité.

Conclusion

Nous avons montré qu'un fil tiré d'un liquide peu visqueux entraîne, au-delà d'un seuil en vitesse, une quantité de liquide très supérieure à ce que prévoit la loi de Landau. Nous avons interprété ce phénomène comme un effet de l'inertie du fluide, qui tend bien à le projeter hors du bain. Nous appelons ce régime particulier visco-inertiel.

L'épaisseur (normée par le rayon du fil) n'est alors plus fonction du seul nombre capillaire, mais également d'un second nombre sans dimension, le nombre de Weber, défini par l'équation (3.4). Une approche dimensionnelle nous a permis d'établir l'allure de la fonction ( Éq. (3.3)). En dépit de la rudesse de notre analyse, l'équation (3.3) rend compte de manière satisfaisante des expériences. En particulier, la valeur de la vitesse pour laquelle l'épaisseur du film diverge est bien décrite. Pour observer un pur régime visco-inertiel, il faut que la divergence se produise avant la divergence capillaire ( Éq. (1.41)), c'est-à-dire pour un nombre capillaire inférieur à 1. La condition W = 1 jointe à l'inégalité Ca < 1 donne :

η 2 ργ < b. (3.6)
Pour un fil donné, le régime visco-inertiel concernera donc des liquides de faible viscosité. Pour l'eau, la longueur η 2 /ρg vaut 14 nm, si bien que l'inégalité (3.6) est toujours largement vérifiée. En revanche, pour des huiles silicones visqueuses, ce n'est plus le cas. Pour celle de 100 cSt par exemple (utilisée sur la Fig. 19 pour approcher Ca = 1), η 2 /ρg vaut 500 µm alors que le rayon du fil utilisé ne vaut que 63 µm. Il était donc logique de ne pas observer la divergence visco-inertielle avec ces huiles.

Notons enfin qu'une condition favorable au gonflement du film dans nos expériences est le peu d'influence de la gravité. Tant que l'épaisseur du film reste petite devant la longueur capillaire, on peut la négliger. Dans le cas du retrait vertical d'un fil, ou si l'on s'intéresse à la sortie d'une plaque, on attend que la gravité émousse la loi de divergence.

.2. Théorie

Nous cherchons à présent à être plus quantitatif en tentant d'étendre le calcul de Landau aux régimes de grande vitesse. Avant de présenter notre approche, nous résumons les travaux antérieurs sur le même thème. Tous concernent la géométrie de la plaque.

Tirage d'une plaque à grande vitesse : revue

Soroka et Tallmadge [START_REF] Soroka | A test of the Inertial Theory for Plate Withdrawal[END_REF][START_REF] Tallmadge | Limitations of Groenveld thickness expression for high capillary withdrawal[END_REF] ont incorporé dans l'équation de Navier-Stokes (1.15) le terme inertiel à son ordre le plus bas. Elle s'écrit alors :

ρV ∂u ∂x = γ d 3 h dx 3 + η ∂ 2 u ∂y 2 -ρg.
Ils en tirent (sans préciser comment) une expression analytique approchée pour l'épaisseur, qui montre que l'épaisseur de Derjaguin e D ( Éq. (1.33)) n'est jamais atteinte, pas même asymptotiquement : l'épaisseur du film tend vers : e = 0,82 e D . C'est un résultat étrange : l'inertie amincirait les films, en contradiction avec nos résultats (expérimentaux et théoriques). Aucune explication physique n'est d'ailleurs avancée pour comprendre cet effet. Spiers et al. [START_REF] Spiers | Free coating of a liquid onto a vertical surface[END_REF] ont remarqué que l'équilibre de la surface à grand nombre capillaire s'écrit :

p = p 0 -γ d 2 h dx 2 -2η ∂u ∂x y=h .
Toutefois, leur théorie ne prend pas en compte l'inertie, si bien qu'elle ne s'applique qu'exceptionnellement : il faut avoir à la fois Ca 1 et Re 1, ce qui ne peut être réalisé qu'avec un liquide très visqueux, et sur une courte plage de vitesses.

Le modèle le plus important est celui proposé en 1975 par Esmail et Hummel [START_REF] Esmail | Nonlinear Theory of Free Coating onto a Vertical Surface[END_REF], où sont pris en compte à la fois les termes inertiels et le caractère bidimensionnel des écoulements. Grâce à une méthode sur laquelle nous revenons plus loin, ils obtiennent une équation différentielle pour le profil du ménisque dynamique qui s'écrit, dans les notations de Landau ( Éqs. (1.26)) :

Y = 3 1 -Y Y 3 + e 2 κ 2 Ca Y 3 -1 Y 3 + 1 5 Re Ca 1/3 Y 2 - 2 3 3 - e 2 κ 2 Ca 2 Y Y 3 + Ca 2/3 3 2 3 - e 2 κ 2 Ca Y -Y 2 Y Y 3 -3Ca 2/3 3 - e 2 κ 2 Ca (Y ) 2 Y 3 • (3.7)
Les premiers termes sont l'équation de Landau avec gravité (1.27). Le suivant incorpore l'effet de l'inertie (Re désigne le nombre de Reynolds construit avec pour longueur caractéristique l'épaisseur du film). Les deux derniers reflètent le caractère bidimensionnel de l'écoulement.

Esmail et Hummel ont intégré numériquement l'équation (3.7). Leurs résultats, qui font l'objet de la figure 32, sont tracés pour différents liquides (courbes numérotées de 1 à 5, qui correspondent à des liquides de plus en plus visqueux). Ils sont comparés aux lois de Landau (e = e L , Éq. (1.30)), de On constate selon ces courbes, que pour un liquide donné, on s'écarte légèrement de la loi de Landau au-delà d'un nombre capillaire seuil, mais par défaut, ce qui est en contradiction avec nos expériences. Le comportement reste proche de la loi de White et Tallmadge, ce qui indique le rôle important joué par la gravité (voir l'annexe A). On conçoit que la gravité, négligeable dans le cas des fibres, s'oppose à une augmentation de l'épaisseur du film, pour une plaque verticale. Mais cette analyse est insuffisante : en intégrant l'équation (3.7) numériquement, nous avons retrouvé la courbe d'Esmail et Hummel jusqu'au point où ils arrêtent leur graphe et montré qu'au-delà en nombre capillaire, on observe l'amorce d'une divergence -l'amorce seulement, la divergence étant en effet émoussée par la gravité [START_REF] De Ryck | Gravity and inertia effects in plate coating[END_REF].

Nous montrons maintenant comment nous avons adapté le calcul d'Esmail et Hummel au retrait rapide d'une fibre [START_REF] De Ryck | Le mouillage dynamique d'une fibre[END_REF][START_REF] De Ryck | Entraînement visco-inertiel de liquide par un fil[END_REF].

Équation différentielle du profil du film

En se plaçant en coordonnées cartésiennes (on suppose e < b), et en négligeant les termes d'ordre (e/ ) 2 , l'équation de Navier-Stokes s'écrit :

ηu yy = p x + ρ(uu x + νu y ) (3.8)
où u et ν sont les composantes de la vitesse parallèle et perpendiculaire à la fibre. Au même ordre, le gradient de pression se réduit à p x = -γh xxx : seule la pression de Laplace est prise en compte et l'interface est supposée faiblement courbée.

Pour résoudre l'équation (3.8), deux méthodes sont envisageables : un traitement en perturbation (décrit dans [START_REF] De Ryck | Le mouillage dynamique d'une fibre[END_REF]) et le calcul avec pression effective proposé par Esmail et Hummel [START_REF] Esmail | Nonlinear Theory of Free Coating onto a Vertical Surface[END_REF]. Dans ce dernier, on suppose que l'écoulement dans le ménisque dynamique conserve un profil de vitesse parabolique même en présence d'inertie, mais que la pression effective, notée A(x), qui le provoque est inconnue :

u = A(x) y 2 2 -yh(x) + V. (3.9) 
u satisfait les conditions habituelles u(0) = V et u y (h) = 0. La conservation du flux lie A(x) au profil du ménisque dynamique h(x), à e et à V :

Q = eV = h 0 udy = hV -A(x) h 3 3 • (3.10)
On peut donc éliminer A(x) dans l'équation (3.9), qui devient :

u = 3 h -e h 3 y 2 2 -yh V + V. (3.11)
Pour obtenir l'équation différentielle du ménisque dynamique, il faut faire disparaître la variable y dans l'équation de Navier-Stokes (3.8), ce à quoi l'on parvient en faisant une moyenne selon y. On obtient :

η 1 h -u y (y = 0) = -γh xxx + ρ 1 h h 0 (uu x + νu y )dy. ( 3.12) 
L'intégrale dans l'équation (3.12) se calcule via l'incompressibilité du fluide

(u x + ν y = 0) et sachant que ν(h) = h x (x)u(h). On a : h 0 (uu x + νu y )dy = d dx h 0 u 2 dy . (3.13)
Connaissant l'expression (3.11) de u, l'équation (3.12) se résout en une équation différentielle pour le ménisque dynamique :

3η h -e h 3 V = -γh xxx + 1 5 ρV 2 h x h 3 h 2 -6e 2 . (3.14)
Avec le changement de variables habituel ( Éqs. (1.26)), elle se réécrit : 

Y = 3 1 -Y Y 3 + 1 5 Re Ca 1/3 Y 2 -6 Y Y 3 (3.

Le problème du raccord

La suite du calcul, et sa principale difficulté, consiste à raccorder les ménisques dynamique et statique : au raccord, les pressions sont égales, et donc les dérivées secondes des profils également. C'est la condition de Landau, qui s'écrit :

d 2 h dx 2 h→∞ = Ca 2/3 e Y Y →∞ ∼ = d 2 h dx 2 statique h→e . (3.16) 
La courbure du ménisque statique au raccord s'évalue facilement. En effet, ce dernier a une courbure totale nulle et dans la limite où h → e, la courbure hors du plan vaut 1/(b + e). On a, par conséquent :

d 2 h dx 2 statique h→e = 1 b + e • (3.17)
Il reste à évaluer la courbure du ménisque dynamique. La figure 33 donne le résultat de l'intégration numérique de l'équation (3.15) pour différentes valeurs du paramètre C (C = 1/5 Re Ca 1/3 ). La courbe C = 0 correspond au problème de Landau (Fig. 9). Mais dès que C est non nul, on constate que la courbure du ménisque dynamique diverge lentement (divergence logarithmique) avec l'épaisseur : le raccord asymptotique doit donc être abandonné. (D'autres problèmes apparaissent pour C grand, comme des oscillations au-delà de C = 20).

Plusieurs stratégies sont possibles pour poursuivre le calcul. Dans la référence [START_REF] Koulago | Film entrained by a fiber quickly drawn out of a liquid bath[END_REF], nous avons recherché numériquement l'épaisseur (inconnue) où le raccord se fait, puis en avons déduit l'épaisseur. Cette méthode s'avère très sensible aux conditions de calcul et donne des résultats dont l'accord avec les données n'est que qualitatif. C'est pourquoi nous avons également développé un calcul qui permet de s'affranchir de l'intégration numérique et aboutit à une formule analytique donnant l'épaisseur en fonction de la vitesse. Le point de départ est l'équation (3.15). Intégrée une fois, elle s'écrit :

Y = +∞ X 3 Y -1 Y 3 dX + 1 5 Re Ca 1/3 ln Y + 3 Y 2 -3 . (3.18)
Dans la limite de Landau (C = 0 sur la Fig. 33), Y tend vers La réalité est plus complexe : la valeur à saturation e sat dépend également de la longueur L du réservoir (Fig. 36)). Pour un même rayon de tube (R = 2 mm), l'épaisseur maximale mesurée augmente avec L : on a e sat = 50 ± 5 µm pour L = 1,4 cm et e sat = 120 ± 10 µm pour L = 5,1 cm. Il apparaît donc nécessaire de se décrire plus précisément les régimes de vitesse qui sont au-delà de V * , la vitesse de divergence : c'est l'objet du paragraphe suivant.

Y | Y →∞ ∼ = 1,34 + 1 5 Re Ca 1/3 (ln Y | Y →∞ -3). ( 3 

Le régime de couche limite

Dans le modèle visco-inertiel, on suppose que le liquide arrive en sortie de bain à vitesse V . On voit là la limite de ce modèle : il s'agit d'établir comment un solide en mouvement communique de la vitesse au fluide qui l'environne. Nous résumons la célèbre théorie de Prandtl (1904) sur la couche limite visqueuse, puis l'appliquons au problème du mouillage dynamique.

2. .1. La couche limite visqueuse [START_REF] Landau | Fluid Mechanics[END_REF] Dans un réservoir immobile, on ébranle une paroi solide à la vitesse V . À cause de sa viscosité, le fluide alentour est mis en mouvement (Fig. 37).
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Figure 37. À t = 0, on met en mouvement une plaque solide dans un liquide. Celui-ci est ébranlé par la plaque sur une épaisseur appelée couche limite visqueuse qui augmente comme la racine du temps.

[At t = 0, a solid is moved in a bath of liquid. The region close to the solid which is put in motion is called the viscous boundary layer. Its thickness increases as the square root of t.]

L'équation de Navier-Stokes instationnaire s'écrit aux dimensions :

ρ V t ∼ η V δ 2
où δ est l'épaisseur de liquide mise en mouvement par le solide, ou couche limite visqueuse. On en déduit immédiatement sa valeur :

δ ∼ √ νt (3.22)
où ν est la viscosité cinématique du liquide (ν = η/ρ). Prandtl a montré plus précisément qu'à une distance à la paroi supérieure à 3 √ νt, la vitesse rejoint exponentiellement zéro. Quant au flux Q de liquide entraîné, il vaut par unité de largeur de la plaque : Q = 1,7V δ [START_REF] Landau | Fluid Mechanics[END_REF].

Revenons au problème d'une fibre traversant un réservoir. Son passage développe une couche limite dont l'épaisseur est donnée par l'équation (3.22). En sortie de bain, on a t = L/V (L est la longueur du réservoir, voir la Fig. 38). L'épaisseur de la couche limite est alors :

δ ∼ ηL ρV • (3.23)
Pour V = 1 m/s et un réservoir d'eau de 1 cm de long, on trouve environ 100 µm. On s'attend donc à deux cas de figure : [Emptying a reservoir: the solid entrains some liquid, so that the reservoir (of initial length L0) empties as time goes on. Thus, the time spent by a piece of fiber in the reservoir is smaller and smaller, and the viscous boundary layer at the exit thinner and thinner.]

Expérience

Le capteur pèse le réservoir en continu et permet donc de suivre la variation de l'épaisseur du film au fur et à mesure que la goutte se vide. La figure 40 

Commentaires

La goutte se vide en quelques secondes et il faut s'assurer de la capacité du capteur à suivre une variation aussi rapide. Nous avons donc caractérisé la vidange d'une autre manière, en visualisant directement le réservoir (transparent) par vidéo. Les résultats concordent, ce qui prouve que l'on est pas limité par le temps de réponse du capteur de force.

La courbe m(t) ressemble à une parabole. Or ce type de courbe était jusqu'à présent une droite (voir Fig. 18). Le film entraîné n'a donc plus une épaisseur constante au cours du temps mais il est de plus en plus mince à mesure que la goutte raccourcit. Cette observation prouve bien qu'on entraîne alors une couche limite visqueuse. En effet, on a : dL/dt ∼ -e (pour e b) ; si l'on suppose en outre que l'équation (3.25) est satisfaite (e ∼ √ L), on tire : L ∼ t 2 . La construction élémentaire dite de la tangente confirme que le bas de la figure 40 (là où e b) est bien une parabole : la tangente en un point donné intercepte l'axe des abscisses à la distance moitié.

Ajustons à présent l'ensemble du relevé expérimental par la courbe calculée en supposant que le film entraîné est la couche limite en sortie de réservoir, dont l'épaisseur est donnée par l'équation (3.25). La perte de masse du réservoir à cause du film s'écrit :

dm dt = -ρπ(e 2 + 2eb)V. (3.26)
Du fait de sa faible énergie de surface, le Téflon n'est mouillé que partiellement par l'eau, si bien que l'eau ne laisse pas de film sur ses parois en quittant le tube. La masse m du réservoir est donc directement liée à sa longueur L :

m(t) = πR 2 ρL(t). (3.27) 
En rassemblant les équations (3.25-3.27), on obtient une équation pour l'évolution de la longueur L de la goutte : (3.28) se simplifie en :

- dL dt R 2 = α 2 η ρ L + 2αb ηV ρ √ L . (3.28) Si l'on pose τ = 2ρ η R α 2 et ζ = 2 + ηα 2 L ρV b 2 , l'équation
dζ dt = - ζ τ •
La variation de la longueur de la goutte avec le temps s'en déduit :

L(t) = 4ρV b 2 ηα 2 exp ηα 2 2ρR 2 t -1 2 (3.29)
où l'on a choisi comme "origine des temps" l'instant où la goutte est vide (L(0) = 0). Aux temps courts, un développement permet de retrouver la variation parabolique de la longueur avec le temps :

L(t) = α 2 ηV b 2 ρR 4 t 2 .
Avec ce choix d'origine des temps, une source d'erreur dans l'ajustement vient de l'imprécision sur la mesure de ce moment. Si on la fixe au début de l'expérience (ce qui modifie l' Éq. (3.29)), l'incertitude vient du régime transitoire d'accélération du fil. Cette double procédure permet d'estimer l'erreur sur α, le coefficient déduit de l'ajustement.

Les figures 41a et 41b sont deux exemples d'ajustement de courbes expérimentales avec l'équation (3.29). Les données sont tirées d'une série d'expériences similaires à celle de la figure 40, avec des vitesses de défilement comprises entre 160 cm/s et 476 cm/s. L'accord est satisfaisant, ce qui montre que le film entraîné a bien une épaisseur proportionnelle à celle de la couche limite. Le coefficient de proportionnalité α est proche de l'unité. De 8 ajustements semblables à ceux de la figure 41, on tire la variation de α avec la vitesse : α augmente avec V dans le régime de transition, puis plafonne à une valeur de 1,3 ± 0,1 (Fig. 42). Cette valeur est proche de 1,7, nombre attendu pour une plaque [START_REF] Landau | Fluid Mechanics[END_REF]. [Variation of α, deduced from fits similar to the one presented in Figure 41, with the withdrawal velocity V (experiments are done by drawing a Nylon fiber (b = 110 µm) out of a reservoir of pure water). At high speed, α becomes independent of V , which defines the regime of viscous boundary layer (Eq. (3.25)).]
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.3. Épaisseur en fonction de la vitesse

Pour mettre en évidence le régime de couche limite, on peut aussi établir point par point la courbe e(V ). Comme le réservoir se vide, la mesure de l'épaisseur se fait en construisant la tangente à la courbe m(t) pour une longueur L donnée. La figure 43 présente les résultats pour deux longueurs : L = 3,4 cm (carrés vides) et L = 5,1 cm (carrés pleins). Il s'agit toujours du défilement d'une fibre de Nylon hors d'un bain d'eau pure, pour des vitesses allant de 85 cm/s à 476 cm/s (de manière à incorporer le régime visco-inertiel).

La figure 43 3. La région III est une zone de transition entre le régime visco-inertiel et celui de couche limite, qui peut contenir la saturation liée à l'ouverture finie du réservoir décrite plus haut ( Éq. (3.21)). Dans cette région, une description en terme de couche limite est imparfaite, puisqu'elle conduit à une dépendance du coefficient α avec la vitesse (partie croissante sur la Fig. 42).

4. Enfin (région IV), on observe une lente décroissance (en 1/ √ V ) de l'épaisseur avec la vitesse : c'est le régime de couche limite. L'ajustement avec l'équation (3.25) donne α = 1,1, au lieu de 1,3 plus haut, mais avec une incertitude plus grande, la méthode impliquant une mesure peu précise de pente sur les courbes m(t). Nous avons étendu récemment (1997) la validité de ce régime jusqu'à des vitesses de l'ordre de 30 m/s (au lieu de 5 m/s sur la Fig. 43), grâce à une série d'expériences réalisées sur une filière pilote de Vetrotex.

À très grande vitesse, la quantité de liquide qu'entraîne un solide lors de son retrait d'un bain de liquide est donc limitée par le temps que le solide passe dans le réservoir : le film est d'autant plus mince que la vitesse est grande (e ∼ V -1/2 ). Le cas particulier des très longs réservoirs pour lesquels la couche limite visqueuse doit avoir le temps de se développer même à grande vitesse fait l'objet du dernier paragraphe de ce chapitre.

Le régime d'expulsion

Pour tenter d'explorer la zone de transition entre les régimes visco-inertiel et de couche limite, nous avons allongé le réservoir : la couche limite étant rendue plus épaisse, on peut espérer un long régime de saturation au-delà de la divergence. Cette idée (naïve) a conduit à un tout autre résultat. La hauteur d'une marche donne le rayon r de la goutte expulsée : on trouve r ∼ 2,2 mm, donc de l'ordre de R, le rayon du tube. Entre deux marches, la masse n'est pas constante : un film est emporté par la fibre. Nous avons vérifié que son épaisseur est donnée par la loi de Landau ( Éq. (1.41)), ce qui est logique à cette vitesse (V = 54 cm/s < V * ). Déduire de la figure 44 une courbe e(V ) est délicat, puisque le liquide sort du réservoir alternativement en goutte et en film. La figure 45 donne néanmoins une "épaisseur effective" e correspondant au flux ∆m/∆t (e est alors la solution de l'équation -∆m/∆t = πρV (e 2 + 2eb)). Le saut à basse vitesse correspond à l'apparition du régime d'expulsion. La courbe en trait plein est l'équation (3.25) (tracée pour les paramètres de l'expérience) : à grande vitesse, on se rapproche donc asymptotiquement du régime de couche limite.

.2. Interprétation

Comment comprendre ce régime d'expulsion ? La force capillaire f γ qui ancre une goutte dans le réservoir s'écrit :

f γ ∼ γR.
(3.30)

Le fluide ébranlé par la fibre exerce sur le ménisque une force f η , produit d'une pression dynamique, d'ordre ρV 2 , par la surface sur laquelle elle s'applique, d'ordre δ 2 , où δ est l'épaisseur de la couche limite (en effet, pour L grand, on a : δ b).

Ceci donne : Les deux droites sont l'équation (3.32) pour l'eau et pour l'huile silicone. L'accord avec l'expérience est satisfaisant, en dépit de la simplicité de l'approche dimensionnelle.

f η ∼ ρV 2 δ 2 . ( 3 
On peut comprendre à présent en quoi l'idée d'allonger le réservoir pour étudier le régime de saturation était naïve. En effet, la divergence visco-inertielle a lieu pour :

V * ∼ γ ρb •
On cherchait à avoir une couche limite pleinement développée (soit δ > R), tout en étant au-delà de la divergence (V > V * ). Ensemble, ces deux conditions donnent une inégalité sur la longueur du réservoir :

L R 2 η ργ b 1/2
. D'autre part, la stabilité du ménisque extérieur du réservoir s'écrit, quand on lui adjoint la condition V > V * : Ces deux inégalités ne sont satisfaites ensemble que si l'on a : R b ! Au-delà de la divergence et si la couche-limite a assez de temps pour se développer pleinement (longs réservoirs), on observera donc nécessairement le régime d'expulsion de gouttes. Si à l'inverse, la couche limite est peu développée, la pression cinétique n'est pas assez forte pour arracher le ménisque extérieur : c'est le régime de couche limite précédemment étudié.

L R η (ργb)
En pratique, on cherchera en général à éviter le régime d'expulsion : les gouttes sont nuisibles pour l'application d'un dépôt régulier et bien contrôlé. Dans l'ensimage par exemple, où le rapport R/L vaut environ 0,1, des expulsions risquent de se produire si la vitesse de dépôt dépasse quelques mètres par seconde.

Bilan

La quantité de fluide (peu visqueux) qu'un fil entraîne en sortant d'un bain diverge au moment où le nombre de Weber associé à l'écoulement atteint l'unité ( Éqs. (3.3, 3.20)), ce qui correspond souvent à des vitesses de l'ordre du mètre par seconde. Puis la divergence plafonne, à cause des limitations géométriques inhérentes à l'expérience (ouverture et longueur finies du réservoir). À très grande vitesse en particulier, seule la couche limite visqueuse est emmenée par la fibre. Dans ce régime, le temps que le solide passe au contact du bain détermine l'épaisseur du dépôt, qui croît avec la longueur du réservoir mais décroît avec la vitesse ( Éq. (3.25)).

Dans le cas enfin où le tirage se fait rapidement hors d'un réservoir de grande longueur, l'impact du fluide en sortie de bain est capable de retourner le ménisque et d'expulser des gouttes.

Les régimes de vitesse élevée sont ceux que l'on rencontre en général dans la pratique industrielle. L'ensimage des fibres de verre en sortie de four, par exemple, se fait à des vitesses voisines de 100 km/h. Les mèches de fibres sont pressées sur un rouleau dont la surface, constamment réalimentée, est couverte d'un film de lubrifiant, en général une émulsion aqueuse (Fig. 47). On distingue sur la photographie 3 mèches de 12 filaments (b = 5 µm) chacune, qui défilent à 10 m/s du haut vers le bas. La pellicule liquide sur le rouleau forme un réservoir très court (de l'ordre du millimètre) mais constamment alimenté. La couche limite a donc peu de temps pour se développer et c'est elle qui fixe la quantité de liquide déposé sur les fils. Les mesures faites sur des installations pilote à Saint-Gobain Recherche et à Vetrotex sont en accord avec le modèle de couche limite -modèle finalement très simple compte tenu de la multitude de paramètres qu'engendre ce type de procédé (liquides et géométrie complexes). [Surfactants close to a water-air interface: because of their amphiphilic behaviour, the molecules tend to go to the surface rather than in the bulk.]

À cause de l'affinité de la molécule pour l'interface, l'énergie de surface γ de la solution est inférieure à celle du solvant pur : une telle substance est donc tensioactive. L'abaissement de tension de surface (γ eauγ) est la pression de surface Π engendrée par la présence des tensioactifs à l'interface.

La relation de Gibbs

On place n molécules tensioactives dans un volume V d'eau, dont la frontière avec l'air a une surface A. Si c est la concentration en volume du soluté loin de la surface, on a : n = cV + Γ A, où l'excès de surface Γ décrit l'adsorption (ou éventuellement la déplétion) de la molécule à l'interface liquide-air (on suppose que c'est la seule interface où va la molécule).

Le tensioactif se répartit entre volume et surface de façon à ce que le potentiel chimique soit partout égal. À température et à volume constants, le travail à fournir pour déplacer le soluté du volume à la surface s'écrit : Adγ = -Γ Adµ où µ est le potentiel chimique du soluté. Pour de faibles concentrations, on considère que la solution est idéale :

µ = µ 0 (T ) + kT ln c.
En rassemblant ces deux équations, on obtient la relation de Gibbs :

Γ = - 1 kT ∂γ ∂ ln c . ( 4.1) 
Cette équation montre comment la tension interfaciale varie en fonction de l'excès de surface. S'il y a adsorption (Γ > 0), on trouve bien qu'elle décroît avec la concentration (dγ/dc < 0).

Concentration micellaire critique

Au-dessus d'une certaine concentration, appelée concentration micellaire critique (et notée cmc), les molécules s'agrègent en volume sous forme de micelles (agrégats de quelques dizaines de molécules dont le coeur est constitué par les parties hydrophobes), souvent sphériques. La tension de surface ne varie alors pratiquement plus avec la concentration en tensioactif. D'autres types d'agrégats peuvent exister, comme les micelles cylindriques et les bicouches, planes ou refermées en vésicules. Les micelles sphériques sont les seuls agrégats que nous rencontrerons dans ce travail.

1. .2. Mouillage dynamique en présence de tensioactifs

L'effet d'épaississement

Il n'existe qu'un nombre très réduit d'expériences de retrait de solides hors d'un bain contenant des tensioactifs, en dépit de l'importance pratique du problème. On compte d'abord les cas de contamination fortuite : les déviations vis-à-vis de la loi de Landau (Figs. 14 et 15) ont été souvent interprétées comme liées à une contamination de la surface [START_REF] Teletzke | Wetting hydrodynamics[END_REF], mais sans renseignement sur la nature ou la concentration du tensioactif censément présent.

La seule expérience, à notre connaissance, où un ajout intentionnel de tensioactifs est testé est celle de Carroll et Lucassen [START_REF] Carroll | Capillarity-controlled entrainment of liquid by a thin cylindrical filament[END_REF], réalisée avec des fibres. Ils ont constaté que le film est plus épais qu'en l'absence de tensioactifs, d'un facteur constant en fonction de la vitesse, de l'ordre de 2,5 (Fig. 14). L'étude ne porte que sur un tensioactif, à une seule concentration.

On dispose en revanche de plusieurs articles théoriques sur le sujet [START_REF] Park | Influence of soluble surfactants on the motion of a finite bubble in a capillary tube[END_REF][START_REF] Park | Effects of insoluble surfactants on dip coating[END_REF][START_REF] Ginley | Influence of soluble surfactants on the flow of long bubbles through a capillary[END_REF][START_REF] Ratulowski | Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries[END_REF]. L'analyse repose sur l'idée que l'écoulement peut induire des gradients de tension de surface dans le ménisque dynamique. Or, si la tension superficielle n'est pas homogène, la surface se retrouve cisaillée (Fig. 49) : les zones de faible énergie de surface tendent à recouvrir celles de haute énergie. [Interface with a non-constant interfacial tension: a point of surface is subjected to a force which tends to move it from the region of low surface tension (γ-) to the one of high surface tension (γ+). Some liquid below the surface is entrained in this process.] En l'absence d'autres forces de surface, ce cisaillement induit un écoulement dans le fluide (effet Marangoni). Le gradient de tension est équilibré par la contrainte visqueuse à la surface :

γ x = ηu y | surf ace . (4.2) 
De tels gradients sont susceptibles d'apparaître quand on retire un solide d'une solution savonneuse : la surface est étirée dans le ménisque dynamique où la concentration de surface Γ n'est plus forcément constante (Fig. 50). La zone concentrée (le réservoir) s'écoule vers la région appauvrie (le film), si bien que le film est épaissi, par rapport au cas où le réservoir contient un liquide pur. [Withdrawal of a solid out of a bath of liquid which contains surfactants: the motion provokes a gradient of surface concentration for the surfactant (∆Γ is the difference in surface concentration between the reservoir and the film). This gradient causes a Marangoni flow (indicated by the arrow), whose effect is to thicken the film if compared with a pure liquid.]

Un cas limite simple : l'épaississement maximal

On peut ajouter que cet effet est borné, la vitesse en surface de l'écoulement Marangoni ne pouvant excéder V , la vitesse du solide. Une limite simple, proposée par Carroll et Lucassen [START_REF] Carroll | Capillarity-controlled entrainment of liquid by a thin cylindrical filament[END_REF], consiste à écrire qu'à cause de la présence du tensioactif, la surface libre du ménisque dynamique part à la même vitesse que la fibre. La surface de la solution se comporte comme un mur rigide. Cette condition est en général utilisée pour décrire la fabrication des films de savon, où les deux interfaces sont tapissées de tensioactifs. À partir de l'équation (1.20) assortie des deux conditions u(0) = u(h) = V , le profil de vitesse se calcule aisément. On trouve :

u = V + ∇p 2η y(y -h). (4.3) 
L'intégration sur une tranche d'épaisseur h donne le flux Q (par unité de largeur du solide) : 

Q = eV = hV -∇p h 3 12η • (4.

Gradient de tension de surface dans le ménisque dynamique

Il reste un dernier problème : le nombre capillaire, qui fixe l'épaisseur de Landau dans l'équation (4.5), est affecté par la présence des tensioactifs, essentiellement à cause de la forte diminution de la tension de surface qu'ils engendrent. Nous avons raisonné jusqu'ici avec la valeur à l'équilibre, mais comme la figure 50 À l'inverse, il existe une limite en nombre capillaire à l'effet d'épaississement. En effet, la quantité ∆γ est bornée, par une valeur elle-même d'ordre γ, si bien que l'équation (4.7) ne peut être satisfaite que si le nombre capillaire reste inférieur à une valeur d'ordre 1. Au-delà, la force visqueuse balaie les tensioactifs en surface, qui se retrouve nettoyée de son contaminant : on doit alors retomber sur une loi de liquide pur, écrite avec la tension de surface de l'eau.

.3. Deux modèles numériques

La difficulté, si l'on veut décrire plus complètement le problème du mouillage dynamique avec tensioactifs, est d'incorporer le transport des tensioactifs (convection, adsorption et diffusion) dans le modèle hydrodynamique de Landau. Seules des méthodes numériques ont permis jusqu'ici de réaliser ce couplage : nous présentons brièvement deux modèles récents.

Tensioactifs insolubles

Park a étudié le problème d'une plaque retirée d'un bain couvert de tensioactifs insolubles, à la concentration de surface Γ [START_REF] Park | Effects of insoluble surfactants on dip coating[END_REF]. En régime stationnaire, convection et diffusion (de surface) s'équilibrent, ce qui s'écrit :

dΓ u s dx = D s d 2 Γ dx 2
où u s est la vitesse de surface, D s est la constante de diffusion de surface et x la direction du mouvement. Pour une faible variation de la concentration de surface, les calculs aboutissent à une équation différentielle du profil du ménisque dynamique :

Y = 3 1 -Y Y 3 1 + 3AY 4 + AY (4.8)
où les notations sont celles de la théorie de Landau (Chap. 1) avec :

A = Mγe D s η
où M est le nombre de Marangoni, qui exprime comment la tension de surface γ varie avec l'excès de surface Γ : The result is compared with the Landau law (Eq. (1.30)) and with its parallel thickened with a factor 4 2/3 (Eq. (4.5)). This curve is drawn from [START_REF] Park | Effects of insoluble surfactants on dip coating[END_REF] and corresponds to the case of insoluble surfactants.]

M = - Γ γ ∂γ ∂Γ Γ . ( 4 
L'étude de Park se limite a priori au cas des tensioactifs insolubles, et peut paraître éloigné de la plupart des problèmes pratiques. Il est toutefois possible que, bien que présent en solution, le tensioactif puisse être considéré comme insoluble. En effet, écrivons la conservation du flux de tensioactifs (la diffusion est négligée) : 

Γ u s + ceV = Γ f V + c f eV

Tensioactifs solubles

Ratulowski et Chang ont posé le problème dans toute sa généralité et discuté les contributions relatives de la diffusion en volume, de l'adsorption et de la convection [START_REF] Ratulowski | Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries[END_REF]. En couplant le transport du tensioactif au modèle hydrodynamique de Landau, ils ont pu résoudre numériquement un certain nombre de cas-limites. La figure 52, par exemple, donne les résultats pour le modèle convectiveequilibrium (important en pratique) où la diffusion du tensioactif est négligeable et l'adsorption instantanée. Les courbes ont été calculées en supposant le nombre de Marangoni égal à l'unité. L'épaisseur du film normée par le rayon est portée en fonction de Ca, pour différentes valeurs du paramètre K défini par K = Γ/cb. La courbe correspondant à K infini est la courbe d'épaississement maximum, décalée de la loi de Landau (K = 0) du facteur 4 2/3 . La légère courbure qui apparaît à grand Ca provient de la géométrie des tubes capillaires pour laquelle le modèle est établi. L'épaisseur alors devient sensible au confinement, et tend vers une fraction du rayon du tube.

Le résultat important est l'existence de transitions entre les deux régimes (pur et épaissi) en fonction du nombre capillaire et du nombre K, qui compare des concentrations de surface et de volume. À K donné, on passe du régime épaissi au régime de Landau, autour d'un nombre capillaire qui augmente avec K. La transition est molle, puisque l'on peut la décrire par une loi proche de Ca 1/2 (courbe en pointillés sur la Fig. 52) : elle a lieu sur deux ordres de grandeur en Ca. Aucune explication physique n'est d'ailleurs donnée dans l'article, pour aider à comprendre cette transition, qui a lieu à des nombres capillaires très inférieurs à 1, si K n'est pas trop grand (c'est en général le cas : pour Γ = 1 mol/50 Å2 , c = 10 mM et b = 50 µm, on a : K ∼ 10 -2 ). 

Expériences

Plusieurs séries d'expériences nous ont permis d'évaluer l'effet des tensioactifs sur l'épaisseur du film entraîné par un fil tiré d'un bain. Dans ce paragraphe, nous présentons les résultats liés à l'utilisation de tensioactifs ioniques (de cmc plutôt élevée, supérieure à 1 mM) ou solubles (éthanol). Le cas des tensioactifs à très faible cmc (non-ioniques ou à chaîne fluorée) induit un artefact discuté au paragraphe 4.

.1. Expériences avec un tensioactif anionique, le SDS

Le premier tensioactif utilisé est anionique. Il s'agit du dodécyl sulfate de sodium ou SDS, de formule (quand il est dissocié) C 12 H 25 -O-SO - 3 Na + . Il est soluble dans l'eau, avec une cmc de 8 mM (soit 2,4 g/l). Au-delà de la cmc, la tension de surface se stabilise à une valeur de 37 dyn/cm. L'effet d'épaississement [START_REF] De Ryck | Fibres tirées d'un bain[END_REF] La figure 53 Deux comportements se succèdent. À faible vitesse (Ca < 0,02), le régime est épaissi par rapport à la loi de Landau, d'un facteur α = 1,8±0,1. Dans l'intervalle de vitesses exploré, α ne dépend pas de la vitesse. Puis, pour Ca > 0,02, on observe l'amorce de la divergence visco-inertielle discutée au chapitre 3. L'expérience faite à une concentration de 1 cmc conduit à une courbe très proche.

Valeur de la tension de surface [START_REF] Quéré | Coating from a surfactant solution[END_REF] Le premier effet (tautologique) de la présence des tensioactifs est de diminuer la tension de surface de l'eau. Si l'on veut comparer les données à la loi de Landau, il faut calculer le nombre capillaire avec une tension de surface tenant compte de la présence du savon. Dans la figure 53, comme dans les figures qui suivront, nous avons pris la valeur à l'équilibre (ici par exemple, 37 dyn/cm).

Or nous avons vu que l'effet d'épaississement est lié à l'existence d'un gradient de concentration de surface en tensioactifs dans le ménisque dynamique (voir la Fig. 50). La tension de surface y est donc comprise entre sa valeur à l'équilibre et celle de l'eau pure. Ceci peut être une importante source d'erreur pour l'interprétation : augmenter la tension de surface d'un facteur (constant) égal à 2, par exemple, revient à décaler l'axe des abscisses du même facteur, et donc à modifier notablement l'épaississement déduit d'une telle courbe.

Nous avons établi que la tension de surface devrait peu varier par rapport à sa valeur d'équilibre ( Éq. (4.7)). Il nous a cependant paru nécessaire de nous assurer de ce point, par une mesure in situ à la sortie du ménisque dynamique. Pour cela, nous avons utilisé la divergence visco-inertielle. L'épaisseur du film diverge quand l'énergie cinétique (par unité de volume) du fluide est égale à la surpression de Laplace considérée là où le film se forme : en présence de tensioactifs, l'endroit justement où la tension de surface est la plus forte. De la vitesse V * pour laquelle la divergence a lieu ( Éq. (3.5)), on peut donc déduire la valeur de γ à cet endroit.

Sur la figure 54, on a reporté les données de la figure 53 (points blancs) en fonction, non plus du nombre capillaire, mais de la vitesse. On les compare aux données obtenues avec la même fibre tirée d'un réservoir d'eau pure (points noirs). On remarque sur la figure 54 que la vitesse V * pour laquelle l'épaisseur diverge est clairement différenciée selon la nature de la solution : autour de 80 cm/s pour la solution de SDS, et de 120 cm/s pour l'eau. Ce décalage est en accord avec la loi proposée pour V * (V * ∼ γ 1/2 , Éq. (3.5)), à condition de prendre pour la solution de SDS la tension de surface à l'équilibre (γ = 37 dyn/cm). Dans toutes nos expériences, les vitesses de retrait seront petites par rapport à V * : on s'attend donc a fortiori à ce que cette approximation soit justifiée.

Ainsi, l'expérience confirme l'équation (4.7) : à faible nombre capillaire, l'écart de tension de surface nécessaire pour engendrer un effet d'épaississement est négligeable devant la tension de surface elle-même. Il est donc justifié de prendre la valeur de la tension de surface à l'équilibre pour calculer le nombre capillaire.

Épaississement en fonction de la concentration [START_REF] De Ryck | Fibres tirées d'un bain[END_REF] L'effet d'épaississement est lié à la présence des tensioactifs. Il n'existe pas, en particulier, pour l'eau pure. Nous nous sommes demandés comment il évolue en fonction de la quantité de tensioactifs en solution.

Aux concentrations où nous avons travaillé, les courbes expérimentales sont des parallèles à la loi de Landau, d'où l'on déduit un épaississement α constant en fonction du nombre capillaire (rappelons que l'épaississement est le rapport de l'épaisseur mesurée sur celle de Landau e L = 1,34 b Ca 2/3 ). Sur la figure 55, α est porté en fonction de la concentration en SDS c normée par la concentration micellaire critique. Pour chaque solution, tension de surface (à l'équilibre) et viscosité ont été mesurées, afin de calculer e L . Trois régions apparaissent sur la figure 55 : 1. À très faible concentration (c < 0,1 cmc), il n'y a pas d'épaississement : l'épaisseur suit la loi de Landau. Des traces de contaminant ne suffisent donc pas à engendrer un effet Marangoni, contrairement à ce qui est allégué pour les capillaires [START_REF] Park | Effects of insoluble surfactants on dip coating[END_REF][START_REF] Ratulowski | Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries[END_REF]. Une différence importante entre ces deux géométries est l'existence, au sommet de la bulle d'air semi-infinie qui chasse le liquide dans le tube capillaire, d'un point d'accumulation où le tensioactif se concentre (Fig. 56). On peut comprendre ainsi que dans une géométrie confinée, de simples traces suffisent à provoquer un épaississement du film, au contraire des fibres ou des plaques, géométries ouvertes. Ajoutons que dans le cas d'une bulle d'air de longueur finie, le tensioactif s'accumule aussi à l'arrière de la bulle, ce qui engendre une traction de surface opposée au mouvement. L'épaississement dépend alors de la longueur de la bulle [START_REF] Schwartz | On the motion of bubbles in capillar tubes[END_REF]. L'étude détaillée de ce problème a été entreprise par Park [START_REF] Park | Influence of soluble surfactants on the motion of a finite bubble in a capillary tube[END_REF].

2. Pour une concentration de l'ordre de 0,1 cmc, l'épaississement apparaît de façon abrupte. Puis il croît jusqu'à son maximum, atteint pour c ≈ 3 × 10 -3 mol/l (0,4 cmc) : à cette concentration, la courbe γ(c) du SDS présente un point d'inflexion [START_REF] Robb | Polymer/Surfactant Interactions[END_REF] ; la dérivée dγ/dc est maximale et c'est donc pour cette concentration que l'on peut attendre le gradient de tension de surface le plus fort. L'épaississement mesuré vaut 2,2 ± 0,1 et reste inférieur à sa plus grande valeur admissible, qui est 4 2/3 (soit 2,52).

3. Puis, l'épaississement décroît lentement avec la concentration, tout en perdurant au-delà de la cmc. On s'attendrait pourtant à ce que le tensioactif en excès vienne, par le volume, uniformiser la concentration de surface dans le ménisque dynamique. Nous avons donc été amenés à penser que le tensioactif n'a pas le temps de s'adsorber à la surface, pendant le (court) moment qu'il passe dans le ménisque dynamique.

Épaississement en fonction du rayon [START_REF] De Ryck | Le mouillage dynamique d'une fibre[END_REF][START_REF] Quéré | Coating from a surfactant solution[END_REF] Pour tester le rôle joué par l'adsorption, nous avons fait varier le rayon b de la fibre. La longueur du ménisque dynamique étant proportionnelle à b ( Éq. (1.39a)), le temps de transit des tensioactifs dans cette zone l'est aussi : plus la fibre est fine, moins le tensioactif n'a de temps pour s'adsorber et donc plus l'effet d'épaississement doit être fort. La figure 57 confirme cette hypothèse. L'épaisseur du film en fonction du nombre capillaire est mesurée pour un fil de molybdène de 12,5 µm de rayon tiré de la même solution de SDS que précédemment. Les données sont comparées avec la loi de Landau et avec sa parallèle, épaissie du facteur 4 2/3 : les points se retrouvent très près de cette dernière. Au lieu de 1,8 pour le fil de 88,5 µm (Fig. 53), l'épaississement vaut α = 2,4 ± 0,1. À partir de la même solution, nous avons effectué toute une série d'expériences pour différents rayons de fils, allant de 12,5 µm à 250 µm. Pour chaque fibre, l'épaisseur est mesurée en fonction du nombre capillaire, pour au moins 8 vitesses différentes, dans l'intervalle 10 -3 < Ca < 10 -2 . Dans tous les cas, des parallèles à la loi de Landau ont été obtenues, et donc un épaississement α constant en fonction du nombre capillaire. Sur la figure 58, on a porté la valeur de cet épaississement en fonction du rayon des fibres. Pour la même série de fils, nous avons vérifié que l'expérience faite avec un liquide pur (une huile silicone) conduit bien à un épaississement indépendant du rayon : on trouve alors α = 1, conformément à la loi de Landau.

On constate que l'épaississement décroît lentement en fonction du rayon. L'expérience confirme donc que l'adsorption joue un rôle dans le processus d'épaississement : plus le fil est épais, plus le temps dont le tensioactif dispose pour s'adsorber à l'interface est grand et moins la traction de matière par l'interface libre est efficace. 

D -PP

.Expériences avec un tensioactif soluble, l'éthanol

Nous nous sommes demandés ce qui se passe dans la limite opposée du point de vue de la nature du tensioactif, en réalisant le même type d'expériences avec de l'éthanol, tensioactif très petit et totalement soluble dans l'eau. Nous avons travaillé avec des solutions dans l'eau de rapports volumétriques 80/20, 60/40, 40/60, 20/80 et 10/90. Pour chaque solution, tension de surface et viscosité ont été mesurées (la variation de la viscosité en fonction de la proportion d'alcool est une fonction non-monotone, qui passe par un maximum pour une solution proche d'un mélange 50/50). Le domaine exploré en nombre capillaire est le même que précédemment.

Le résultat obtenu pour toutes ces solutions est remarquablement simple : on n'observe jamais d'épaississement (α = 1). On peut le comprendre qualitativement : la molécule d'éthanol est petite, d'une mobilité comparable à celle de l'eau, si bien que l'équilibre entre la surface et le volume est toujours réalisé. En outre, la concentration est de 30 à 300 fois plus forte que dans le cas du SDS à 9 cmc (10 % d'alcool dans l'eau correspondent à une concentration 2 M) : il est logique que le nombre ajouté à la mobilité et à la solubilité de la molécule fassent disparaître l'effet.

Incidemment, ce résultat montre que l'évaporation dans le ménisque dynamique est insuffisante pour provoquer un effet Marangoni. Sinon, la concentration en alcool (plus volatil que l'eau) y serait plus faible que dans le réservoir, et donc la tension de surface à cet endroit plus forte : un écoulement en résulterait, du réservoir vers le film, engendrant également un épaississement du film.

.3. Expériences avec une famille de tensioactifs cationiques, les n-TAB [60]

Dans cette troisième série d'expériences, et afin d'étudier l'influence de la concentration sur une large gamme, nous avons choisi une famille de tensioactifs cationiques où la longueur de la chaîne carbonée passe de n = 16 à n = 10, ce qui conduit à une variation importante de leur solubilité dans l'eau. Puisqu'un effet existe avec le SDS mais disparaît avec l'alcool, raccourcir la chaîne hydrophobe du tensioactif devrait permettre, a priori, de passer d'un comportement à l'autre. Toute la série est faite avec un fil de nickel de rayon b = 88,5 µm.

Le HTAB (n = 16) et le TTAB (n = 14)

Nous avons commencé par le plus long, le HTAB (bromure d'hexadécyl triméthyl ammonium), de formule : CH 3 -(CH 2 ) 15 -N + -(CH 3 ) 3 Br -. Sa concentration micellaire critique vaut 1 mM, et la tension de surface au-delà environ 35 dyn/cm. L'épaisseur du film tiré d'une solution de HTAB a été déterminée pour quatre concentrations : 1, 2, 10 et 30 cmc. La solution à 30 cmc est obtenue en solubilisant le tensioactif à chaud. La tension de surface et la viscosité sont mesurées à chaque fois, afin de calculer le nombre capillaire. Le comportement sous la cmc n'a pas été étudié : il concerne des solutions très peu concentrées, pour lesquelles le tensioactif s'épuise avec le temps. Les quatre courbes obtenues sont très proches les unes des autres [START_REF] Ou Ramdane | Mouillage dynamique d'une fibre dans une solution de tensioactifs[END_REF]. La figure 59 montre par exemple celle qui correspond à la concentration micellaire critique (c = 1 mM). Cette courbe ressemble à celles obtenues avec le SDS (par exemple Fig. 53) : l'épaississement est indépendant du nombre capillaire, et vaut 1,6 ± 0,1. L'étude s'est poursuivie avec le TTAB (bromure de tétradécyl triméthyl ammonium). Avec 14 carbones sur la chaîne carbonée, la molécule est plus soluble dans l'eau : sa cmc vaut 3,5 mM. Les mesures, faites pour une solution à 5 cmc (c = 17,5 mM, γ = 37 dyn/cm) montrent, comme précédemment, un épaississement constant α = 1,7 ± 0,1. Le comportement est alors différent. Il se caractérise par le passage d'un épaississement constant (e = α e L , avec α ∼ 1,8) à un régime proche de celui de Landau (α ∼ 1) quand le nombre capillaire croît. La transition est assez molle (elle se fait sur deux ordres de grandeur en Ca), et peut être décrite empiriquement par une loi en Ca 1/2 . Nous avons mesuré la tension de surface in situ par la méthode décrite plus haut (Fig. 54) : dans tout l'intervalle de vitesses de la figure 60, elle reste proche de sa valeur d'équilibre. Il ne s'agit donc pas d'un effet (décevant) de tension de surface dynamique, ce que l'équation (4.7) laissait présager : on n'attend pas d'effet significatif sur la tension de surface avant Ca = 1.

Si l'on diminue la concentration en DTAB, on retrouve le régime d'épaississement constant. Le même tensioactif, utilisé à 1 cmc (soit 15 mM), conduit à : α = 1,8 ± 0,1. Si, au contraire, on augmente la concentration, on se rapproche du régime de Landau, sauf peut-être à basse vitesse où l'épaississement semble croître : la figure 61 L'utilisation du dTAB (bromure de décyl triméthyl ammonium, cmc de 66 mM) permet de confirmer cette classification en fonction de la concentration : comme pour le DTAB, trois familles de courbes ont été observées : 1) à faible concentration (c = 1,3 mM), l'épaississement est constant (de l'ordre de 1,6),

2) à concentration intermédiaire (c = 66 mM), l'épaississement décroît quand le nombre capillaire croît, comme pour le DTAB 75 mM (Fig. 60). L'allure de la courbe obtenue est alors très semblable (transition molle pouvant être décrite par une loi en Ca 1/2 ),

3) à forte concentration enfin (c = 330 mM), le comportement est très proche de la loi de Landau (sauf, comme sur la Fig. 61, à très petit nombre capillaire) : on trouve α = 1,15. Un excès de tensioactif rapproche logiquement l'épaississement de sa valeur minimale (α = 1).

Discussion

Les expériences permettent de classifier les lois pour l'épaisseur du film entraîné en trois familles qui s'organisent en fonction de la concentration absolue en tensioactif.

1) À faible concentration (moins de 100 mM), l'épaississement est constant dans l'intervalle exploré en nombre capillaire. Pour la fibre principalement utilisée (b = 88,5 µm), il est de l'ordre de 1,7 et dépend du rayon du fil (Fig. 58) qui conditionne le temps dont dispose le tensioactif pour s'adsorber à l'interface libre : plus le fil est mince, plus l'épaississement est grand. Il reste néanmoins borné par sa valeur maximale admissible, qui est 4 2/3 .

2) À concentration intermédiaire (environ 100 mM), on passe du régime épaissi à un régime proche de celui de Landau quand le nombre capillaire croît. L'allure de cette transition ressemble à celle prévue par Ratulowski et Chang (Fig. 52). En revanche, l'accord quantitatif est mauvais : le paramètre K vaut environ 10 -4 dans nos expériences alors que la valeur déduite en comparant nos données et la figure 52 donne K voisin de 10 -2 .

3) À forte concentration (0,4 M et au-delà), on se rapproche du régime de Landau. Idéalement, le nombre des tensioactifs devient suffisant pour effacer tout gradient dans le ménisque dynamique : tout se passe comme si le liquide était pur, avec pour tension de surface celle engendrée par la présence des tensioactifs.

On observe donc, en fonction de la concentration et de la vitesse, des transitions entre des régimes épaissis ou non. Pendant le temps que le tensioactif passe dans le ménisque dynamique, deux phénomènes peuvent s'opposer à l'installation du gradient de tension de surface responsable de l'épaississement : la diffusion du tensioactif et son adsorption à partir du volume. Nous proposons d'évaluer les temps caractéristiques de ces différents phénomènes.

.1. Temps caractéristiques

Temps de transit

Le temps de transit τ que le tensioactif passe dans le ménisque dynamique (de longueur ) vaut simplement /V . Grâce à l'équation (1.39a) ( ∼ b Ca 1/3 ), τ s'écrit :

τ ∼ ηb γ 1 Ca 2/3 • (4.11)
Pour une fibre de 100 µm et un nombre capillaire entre 10 -3 à 10 -2 (ce qui correspond à une vitesse allant de 3 à 30 cm/s), τ sera compris entre 0,3 ms et 0,1 ms.

Temps de diffusion

Notons D et D s les coefficients de diffusion du tensioactif en volume et en surface. D et D s sont du même ordre de grandeur et compris usuellement entre 10 -6 cm 2 /s et 10 -5 cm 2 /s. On peut comparer le temps de transit τ aux temps caractéristiques τ e , τ et τ s liés à la diffusion en volume (perpendiculairement et parallèlement au mouvement) et en surface :

τ e ∼ e 2 /D, τ ∼ 2 /D et τ s ∼ 2 /D s ∼ τ .
Dans la limite des faibles nombres capillaires (où l'on a : e), τ est grand devant τ e . τ sera d'ailleurs en général le temps le plus long : il est également grand devant τ si l'on a :

Ca P e -3 (4.12)

où P e est le nombre de Péclet :

P e = bV D • (4.13)
Pour des vitesses allant du mm/s à quelques dizaines de cm/s et des fibres de quelques dizaines de microns de rayon, le nombre de Péclet vaut de 10 2 à 10 5 . La condition (4.12) sera toujours très largement satisfaite. Si elle ne l'était pas, alors le tensioactif colmaterait efficacement par diffusion le gradient de tension de surface, et l'effet d'épaississement disparaîtrait : on suivrait alors une loi de Landau, écrite pour l'eau savonneuse. Pratiquement, on voit que ceci ne peut arriver que pour des nombres capillaires inférieurs à 10 -6 , valeur très inférieure à ce que nous avons exploré ; pour la même raison, ce retour à la loi de Landau à faible vitesse n'apparaît pas dans les simulations de la figure 52.

En revanche la comparaison du temps de diffusion τ e et du temps de transit est moins nette. En effet, τ e sera inférieur à τ si l'on a :

Ca P e -1 . (4.14)
Cette condition, aux nombres capillaires où nous avons travaillé, peut ou ne pas être satisfaite. La figure 62, établie pour des valeurs standard des différents paramètres, permet de récapituler la hiérarchie de ces trois temps caractéristiques.

Temps d'adsorption [57]

Il faut enfin considérer l'adsorption du tensioactif à l'interface, à partir du volume. Nous supposons le flux d'adsorption linéaire en écart d'excès de surface et proportionnel à c, la concentration de volume [START_REF] Ginley | Influence of soluble surfactants on the flow of long bubbles through a capillary[END_REF] :

j = kc 1 - Γ Γ 0 . ( 4 

.15)

Γ 0 désigne l'excès de surface à l'équilibre ; k se mesure en cm/s et est appelé vitesse intrinsèque d'adsorption. Estimé, en première approche, comme une taille moléculaire a divisée par un temps de diffusion sur cette même taille, k s'écrit : k ∼ D/a, et vaut typiquement, ainsi défini, 10 cm/s. Le nombre de Marangoni précise comment la tension de surface γ varie avec l'excès de surface Γ :

M = - Γ γ ∂γ ∂Γ Γ .
Pour de faibles gradients (justifiés dans nos problèmes par l' Éq. (4.7)), on aura donc, en valeur absolue :

∆Γ Γ = ∆γ γ 1 M • (4.16)
Une (rude) approximation pour M , le nombre de Marangoni, consiste à écrire la loi des gaz parfaits à deux dimensions :

(γ eau -γ) = kT Γ
qui donne, d'après la définition de M écrite ci-dessus :

M = (γ eau -γ) γ • (4.17)
M passe donc de 0 à une valeur d'ordre 1, quand la concentration augmente de 0 à la concentration micellaire critique. Au-delà, où tension et concentration de surface sont constantes, c'est une forme indéterminée. Le temps caractéristique d'adsorption τ ad déduit de l'équation (4.15) s'écrit : τ ad = Γ 0 /j. Les équations (4.7, 4.15, 4.16) permettent d'en obtenir une écriture dimensionnelle :

τ ad ∼ MΓ 0 kc 1 Ca 2/3 • (4.18)
L'excès de surface à l'équilibre, la concentration en volume et le nombre capillaire sont faciles à évaluer, pour une expérience donnée. On en déduit, à la cmc et pour un nombre capillaire de l'ordre de 10 -3 , que τ ad vaut une fraction de milliseconde. L'équation (4.17) est le résultat central de cette discussion. Non seulement les ordres de grandeur obtenus pour le temps de transit et le temps d'adsorption s'avèrent comparables (une fraction de milliseconde), mais de façon remarquable (et inattendue), τ ad décroît avec la vitesse, et de la même manière que τ ( Éq. (4.7)) : le rapport de ces deux temps est donc indépendant de V. Il s'écrit :

τ ad τ ∼ λ b (4.19a)
où la longueur λ ne dépend que du liquide : 3. À rayon donné, on attend, de la même manière, que le rapport du temps d'adsorption sur le temps de convection décroisse avec la concentration en tensioactif au-delà de la cmc (λ varie en 1/c). Qualitativement, c'est bien ce que l'on observe : aller vers les fortes concentrations fait bien décroître l'épaississement (Fig. 55 et expériences avec les n-TAB).

λ = MΓ 0 γ kcη • (4.
4. En revanche, fixer le rayon et la solution devrait déterminer l'épaississement. C'est en général vrai, sauf dans les expériences à grande concentration qui montrent une transition d'un régime épaissi vers un régime de Landau en fonction du nombre capillaire (Fig. 60). Même si elle permet de rendre compte de la plupart des effets observés, la comparaison de τ ad avec τ ne suffit donc pas à expliquer tous les résultats expérimentaux.

Nous proposons dans un premier temps d'approfondir l'étude des régimes d'épaississement constant : nous développons un modèle quantitatif pour prédire ce qui fixe la valeur de l'épaississement α. Puis nous nous intéresserons à la transition dynamique observée avec les solutions à concentration "intermédiaire".

.2. Le régime d'épaississement constant [61]

Présentation

Deux lois simples conduisent a priori à un comportement en Ca 2/3 pour l'épaisseur : la loi de Landau, et sa variante épaissie du facteur 4 2/3 . Dans le calcul, seule les différencie la condition écrite à l'interface liquide-air, qui s'écrit dans le premier cas :

η ∂u ∂y y=h(x) = 0 (4.20)
et dans le second :

u| y=h(x) = V. (4.21)
Ces deux conditions conduisent à la même équation différentielle pour le ménisque dynamique, à un coefficient près : 

eV = hV + γ 3βη h xxx h 3 (4.

Prise en compte de la cinétique d'adsorption

Le point de départ naturel est le calcul du profil de vitesse dans le ménisque dynamique, fait dans l'approximation de lubrification et avec comme condition à la surface libre, l'équation (4.2) :

η ∂u ∂y h(x) = ∂γ ∂x h(x) .
On trouve ainsi :

u(y) = - γ η h xxx y 2 2 -yh + ∂γ ∂x y η + V. (4.24) 
Il est utile d'exprimer ce profil en fonction de la vitesse de surface u s , calculée à partir de l'équation (4.24) (u s = u(h)). En éliminant ensuite le gradient de tension, on obtient :

u(y) = - γ 2η h xxx (y 2 -yh) + (u s -V ) y h + V. (4.25)
On exprime enfin la constance du flux. En utilisant l'équation (4.25), on trouve :

eV = h 2 (u s + V ) + γ 12η h xxx h 3 . (4.26)
Il ne reste plus qu'à comparer cette expression avec celle postulée plus haut ( Éq. (4.22)). On en tire une relation entre la vitesse de surface et le coefficient β : 

u s = V 1 - 1 2 h -e h (4 -β) . ( 4 
j = kc 1 - Γ Γ 0 .
Dans les régimes qui nous intéressent (au-delà de la cmc), Γ 0 est la concentration de surface à saturation et la concentration c en volume varie peu par rapport à celle dans le réservoir c 0 . En rassemblant les deux dernières équations, on obtient donc, aux dimensions :

∆Γ + Γ 0 ∆u s ∼ kc 0 ∆Γ Γ 0 (4.31)
où le premier terme est négligeable, à faible nombre capillaire. La différence de vitesse de surface ∆u s entre l'entrée et la sortie du ménisque dynamique se déduit de l'équation (4.27) :

∆u s = - 1 2 (4 -β)V
si bien que l'on aboutit à :

kc 0 ∆Γ Γ 0 ≈ - 1 2 (4 -β)Γ 0 V • (4.32)
Les variations relatives de concentration et de tension de surface sont liées par le nombre de Marangoni M ( Éq. (4.16)) :

∆Γ Γ 0 ∼ ∆γ γ 0 1 M •
On obtient finalement, en introduisant dans l'équation (4.32) sa loi d'échelle pour : 58, et les compare à l'équation (4.34), tracée en trait plein pour λ = 240 µm. L'accord, alors, est très satisfaisant.

∆γ γ 0 ≈ 1 2 λ b 4 -β β 1/3
Il reste à s'assurer que la valeur ainsi déterminée pour λ est sensée. En prenant les paramètres correspondant à la solution de SDS (une molécule par 50 Å2 à la surface, c 0 = 70 mM, γ 0 = 37 dyn/cm, η = 1 cP et M = 1), on trouve k de l'ordre du centimètre par seconde. Cette valeur est plus faible que celle prévue par un argument naïf ( Éq. (4.17) ; k ∼ D/a ∼ 10 cm/s), ce qui suggère pour la vitesse k une écriture plus réaliste : le tensioactif, pour s'adsorber à l'interface, ne doit pas seulement diffuser sur sa longueur, mais également traverser des barrières électrostatiques ou stériques. Si V est la hauteur de la barrière, k s'écrit :

k ∼ D a exp - V k B T .
Pour V d'ordre quelques k B T , on ramène la vitesse k au centimètre par seconde. Le temps d'adsorption associé est une fraction de milliseconde (0,2 ms environ), valeur proche de celles mesurées sur des systèmes voisins [START_REF] Davies | Interfacial Phenomena[END_REF]. Remarque sur les écoulements de surface L'équation (4.27) donne une expression de la vitesse de surface u s en fonction de l'épaisseur h de liquide dans le ménisque dynamique. La figure 64 montre comment u s (normée par V ) varie en fonction de e/h ; ce rapport passe de 0 à 1 quand on va du réservoir vers le film. On constate que selon la valeur de β (qui peut aller de 1 à 4), la vitesse de surface s'annule ou pas pour une certaine épaisseur h du ménisque dynamique. Si β est inférieur à 2, il existe un point de stagnation à la surface, à l'épaisseur définie par :

h = e 4 -β 2 -β •
Pour β = 1 par exemple (cas d'un liquide pur), le point de stagnation se trouve en h = 3e. Quand β augmente, ce point se déplace vers des épaisseurs de plus en plus grandes, et finit par être rejeté à l'infini pour β = 2. Au-delà (β > 2), il n'existe plus. Cette représentation est doublement naïve :

(i) sous la cmc, λ ne varie plus comme l'inverse de la concentration c : sa définition ( Éq. 4.19) comprend les grandeurs M et Γ e (qui désigne alors la concentration de surface à l'équilibre) ; l'équation (4.18) et la relation de Gibbs (4.1) permettent de montrer que λ tend vers 0 avec la concentration, comme la pression de surface Π au carré. On retrouve bien l'idée (naturelle) que l'épaississement disparaît à faible concentration (Fig. 55), et que la transition est abrupte (λ ∼ Π 2 ) ;

(ii) au-dessus de la cmc, traiter Γ e comme une constante constitue une bonne approximation. En revanche, le nombre de Marangoni M est alors une forme indéterminée de la concentration.

Au total, la figure 65 n'est donc tracée qu'à titre indicatif.

Le réservoir de tensioactifs

L'épaississement donné par l'équation (4.34) est indépendant de la vitesse : on attend des courbes expérimentales parallèles à la loi de Landau. Or la figure 61 montre une transition en fonction du nombre capillaire. À grand nombre capillaire, on est certes près de la valeur attendue pour α (de l'ordre de 1,2), mais on s'en éloigne de plus en plus quand le nombre capillaire décroît. Il est inattendu que l'accord soit d'autant meilleur que Ca est grand : une vitesse plus élevée, c'est un gradient plus fort ( Éq. (4.7)) et une diffusion pour s'y opposer moins efficace encore ( Éqs. (4.12, 4.14)). Quant à l'adsorption, nous avons établi qu'elle est insensible à la vitesse, pour un temps de convection donné ( Éq. (4.19)). On comprend ainsi qu'un autre critère doit être satisfait pour comprendre comment la surface se régénère.

À forte concentration, le rapport τ ad /τ est favorable au repeuplement de l'interface : il est d'ordre 0,1 pour c = 100 mM. Mais encore faut-il que le réservoir de tensioactifs disponible pour renouveler la surface soit suffisamment fourni. De ce point de vue, on comprend qu'il peut être trompeur de raisonner sur la seule vitesse : une vitesse plus élevée, c'est un film plus épais (toutes les courbes expérimentales sont croissantes en fonction de Ca, quelque soit le régime suivi), donc un réservoir de tensioactif sous la surface plus abondant. Nous sommes ainsi conduits à introduire un nombre, noté σ, qui compare les deux modes de population du tensioactif dans le ménisque dynamique : en surface et en volume (Fig. 66).

On a, par définition :

σ = Γ ce (4.35) 
où l'on suppose que l'interface solide-liquide reste passive : si le tensioactif s'y adsorbe (avec typiquement la même concentration de surface), il faut introduire un facteur d'ordre 2 au numérateur dans la définition de σ. σ est une grandeur mesurable. L'épaisseur e, d'une part, est donnée par l'expérience. En second lieu, on prendra pour concentration volumique celle du réservoir : une tranche de liquide d'épaisseur e convectée du réservoir au film s'appauvrit pour nourrir la surface, ce qui s'écrit : ce = c f e + Γ où c f désigne la concentration dans le film. Comme on doit avoir :

c f > 0, σ vérifie : σ < 1.
Enfin, la tension de surface étant très peu différente à faible nombre capillaire de sa valeur d'équilibre ( Éq. (4.7)), on peut traiter la concentration de surface comme une constante, égale au-delà de la cmc à sa valeur à saturation. Pour les solutions sous la cmc, on appliquera la relation de Gibbs ( Éq. (4.1)) en supposant une dépendance linéaire de γ avec la concentration c. On trouve alors :

σ = ∆γ kT 1 ce (4.36) 
où ∆γ est (ici) l'écart de tension de surface par rapport à l'eau pure, ou pression de surface. [Thickening factor α as a function of the number σ defined in equation (4.35) (σ compares the bulk and surface populations of surfactants), for the data of figures 60 (c = 75 mM, blank squares), 61 (c = 375 mM, asterisks) and for a less concentrated solution exhibiting a constant thickening (c = 15 mM, black squares). The surfactant is DTAB. The plot in semi-log scales focuses on the behaviour at small σ, and the normal one on the saturation at large σ.] Sur la figure 68, de la même manière, on a porté tous les résultats obtenus avec les tensioactifs cationiques (carrés noirs : dTAB, carrés blancs : DTAB, astérisques : TTAB, plus : HTAB). Dans le seul cas où la concentration est inférieure à la cmc (une série de données à faible concentration pour le dTAB), σ est calculé à l'aide de l'équation (4.36).

Retour aux expériences

Dans les deux cas, et compte tenu de la dispersion expérimentale, tous les points semblent se mettre sur une courbe unique, en fonction de σ : (i) pour σ < 1 %, la proportion de tensioactifs à la surface est négligeable et le réservoir de tensioactifs suffisamment fourni pour colmater le gradient ; cette condition peut être assurée soit par une forte concentration, soit par une grande épaisseur (qui résulte d'une vitesse élevée, l'épaisseur étant une fonction croissante de la vitesse) ; on atteint alors pratiquement le régime de Landau (α est compris entre 1 et 1,2) ;

(ii) pour 1 % < σ < 10 %, on observe la transition d'épaississement ;

(iii) pour σ > 10 % enfin, c'est la surface qui domine le volume, et l'on atteint le régime d'épaississement constant. σ atteint alors sa plus grande valeur possible, qui est 1 (voir ci-dessus). [Same plot as in Figure 67, for all the data on cationic surfactants (black squares: dTAB, white squares: DTAB, asterisks: TTAB, plus: HTAB).]

Comment lier cela au rôle de l'adsorption ( Éq. (4.17)) ? Si l'on introduit l'épaisseur du film e (qui est d'ordre b Ca 2/3 ) dans l'expression de τ ad , le temps d'adsorption, on trouve :

τ ad ∼ Mb k σ. (4.37) 
Le régime où le tensioactif est capable de s'opposer au gradient (loi de Landau simple, α → 1) correspond bien à la zone des σ petits sur les figures 67 et 68, donc à des temps d'adsorption petits (le temps élémentaire τ 0 = Mb/k qui norme τ ad dans l'équation (4.22) vaut typiquement 1 ms). À l'inverse, l'équation (4.37) montre que σ grand (régime d'épaississement constant) est bien lié à des adsorptions lentes.

La condition σ petit contient donc bien l'idée d'un temps d'adsorption faible, mais implique en outre l'existence d'un réservoir assez fourni en tensioactifs pour repeupler efficacement la surface. Ce sont ces deux conditions ensemble qui permettent le retour à la loi de Landau.

On peut se demander pourquoi l'ensemble de l'épaisseur e sous la surface apparaît dans la définition de σ. En effet, à vitesse élevée (expérimentalement, la vitesse la plus grande vaut environ 40 cm/s), le temps τ e d'homogénéisation par diffusion sur l'épaisseur est beaucoup plus grand que le temps de transit τ : la figure 62 montre que pour Ca ∼ 0,01, on a τ e ∼ 100τ . D'une manière générale, considérer que la surface est nourrie par une couche-limite implique une quantité de tensioactifs qui diminue avec la vitesse (en contradiction avec les expériences). Or il y également de la convection dans le ménisque dynamique : de l'équation de continuité du fluide ( Éq. (1.16)), on tire l'ordre de grandeur de la vitesse ν dans la direction perpendiculairement au mouvement du solide :

ν ∼ V e •
On en déduit que le temps caractéristique de transport perpendiculairement à la fibre sur l'épaisseur e (e/ν) est égal à τ , le temps de transit dans le ménisque dynamique (τ = /V ). On peut ainsi justifier que l'épaisseur entière de liquide sous la surface apparaisse dans la définition de σ.

Reste que ces idées ne sont que des pistes pour une compréhension quantitative de cette transition. Il faudrait en particulier pouvoir interpréter les bornes proposées pour σ et calculer la forme analytique de la transition.

Épuisement du tensioactif

Nous consacrons ce paragraphe aux tensioactifs très peu solubles, fluorés ou nonioniques par exemple. Nous résumons les principaux résultats exposés dans la référence [START_REF] De Ryck | Le mouillage dynamique d'une fibre[END_REF].

.1. Les deux régimes d'entraînement

Le tensioactif utilisé, de formule

C 6 F 13 -C 2 H 4 -SO 2 -NH-C 3 H 6 -N + (CH 3 ) 3 -CH 2 -CO -
2 , est une bétaïne terminée par une chaîne fluorée de 6 carbones qui confère au tensioactif une cmc (autour de 0,2 mM) et une tension de surface (pour c > cmc, γ = 16 dyn/cm) remarquablement basses. Les expériences sont faites avec une solution à 3 fois la cmc (c = 0,6 mM). Les données sont accumulées sur la figure 69 et comparées aux lois de Landau simple et épaissie.

On constate deux faits nouveaux :

(i) une très grande dispersion des points (problème de reproductibilité des expériences) ;

(ii) l'apparition d'un régime "aminci" dans le nuage des données, l'ensemble des points s'inscrivant dans l'intervalle compris entre 0,5 e L et 1,8 e L .

Le régime aminci s'interprète en supposant que la surface du ménisque dynamique est dépourvue de tensioactif : en traçant la loi de Landau avec pour valeur de la tension de la surface celle de l'eau pure, on cale le bas du nuage sur cette loi. Pour ce qui est de la dispersion, nous nous sommes aperçus que les résultats dépendaient de la chronologie des expériences. Un exemple de dépendance de la masse du réservoir en fonction du temps est présenté sur la figure 70 Deux épaisseurs peuvent être successivement déduites de cette courbe. Exprimées en fonction de l'épaisseur de Landau e L , elles valent respectivement environ 1,8 e L et 0,5 e L . C'est bien autour de ces deux valeurs que les points se regroupent sur la figure 69. Si l'on reporte, comme sur la figure 71, l'épaisseur du film entraîné lors du premier régime (carrés pleins) et lors du second (carrés vides), on fait disparaître dans une large mesure la dispersion. 

.2. Cinétique d'épuisement

Tout semble donc indiquer qu'on épuise le tensioactif disponible, au bout du temps τ défini sur la figure 70. Ensuite on n'entraîne plus que de l'eau pure (en surface). Nous avons mesuré comment le temps d'épuisement τ varie avec la vitesse V de défilement de la fibre (Fig. 72). Sur le même graphe, on a porté deux temps possibles d'épuisement notés τ 0 et τ 1 , donnés par des arguments (trop) simples. Le temps τ 1 est celui qu'il faut pour vider le réservoir de ses tensioactifs, par convection en volume et adsorption en surface. Par unité de temps, le fil emporte une quantité de tensioactifs n • = 2πbV (Γ + ec), soit, en posant µ = Γ/c :

n • = 2πbV c(µ + e). (4.38) 
En prenant comme densité de surface une molécule par 50 Å2 et c = 0,6 mM, on obtient µ ≈ 6 µm : les films ont une épaisseur inférieure ou égale à µ.

V (cm/s) En négligeant l'épaisseur dans l'équation (4.38), la conservation du tensioactif s'écrit :

πR 2 Lc = 2πbV Γ τ 1 (4.39) 
où L et R sont respectivement la longueur et le rayon de la goutte. Cette expression se réécrit :

τ 1 = τ 0 L µ (4.40) 
où τ 0 = R 2 /2bV est le temps d'épuisement pour un tensioactif insoluble entraîné sous la forme d'un film rigide. Sur la figure 72, les données expérimentales sont comparées à la fois à τ 0 et à τ 1 . Aucun des deux temps proposés ne convient : la durée τ observée est intermédiaire, ce qui montre que seule une partie des tensioactifs en volume est emportée. Nous avons considéré que les tensioactifs présents sous l'interface libre sont emportés sur une épaisseur √ Dτ , épaisseur sur laquelle une molécule diffuse pendant la durée τ . Le volume V concerné est donc égal à :

V ∼ πR 2 √ Dτ . (4.41) 
On obtient alors (nous n'avons pas tenu compte de l'adsorption possible du tensioactif sur la fibre, qui introduirait un facteur d'ordre 2) :

τ ∼ D τ 0 µ 2 ∼ R 2 bµ 2 D V 2 • (4.42)
Cherchant une loi de puissance pour la dépendance de τ avec la vitesse V , on tire de la figure 72 un exposant de -1,9 ± 0,1 -en bon accord, donc, avec la relation (4.42). La figure 73 Les résultats de ces quatre expériences font aussi l'objet de la figure 74, dans la représentation habituelle de l'épaisseur en fonction du nombre capillaire. Dans chaque cas, les épaisseurs correspondant aux deux régimes ont été mesurées. Le nombre capillaire est toujours calculé à partir de la tension de surface de la solution 0,6 mM ou 1,2 mM de TAF, ce qui explique l'existence des régimes "amincis" sur les figures 74c et 74d. Le premier régime (t < τ, représenté avec des carrés noirs) est systématiquement épaissi : on retrouve le comportement discuté aux paragraphes 2 et 3, avec un épaississement intermédiaire pour la fibre de 88,5 µm et plus grand (proche de sa valeur-limite de 4 2/3 ) pour le fil le plus fin. La durée τ du premier régime ( Éq. (4.42)) est très sensible au rayon R du tube. Malheureusement, il n'est pas possible d'augmenter R au-delà de la longueur capillaire (on demande au tube de piéger le liquide). Un biais consiste à biseauter le réservoir de façon à doubler l'aire de l'interface liquide-air. On observe alors une augmentation de la durée τ mais la dispersion des mesures ne nous permet pas d'être plus quantitatif.

En outre, l'utilisation d'un tube biseauté a permis l'observation suivante. À cause de sa très faible tension de surface (γ = 16 dyn/cm), la solution de TAF mouille le Téflon. Avant défilement et pendant le premier régime, le ménisque que forme la goutte avec le tube peut être schématisé comme sur la figure 75a. Quand au temps τ on change de régime, le ménisque se rétracte, ce que le biseautage rend spectaculaire. Le liquide cesse de mouiller la surface du tube (Fig. 75b). Ceci confirme que l'interface liquide-air est alors appauvrie en tensioactif , si bien que la solution devient localement non mouillante pour le Téflon. Si on arrête le défilement, la goutte retrouve, après un moment, sa position première (Fig. 75a) : à l'arrêt, la solution s'homogénéise et redevient mouillante. [Drawing a fiber out of a reservoir cut obliquely. During the first regime (t < τ), the meniscus at the exit wets the tube (a). Conversely, for t > τ, the solution is nonwetting (b).]

Une deuxième observation va dans le même sens. Du talc déposé à la surface de la goutte pendant le premier régime (Fig. 75a) disparaît aussitôt, emporté par la fibre. En revanche, s'il est déposé dans le deuxième régime (Fig. 75b), le talc reste à la surface et révèle des petits mouvements circulaires du liquide représentés sur la figure 76. Or des mouvements identiques apparaissent si le fil est tiré d'une goutte d'eau pure. 

Conclusion

Le régime appauvri n'a été observé ni avec le SDS, ni avec la série des nTAB (Sect. 2). Les concentrations étaient alors plus élevées et le réservoir en tensioactifs pouvait être considéré comme infini. Avec le TAF, la situation est bien différente : on a : Γ > ec, ou encore, en reprenant la notation introduite plus haut, µ > e. La surface pompe les tensioactifs efficacement si bien que le réservoir se vide de son soluté sans trop perdre de son solvant. Ce n'est pas le cas pour le SDS ou les nTAB où les tensioactifs emportés sont principalement dans le volume du film (e > µ). L'égalité e = µ définit donc l'apparition du régime d'épuisement.

Entraînement par un solide pollué

Nous concluons cette étude par une expérience où le contaminant tensioactif pollue la surface du solide, au lieu d'être en solution. On se demande quelle est alors la loi d'entraînement hors d'un liquide pur.

.1. Fibre bigarrée

On prépare un fil bigarré, où se succèdent un tronçon dépourvu de tensioactifs, un autre pollué intentionnellement et de nouveau un tronçon "propre". Le dépôt polluant est réalisé en tirant 60 cm de fil (b = 63,5 µm) à 5 cm/s à travers une goutte de solution de SDS à 20 g/l. L'épaisseur du dépôt est mesurée (elle vaut 2,6 µm), ce qui correspond à une concentration de 2 µg/cm 2 .

La fibre ainsi préparée est tirée à travers une goutte d'eau pure. La figure 77 est l'enregistrement de la masse m du réservoir en fonction du temps ; entre A et B, le fil est entraîné à la vitesse V = 25 cm/s. Une première flèche verticale repère le moment où la zone polluée arrive dans la goutte. La quantité de liquide entraîné par le fil augmente peu après, d'un facteur 2,6. L'épaississement perdure bien après que la zone polluée a quitté le réservoir (deuxième flèche verticale). Puis, peu à peu, on retrouve le premier comportement.

La présence du savon sur la fibre permet donc de moduler l'épaisseur entraînée. Le tensioactif n'a pourtant pas le temps de se disperser dans le volume entier du réservoir : la solution serait alors trop diluée (de concentration c ∼ cmc/1000) pour provoquer une chute de tension superficielle et un effet Marangoni appréciables. Le tensioactif reste, au contraire, dans le voisinage de la fibre. Après passage de la partie polluée dans la goutte, on observe une relaxation lente de l'épaississement qui traduit la disparition progressive des tensioactifs ayant migré à la surface.

Pour observer un effet d'épaississement quand la zone polluée traverse le réservoir, il faut que le tensioactif initialement déposé à la surface du fil atteigne l'interface liquide-air et donc explore pendant son passage à travers la goutte une épaisseur de liquide au moins égale à l'épaisseur du film entraîné. Si le transport [Situation at small velocity (the whole fiber is supposed to be covered with surfactants). Then, the diffusion boundary layer (in dotted line) is thicker than e, the film thickness.]

Nous pouvons alors calculer la concentration (locale) dans le ménisque dynamique, en supposant que le tensioactif est dissout de façon homogène. À la sortie du bain, on a : c = c 0 e/d ≈ 2,6 cmc (où c 0 désigne la concentration du dépôt) : l'épaississement du film résulte donc d'une part de la diminution de la tension superficielle (facteur d'épaississement (73/37) 2/3 ≈ 1,6) et d'autre part de l'effet Marangoni lié à la présence du savon en surface (facteur 1,7 à cette concentration, comme l'indique la Fig. 55). Ces deux causes se conjuguent, conduisant à un facteur global de 2,7, en bon accord avec ce qui est effectivement observé sur la figure 77.

.2. Seuil en vitesse

Si le tirage est lent, le tensioactif peut être trop dilué pour provoquer un effet d'épaississement. À l'inverse, si l'on va vite, le moment qu'un morceau de zone polluée passe dans le réservoir peut devenir trop bref pour permettre au savon d'atteindre la surface, et ce d'autant plus que l'épaisseur, de son côté, augmente avec la vitesse : cette situation est schématisée sur la figure 79. [Situation at small velocity (the whole fiber is supposed to be covered with surfactants). Then, the film is thicker than the diffusion boundary layer.]

Le seuil en vitesse V s au-delà duquel l'épaississement disparaît est donné par l'égalité :

DL V s ∼ = e. (4.43) 
Nous avons mesuré la vitesse V s en faisant défiler à vitesse variable dans une goutte d'eau pure un fil entièrement couvert de tensioactif. La procédure est la suivante : un fil de nickel (b = 63,5 µm) est préalablement pollué en le tirant à 13 cm/s d'une solution de SDS à 20 g/l. La mesure de l'épaisseur du dépôt (e = 3,6 µm) donne la quantité de tensioactif par unité de surface : on trouve Γ = 2,4 × 10 -8 Mol/cm 2 . Puis le fil est entraîné à travers une goutte d'eau pure avec une vitesse V qui décroît au cours du temps, de -2,9 ± 0,1 cm/s par seconde. En utilisant une rampe de vitesse décroissante, on évite de contaminer la surface du réservoir. Dans le même esprit, il convient aussi de laisser vierge l'amorce du fil pour se prévenir d'une pollution accidentelle pendant l'acquisition de la ligne de base et la phase d'accélération du moteur.

Sur la figure 80, on a porté les courbes obtenues pour deux expériences faites avec une fibre polluée : la masse du réservoir (tarée à 0 au début de l'expérience) y apparaît en fonction de la vitesse. On les compare à deux courbes : la première est obtenue en faisant défiler un fil propre et la seconde est calculée en supposant que le film a l'épaisseur de Landau. Mol/cm 2 ) ; b) pour le même fil propre ; c) donnée par le calcul, en supposant l'épaisseur donnée par la loi de Landau. Ces deux dernières courbes se superposent sur tout l'intervalle de vitesses explorées, tandis que la première ne les rejoint que pour V > 65 cm/s. La masse du réservoir, tarée à 0 au début de l'expérience, est mesurée en tirant les fibres avec une vitesse décroissante en fonction du temps (dV /dt = -2,9 cm/s 2 ).

[Mass of a reservoir of pure water as a function of the withdrawal velocity: a) for a nickel wire (b = 63.5 µm) completely coated with surfactants (SDS, Γ = 2.4 × 10 -8 Mol/cm 2 ); b) for the same wire, but clean; c) result of the calculation, supposing that the thickness is given by the Landau law. Curves b) and c) are the same on the whole interval in velocity, while the first one a) joins them only for V > 65 cm/s. The mass of the reservoir is noted 0 at the beginning of the experiment and is measured while the fiber is drawn with a constantly decreasing velocity (dV /dt = -2,9 cm/s 2 ).] Quand la vitesse est grande (V > 65 cm/s), le film a la même épaisseur pour la fibre propre que pour la fibre polluée. C'est l'épaisseur de Landau calculée avec la tension superficielle de l'eau pure : à ces vitesses, le tensioactif n'a donc pas le temps d'arriver en surface. En revanche, à plus faible vitesse, le fil pollué entraîne plus d'eau (facteur 2 à 3), ce qui signe l'arrivée des tensioactifs en surface, capables d'épaissir le film par diminution de la tension (au maximum de (73/37) 2/3 ≈ 1,6) et par effet Marangoni (au maximum de 4 2/3 ≈ 2,5).

La vitesse-seuil tirée de la figure 79 vaut 65 cm/s. Pour L = 1,5 cm et e = 3,7 µm (donné par la loi de Landau, valable au seuil), on en déduit par l'équation (4.43) D ≈ 6 × 10 -6 cm 2 /s, en bon accord avec ce que l'on peut attendre [START_REF] Weinheimer | Diffusion in Surfactant Solutions[END_REF].

Dans cette dernière expérience, l'épaississement Marangoni est provoqué par un dépôt préalable de tensioactifs sur la fibre. Nous avons caractérisé le seuil en vitesse de disparition de cet effet.

Cette expérience peut présenter un intérêt pratique. Elle permet, en effet, de moduler l'épaisseur du dépôt de liquide sur un substrat solide, tout en le faisant défiler à vitesse constante. Il suffit d'avoir "préparé" le solide avec une quantité choisie de substances tensioactives pour le liquide à déposer.

Liquides composites : solutions de polymère et émulsions

Introduction

Les liquides utilisés pour ensimer les fibres sont en général plus complexes que de simples solutions de tensioactifs. Il s'agit souvent d'émulsions d'huile dans l'eau, stabilisées par des tensioactifs et des polymères. En ce qui concerne le dépôt, les anomalies liées au caractère composite de ces solutions doivent s'estomper à grande vitesse : nous avons vu qu'alors la tension de surface ne joue plus de rôle si bien que l'inhomogénéité à petite échelle des émulsions est sans conséquence. Ces fluides complexes pourront alors être considérés comme des liquides simples, même si, bien évidemment, le caractère non-newtonien de ces solutions devra être pris en compte.

Ce dernier chapitre présente des expériences (souvent préliminaires) de mouillage dynamique à partir de solutions de polymère et d'émulsions. Nous nous attachons aux effets spécifiques pouvant se produire à faible vitesse de tirage.

Solutions de polymère hydrosoluble .1. Matériau

Nous avons employé du polyoxyéthylène (CH 3 -(CH 2 -CH 2 -O) n -CH 3 ), d'une masse molaire M de 4 × 10 6 g. Le POE est un polymère flexible soluble dans l'eau, même si la présence de petits agrégats de quelques dixièmes de micron révèle que l'eau n'est pas un très bon solvant du POE [START_REF] Polik | Static light scattering from aqueous polyethylene oxide solutions[END_REF]. La concentration de recouvrement c * , à partir de laquelle les molécules de polymère s'interpénètrent, vaut, pour cette masse : c * = 10 -4 g/g = 0,01 %. Les solutions étudiées ont pour concentrations : 0,1c * , c * , 10c * , 50c * et 100c * . Leurs tensions et leurs viscosités (mesurées par la méthode de l'anneau et à l'aide d'un viscosimètre d'Ostwald) sont rassemblées dans le tableau 2.

Ces solutions n'ont pas nécessairement un caractère newtonien : leur viscosité η peut dépendre du taux de cisaillement u

• . À très faible taux, η est indépendant de u

• ; à plus fort taux, la viscosité diminue car l'écoulement désenchevêtre les polymères (effet rhéoamincissant). La figure 81, extraite de [START_REF] Powell | Rheological properties of polyethylene oxide solutions[END_REF], reporte la viscosité de ).

[Viscosity of PEO (polyethylene oxide) solutions for a PEO molecular mass ranging between 3 × 10 6 and 4 × 10 6 g as a function of the shear rate (from [START_REF] Powell | Rheological properties of polyethylene oxide solutions[END_REF]).] solutions de POE de masse molaire comprise entre 3 × 10 6 g et 4 × 10 6 g (comparable à celle que nous avons employée) en fonction du taux de cisaillement u • . On voit en particulier que le caractère non-newtonien disparaît à faible concentration. Il est tentant, mais délicat, de comparer ces mesures à la loi de Landau ( Éq. (1.41)). En effet, la viscosité des solutions dépend du taux de cisaillement, et donc de la vitesse V et de l'épaisseur e. Pour les solutions diluées (c ≤ c * ), la viscosité est proche de celle de l'eau et il n'y a pas lieu de prendre de précaution particulière pour calculer le nombre capillaire. En revanche, pour les concentrations supérieures à c * , les solutions sont rhéoamincissantes : le viscosimètre employé surestime la valeur de la viscosité, ce que montre le tableau 3 où le taux de cisaillement dans le viscosimètre est comparé à celui qui règne dans le ménisque dynamique, qui est d'ordre V/e.

.L'effet de gonflement

La figure 83 présente les résultats de la figure 82 dans le diagramme (e/b, Ca), et les compare à la loi de Landau (en trait plein). Pour chaque point, le taux de cisaillement est estimé (il est d'ordre V/e). La viscosité correspondante est lue sur la figure 81, ce qui permet de calculer le nombre capillaire.

Seules les données pour la solution la moins concentrée (c = 0,001 %) sont proches de la loi de Landau sauf au-delà de Ca ≈ 0,025 (soit V ≈ 1,3 m/s) où la divergence inertielle décrite au chapitre 3 est observée. En revanche, pour les Tableau 3. Comparaison, pour chaque solution de POE, des taux de cisaillement dans le viscosimètre et dans le ménisque dynamique (ce dernier est d'ordre V /e, où V et e sont mesurés).

[For each solution of PEO, comparison between the shear rates in the viscosimeter and in the dynamic meniscus (the latter is of order V /e, where both V and e are measured).] concentration (g/g) u [Comparison between the data of Figure 82 and the Landau law (Eq. (1.41), drawn in full line). For each experiment (same symbols as in Fig. 82), the shear rate is estimated by V /e and the corresponding viscosity is read in Figure 81, which allows to calculate the capillary number.] autres solutions, le film est gonflé, d'un facteur 2 à 8 non-monotone vis-à-vis de la concentration : l'effet le plus fort est observé pour la solution de concentration intermédiaire c = 0,1 %.

.3. Analyse

Présentation

Une caractère remarquable de certaines solutions de polymère est l'effet Weissenberg ou effet de contrainte normale [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]. Il se produit lorsque le temps caractéristique de la déformation (l'inverse du taux de cisaillement) est inférieur au temps de réponse du fluide : pour une solution semi-diluée, le temps de reptation d'une chaîne à travers les entrelacs formés par les autres chaînes. Si la sollicitation est rapide, le fluide répond comme un solide élastique tandis que pour des sollicitations plus lentes, les chaînes suivent l'écoulement. Un tel fluide, soumis à un cisaillement unidirectionnel, réagit en développant, en plus des contraintes tangentielles, des contraintes normales à la direction de cisaillement, dues à la déformation élastique du fluide. Une manifestation spectaculaire de l'effet Weissenberg fait l'objet de la figure 84 (extraite de [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]). Une solution de polymère (à 2 % de polyméthylméthacrylate (M ≈ 10 6 g) dans du diméthyl phtalate) coule dans un tube vertical, par gravité : le jet à la sortie du tube gonfle, contrairement à ce qui se passe pour une solution newtonienne (image de gauche, où le liquide est une huile silicone de même viscosité que la solution de polymère). À la vue de cet exemple, on peut comprendre que l'effet de contrainte normale contribue à épaissir les films, comme le montre la figure 83.

Figure 84. Effet des contraintes normales sur un jet de liquide sortant d'un tube : contrairement à l'habitude (image de gauche) où le jet, accéléré par la gravité, se rétrécit, une solution à 2 % de PMMA (M < 10 6 g) dans du diméthyl phtalate (image de droite) gonfle en sortie du tube. Cette figure est inspirée de [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF].

[Left: A jet coming out of a tube is accelerated by gravity, so that it contracts. Right: For a Weissenberg solution (here 2% of PMMA (M < 10 6 g) in dimethyl phtalate), the jet swells because of the normal stresses (from [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]).] Nous cherchons à présent à calculer l'épaisseur du film en présence de contraintes normales, dans l'approximation de lubrification. Le tenseur des contraintes s'écrit :

τ =   τ xx τ xy 0 τ yx τ yy 0 0 0 τ zz   . (5.1)
τ xy définit la viscosité par la relation :

τ xy = η ∂u ∂y .
Nous écrivons la dépendance de la viscosité en fonction du taux de cisaillement sous la forme empirique suivante : où la pression est donnée par la loi de Laplace. Nous supposons alors que le profil de Poiseuille n'est que faiblement perturbé par la présence du polymère. En nous inspirant de la méthode utilisée pour prendre en compte l'effet de l'inertie ( Éq. (3.9)), nous écrivons :

η    η 0 si ∂u ∂y < u • c k ∂u ∂y n-1 si ∂u ∂y > u • c . ( 5 
u(x,y) = V + A(x) y 2 2 -yh (5.7) 
où A(x) est calculé par la conservation du flux (A = 3V (he)/h 3 ). En posant h = eY et x = X, on obtient finalement une équation pour le profil du ménisque dynamique :

Y = - k(3V ) n 3 e n+2 γ (Y -1) n Y 2n+1 + 2n (2n + 1) N(3V ) 2n 2 γe 2n+1 (Y -1) 2n-1 (3 -2Y ) Y 4n+1 Y . (5.8) 
La longueur est choisie de façon à rendre égal à l'unité le premier facteur entre accolades. En appelant B le deuxième de ces facteurs, l'équation (5.8) se réécrit :

Y = - (Y -1) n Y 2n+1 + B (Y -1) 2n-1 (3 -2Y ) Y 4n+1 Y . (5.9) 
L'épaisseur e est finalement déduite de la condition habituelle de raccord asymptotique des courbures ( Éqs. (3.16, 3.17)) :

1 b + e = e 2 Y Y →∞ . (5.10) 
Il s'agit donc d'intégrer une fois l'équation (5.9) et de chercher la limite écrite dans l'équation (5.10). Avant de poursuivre ce calcul, nous proposons une approche dimensionnelle.

Lois d'échelle

La limite recherchée dans l'équation (5.10) est un nombre si bien que cette équation s'écrit aux dimensions :

∼ e(e + b).

(5.11)

Nous proposons alors de traiter séparément les deux termes non-newtoniens que contient l'équation (5.6). Considérons d'abord le cas N = 0 (pas de contrainte normale). L'équation (5.6) s'écrit alors, toujours aux dimensions :

γ e 3 ∼ k V n e n+1
(5.12) où les longueurs caractéristiques selon x et y (respectivement et e) ont été introduites. Des équations (5.11, 5.12), on déduit le comportement de l'épaisseur avec la vitesse :

e ∼ b 3 k 2 γ 2 1 2n+1 V 2n 2n+1
(5.13) où nous avons supposé l'épaisseur petite devant le rayon de la fibre. L'équation (5.13) devrait s'appliquer quand le taux de cisaillement est supérieur à u • c (défini par l'équation (5.2), ou sur la Fig. 81). Ceci implique des nombres capillaires supérieurs à Ca * = (u • c η 0 b/γ) 3 . Quand le nombre capillaire augmente, l'épaisseur du film doit donc suivre successivement l'équation de Landau (pour Ca < Ca * ) et l'équation (5.13). Comme on a n < 1, l'exposant doit donc passer de 2/3 à une valeur inférieure : au-delà de Ca * , le film est aminci (en toute logique, puisque seul l'effet rhéoamincissant a été considéré ici). Cette situation n'est pas celle observée dans nos expériences.

Considérons à présent le seul terme de contrainte normale dans l'équation (5.6). Celle-ci s'écrit : V.

γ e 3 ∼ N V e 2n . ( 5 
L'effet des contraintes normales est bien de gonfler le film (l'exposant est cette fois supérieur à celui de Landau), ce qui correspond à nos observations. L'épaisseur varie linéairement avec la vitesse [START_REF] Bruinsma | Formation of soap films from polymer solutions[END_REF], ce qui, là aussi, est en accord qualitatif avec les données de la figure 83, du moins tant que l'épaisseur du film reste négligeable devant le rayon du fil. Quand e devient de l'ordre de b, les courbes expérimentales divergent mollement. L'origine de cette divergence est capillaire -nous l'avons discuté autour de l'équation (1.41) et de la figure 19. Il faut remplacer b par (b + e) dans l'équation (5.15), ce qui donne une équation implicite pour l'épaisseur qui a bien un comportement lentement divergent. Pour n = 0,5 par exemple (un cas très proche de la solution la plus concentrée, voir la Tab. 5), on obtient une loi de divergence hyperbolique :

e ∼ Nb γ V 1 -NV/γ . ( 5.16) 
Les lois d'échelle permettent donc de rendre compte de nos observations. Elles montrent en particulier que l'effet de contrainte normale éclipse totalement l'effet rhéoamincissant que l'on pouvait également attendre avec ces solutions. Nous proposons à présent de compléter le calcul amorcé plus haut.

Solution numérique

Notre point de départ est l'équation (5.9) qu'il s'agit d'intégrer une fois. L'analyse en lois d'échelle suggère de traiter séparément les deux principales composantes non-newtonniennes du problème. Gutfinger et Tallmadge ont proposé une solution en l'absence de contrainte normale [START_REF] Gutfinger | Films of non-newtonian fluids adhering to flat plates, A.I[END_REF]. Un calcul numérique les conduit à l'expression approchée suivante : Y | Y →∞ = 0,646 -0,76 ln n.

(5.17)

Ce résultat, injecté dans l'équation (5.10), fournit finalement une dépendance de l'épaisseur en vitesse (pour e b), qui a la forme de l'équation (5.13). Quand on prend en compte le second terme dans l'équation (5.9), la résolution est plus ardue à cause de la présence du paramètre B qui dépend de l'épaisseur e. Intégrée une fois, l'équation (5.9) devient :

Y | Y →∞ = +∞ -∞ (Y -1) n Y 2n+1 dX + BI(n)
(5.18) avec :

I(n) = +∞ 1 (2x -3)(x -1) 2n-1 x 4n+1 dx. (5.19) 
Le tableau 4 donne quelques valeurs de l'intégrale I(n). Pour clore le calcul, nous proposons une approximation assez rude de l'équation (5.18), semblable dans l'esprit à celle faite pour simplifier l'équation (3.18). Nous écrivons simplement :

Y | Y →∞ ≈ 0,646 -0,76 ln n + BI(n).
(5.20)

Combinée avec l'équation (5.10), cette expression fournit une expression implicite de l'épaisseur e, facilement calculable par itération : 81). The comparison is done for the three concentrated solutions (for the other ones, the rheothinning effect is too low for measuring N).] c 0,001 % 0,01 % 0,1 % 0,5 % 1 % u

1 b + e = (0,646 -0,76 ln n) k(3V ) n e n+1/
• c (s -1 ) 2 4 9 2 N expérimental 0 2×10 -5 9 × 10 -4 0,35 4,7 N théorique 5 × 10 -4 0,07 3,2
Cette analyse, comme la discussion qualitative qui précède, permet de décrire le dépôt de solutions polymères, et ce pour des vitesses allant jusqu'au mètre par seconde (pour les solutions les moins visqueuses). Les régimes de grande vitesse n'ont pas été explorés, même s'ils sont a priori eux aussi affectés par le caractère non-newtonien de ces solutions.

Émulsions .1. Introduction

Une émulsion aqueuse est une dispersion d'huile dans l'eau. La taille micrométrique des gouttelettes d'huile fait que le mélange diffuse fortement la lumière, ce qui lui confère souvent une couleur blanche. Une émulsion n'est pas stable : les gouttes d'huile, plus légères, remontent à la surface et fusionnent. L'ajout de tensioactifs qui viennent tapisser les interfaces eau-huile permet (dans une certaine mesure) de stabiliser l'émulsion en ralentissant la coalescence.

Quand on vide un verre de lait, il reste sur la paroi un film opalescent. Cette opalescence indique que des gouttes d'huile subsistent dans le film. La loi de Landau permet d'estimer l'épaisseur du film résiduel à une vingtaine de micromètres (en estimant à 1 cm/s la vitesse à laquelle le verre est vidé), grande donc devant le diamètre des gouttes : la figure 86a schématise cette situation. Nous nous demandons ce qui se passe lorsque la vitesse de dépôt est assez faible pour que le film ait une épaisseur e inférieure à d, le diamètre des gouttelettes (Fig. 86b). La question, en particulier, est de savoir si le film contient de l'huile. [Drawing a solid out of an emulsion. There are two cases, depending on the ratio between the film thickness and the size of the oil droplet: a) the film has the same composition as the bulk; b) the film has a different composition (in the picture, it is for example impoverished in oil).]

.2. Résultats

Nous avons utilisé des émulsions d'hexadécane dans l'eau à 1 %, 5 % et 20 % (concentrations volumiques). L'huile est dispersée par ultrasons, en gouttelettes de taille inférieure à 2 µm comme le montre une observation directe sous microscope. Sans tensioactif, ces émulsions sont très instables. Nous avons donc ajouté à ces solutions de faibles quantités de SDS (respectivement 3 mg/l, 3,5 mg/l et 15 mg /l), restant toujours très en-deçà de la cmc qui est de 2,4 g/l : la tension de surface de ces émulsions est pratiquement celle de l'eau.

L'expérience consiste à extraire lentement un fil hors de l'émulsion : on cherche en particulier à déterminer si de l'huile est entraînée. Il faut donc modifier le montage expérimental de façon à pouvoir doser sélectivement l'huile dans le film. Nous avons abandonné la technique de pesée et élaboré le montage schématisé en figure 87 et inspiré d'une expérience antérieure [START_REF] Quéré | Making van der Waals films on fibers[END_REF]. Un fil de nickel (de rayon b = 63,5 µm) est tiré horizontalement à travers un tube contenant l'émulsion puis traverse un tube contenant du tétrachlorure de carbone (CCl 4 ), qui est un solvant de l'hexadécane. Pour assurer une dissolution complète de l'huile potentiellement présente sur le fil métallique, ce deuxième tube est long.

Après [Quantity of oil entrained by the fiber as a function of the withdrawal velocity (for a nickel wire of radius b = 63.5 µm). This quantity is expressed as an equivalent thickness noted e * : e * is the film thickness that a continuous oil film corresponding to the same quantity would have. Three oil concentrations have been tested: 1% (black squares), 5% (white squares) and 20% (grey squares). The full line is the Landau law written considering that the wire entrains a continuous film of pure hexadecane.]

si le film d'hexadécane était uniforme. La sensibilité de la méthode permet de déceler des épaisseurs nanométriques d'hexadécane. La figure 88 présente les résultats expérimentaux obtenus pour les trois concentrations en huile, en fonction de la vitesse de la fibre.

Les données sont comparées à la quantité d'huile que le fil entraînerait s'il était tiré d'une goutte d'hexadécane pur (film de Landau, évalué pour η = 3,3 cP et γ = 27,5 dyn/cm) : c'est la ligne en trait plein sur la figure 88. Un tel film pourrait se former si l'huile démixait et migrait à la surface de la goutte d'émulsion. Les données montrent que ce phénomène se produit peut-être avec l'émulsion la plus concentrée. Pour les deux autres solutions en revanche, ce n'est pas le cas et le comportement original est original, puisque la quantité d'huile entraînée ne dépend presque plus de la vitesse de tirage.

.Discussion

Capture

Nous pouvons aussi comparer les données avec ce que l'on attendrait si la fibre emportait un film de Landau de même composition que le réservoir (en pointillés sur la Fig. 89). L'accord est très mauvais, à la fois du point du sens de variation et des ordres de grandeur : la quantité d'huile emportée excède largement ce qui le serait si l'émulsion était homogène. Le film entraîné est donc enrichi en huile. 88 (où chaque groupe de points est remplacé par sa moyenne) avec : 1) en pointillés, la loi de Landau écrite en supposant que le film entraîné a la même composition que le réservoir ; 2) en trait plein, l'équation (5.23) qui suppose que la fibre emporte avec elle toutes les gouttelettes qu'elle a rencontrées en traversant le réservoir.

[Comparison of the data of Figure 88 (where each group of points is replaced by its average value) with: 1) in dotted line, the Landau law written considering that the wire entrains a continuous film of same composition as the reservoir; 2) in full line, equation (5.23) where it is supposed that the fiber entrains with it all the droplets it has met while it has passed through the reservoir.] Nous avons donc été amené à proposer un modèle de capture. Supposons que la fibre emporte avec elle toutes les gouttelettes se trouvant dans son voisinage immédiat dans le réservoir (Fig. 90). L'huile déposée sur le fil est celle que contient la gaine d'épaisseur d (diamètre des gouttes) circonvoluant le fil, si bien que l'épaisseur effective s'écrit, en fonction de la fraction volumique φ en huile : e * = φd.

(5.23)

La figure 89 compare les données expérimentales à la formule (5.23), tracée en prenant d = 1,5 µm (de l'ordre de la taille observée sous microscope). L'accord est satisfaisant : la dépendance de l'épaisseur avec la fraction volumique en huile est bien décrite, ainsi que la quasi-indépendance de l'épaisseur avec la vitesse. Les écarts observés pour la solution la plus concentrée peuvent peut-être s'expliquer par une démixtion de l'émulsion (avec formation d'un film d'huile à la sortie du réservoir). 

Perspectives

En complément à ces expériences préliminaires, nous tentons à présent de : (i) préciser les lois d'entraînement (quand il y a capture) à partir d'émulsions calibrées comme celles que l'on prépare par cristallisation fractionnée [START_REF] Bibette | Depletion interactions and fractionated crystallization for polydisperse emulsion purification[END_REF] ; il serait également intéressant d'imager les gouttelettes dans le film (restentelles posées sur le solide ou s'y étalent-elles ?) ;

(ii) jouer sur le couple solide/huile de façon à engendrer une interaction de van der Waals répulsive entre la fibre et l'huile : alors, le film pourrait être appauvri en huile par rapport au réservoir. Ce type d'expériences permettrait peut-être de caractériser la nature des interactions entre une huile et un solide en milieu aqueux ;

(iii) étudier les limites basse vitesse (où la capture devrait être favorisée par la diffusion brownienne des gouttelettes) et haute vitesse (où les forces de cisaillement peuvent détacher les gouttelettes et les fractionner) ;

(iv) comparer avec le cas où les particules sont indéformables (tirage d'un solide hors d'une suspension).

Conclusion générale

Rappelons la question qui fonde cette étude : quelle quantité de liquide emporte un solide, et tout spécialement un fil, quand on le tire d'un bain ? Nous avons montré que les différents cas peuvent se hiérarchiser selon la nature du fluide et la vitesse à laquelle le dépôt est effectué.

Comportements à basse vitesse

Le régime des faibles vitesses est défini tant que la pression dynamique est petite devant la pression de Laplace, ce qui correspond le plus souvent à des vitesses inférieures au mètre par seconde. L'épaisseur est alors fixée par un compromis entre rappel capillaire et entraînement visqueux. Les grandeurs pertinentes, outre le rayon de la fibre, sont la tension de surface et la viscosité du fluide employé : c'est la loi de Landau ( Éqs. (1.40, 1.41)), que nous avons vérifiée sur 3 ordres de grandeur en nombre capillaire pour un système modèle : des huiles silicones visqueuses sur des fibres métalliques lisses.

Si le mouillage n'est que partiel, le solide sort sec du bain s'il est tiré lentement. Au chapitre 2, nous nous intéressons à la vitesse seuil au-delà de laquelle on force le dépôt. Nous montrons qu'elle est essentiellement fixée par l'angle statique de mouillage -et plus précisément par l'angle statique de reculée.

La présence de tensioactifs modifie l'épaisseur du film. L'entraînement du solide provoque une dilatation de la surface en sortie de bain et donc, localement, un appauvrissement en tensioactifs. Nous avons décrit au chapitre 4 différents effets possibles selon la concentration en tensioactifs dans le bain.

1. À concentration "moyenne" (de 1 mM à 100 mM), l'écoulement Marangoni résultant du gradient de tension de surface provoque un épaississement du film, d'un facteur 2,5 au plus, qui est constant en fonction du nombre capillaire. La valeur de ce facteur résulte d'un compromis entre convection (qui provoque le gradient de tension) et adsorption (qui s'y oppose).

2. À plus forte concentration (autour de 100 mM), on observe une transition d'épaississement en fonction du nombre capillaire : plus on tire vite, plus on se rapproche de la loi de Landau. Cette transition pourrait être due à un effet de réservoir fini (une faible épaisseur de liquide devient alors équivalente à une faible concentration), mais sa compréhension demande une étude plus approfondie.

3. À très forte concentration (supérieure à 100 mM), l'excès de tensioactif parvient presque à effacer le gradient de tension de surface : on tend vers un comportement de Landau.

4. Enfin, dans le cas d'espèces très peu solubles (concentrations inférieures à 1 mM), le réservoir s'appauvrit rapidement en tensioactifs ; le dépôt suit alors la loi de Landau écrite avec la tension de surface de l'eau pure.

Nous avons aussi étudié deux autres effets spécifiques aux faibles vitesses (Chap. 5). 

Régimes de haute vitesse

À grande vitesse de tirage (typiquement au-delà du mètre par seconde), on observe une divergence de l'épaisseur du film entraîné, les forces capillaires ne parvenant plus à contenir le fluide dans le réservoir. La vitesse pour laquelle cette divergence se produit s'obtient en écrivant l'égalité de la pression dynamique, qui tend à expulser le fluide hors du réservoir, et de la pression de Laplace, qui tend à l'y ramener. Plus quantitativement, en incorporant l'inertie dans la théorie de Landau, nous avons pu décrire l'allure de la divergence de manière satisfaisante ( Éqs. (3.3, 3.20)).

À la divergence succède une lente décroissance de l'épaisseur avec la vitesse. La loi observée (e varie comme 1/ √ V ) permet d'interpréter ce dernier régime comme l'entraînement de la couche limite visqueuse en sortie de bain : disposant de peu de temps pour se développer, elle est le facteur limitant pour l'épaisseur entraînée. L'épaisseur n'est plus normée par le rayon du fil mais elle est fonction de la longueur du réservoir, de la viscosité du liquide et de sa masse volumique ( Éq. (3.25)). La tension superficielle ne joue plus : c'est ce qui se passe en volume (et non en surface) dans le réservoir qui détermine l'épaisseur du film.

Toujours à grande vitesse de tirage, mais quand le réservoir est très long, l'impact de la couche limite sur le ménisque de sortie est capable de faire céder celui-ci : s'en suit un régime d'expulsion intermittente de gouttelettes, particulièrement nocif si l'on veut effectuer un dépôt bien contrôlé. Nous avons caractérisé les conditions d'apparition de cette instabilité. Bien que la méthode employée pour déterminer la courbure du ménisque dynamique au raccord avec le ménisque statique soit sujette à caution, la loi (A.3) est bien vérifiée jusqu'à Ca = 2 par les expériences de Morey [START_REF] Morey | Thickness of a film adhering to a surface slowly withdrawn from the liquid[END_REF] et van Rossum [START_REF] Rossum | Viscous lifting and drainage of liquids[END_REF].

Afin de compléter cette discussion, nous avons calculé numériquement la courbure maximale que prend le profil Y (X) solution de l'équation (1.27) [START_REF] De Ryck | Gravity and inertia effects in plate coating[END_REF]. Nous proposons de faire le raccord avec le ménisque statique en ce point, ce qui nous permet de déterminer l'épaisseur du film. Pour ce faire, il faut examiner plus attentivement l'équation (1.27). On traite la quantité T = eκ/ √ Ca comme un paramètre en fonction duquel elle se réécrit : [Integration of equation (A.4), imposing a matching with a flat film at infinite X. For 0 < T < 1 (here for example T = 0.71), the solution generates a bump. In our problem, the dynamic meniscus joins the static meniscus without changing the curvature sign, so that the zone in dotted line is unphysical (I is the inflection point).] Ce profil à bourrelet est non physique à partir du point d'inflexion I (zone en pointillés), dans le problème qui nous intéresse, où la courbure ne change pas de signe quand on passe du ménisque dynamique au ménisque statique. En revanche, ce type de profil se développe bien au voisinage de la ligne de contact dans les problèmes où forces de tension et de gravité coexistent : c'est le cas par exemple pour un front de liquide s'écoulant sur une plaque verticale. Un bourrelet se développe en avant du front (au voisinage de la ligne de contact) et se déstabilise (instabilité de Plateau-Rayleigh) en donnant naissance à des doigts de liquide, qui sont les coulures que tout peintre connaît [START_REF] Huppert | Flow and instability of a viscous current down a slope[END_REF].

Y = 1 -Y Y 3 
Avant le point I, quand on vient de X infini, la courbure (qui est nulle à la fois en I et en l'infini) passe par un maximum, noté Y M : c'est en ce point que nous effectuons le raccord. On en déduit, d'après les conditions de raccord : (B.3a)

Ca 2/3 = Y Y (Y ) 2 • (B.3b)
Au raccord Y * , les dérivées de Y dyn doivent vérifier les relations (B.3). On remarquera que la première de ces relations est la loi de Landau, avec la courbure choisie non pas en l'infini, mais au raccord Y * .

Résolution numérique

La deuxième difficulté du calcul provient du fait que l'équation différentielle dépend du résultat recherché. En effet l'épaisseur (inconnue) e y est dissimulée, dans l'expression du nombre de Reynolds. Pour lever cette difficulté, nous avons intégré numériquement l'équation (B.1) en considérant la quantité 1/5 Re Ca 1/3 comme un paramètre nommé C. On obtient ainsi, pour chaque valeur de C, un profil Y (X). L'épaisseur étant déterminée par la courbure au raccord, nous avons tracé sur la figure 93 la variation de la courbure du profil en fonction de l'épaisseur pour différentes valeurs du paramètre C. Pour C = 0, on retrouve le résultat de Landau : Y tend vers 1,34 quand Y tend vers l'infini. Pour C positif, la courbure diverge logarithmiquement avec l'épaisseur. L'intersection des deux faisceaux de courbes donne donc la variation de l'épaisseur du film d'eau emporté par une fibre de 63,5 µm de rayon. À première vue, le résultat semble conforme aux observations du chapitre 3 : on retrouve le comportement divergent de l'épaisseur avec la vitesse. En fait, si l'on confronte ce calcul aux résultats expérimentaux, l'accord est assez médiocre, comme en témoigne la figure 95. 

Figure 2 .

 2 Figure 2. Gouttelette liquide, de rayon R et de pression interne p1, placée dans une atmosphère où règne la pression p0. [Liquid droplet (radius R and internal pressure p1) in the air (pressure p0).]

Figure 4 .

 4 Figure 4. Ménisque liquide le long d'un plan vertical : à cause de la condition de Young (le liquide rejoint le solide avec un angle θe), le liquide s'élève au-dessus de son niveau de référence d'une hauteur h(θe).[Liquid meniscus along a vertical plate. Because of the Young condition (the liquid surface must meet the solid with an angle θe), the liquid close to the contact line is above the reservoir (for θe < 90 • ). The height of the meniscus is named h.]

Figure 5 .

 5 Figure 5. Ménisque liquide le long d'une fibre de rayon b. Par rapport au cas du plan (Fig. 4), l'altitude h du ménisque est modifiée par l'existence d'une courbure perpendiculaire au plan de la figure.[Liquid meniscus along a fiber. If compared with the plate case (Fig.4), the height is modified because of the existence of a curvature perpendicular to the figure plane.]

Figure 6 .

 6 Figure 6. Lame liquide d'épaisseur h(x) s'écoulant le long du plan solide y = 0. Les vitesses selon les directions x et y sont notées u et ν. [Liquid film (thickness h) flowing on a solid plane of equation y = 0. The fluid velocities along x and y are noted u and ν.]

Figure 7 .

 7 Figure 7. Plaque tirée à vitesse V d'un bain de liquide : e désigne l'épaisseur du film que la plaque entraîne, la longueur du ménisque dynamique (zone de raccord entre le film entraîné et le ménisque statique) et h son épaisseur. En pointillés, on a figuré la position du ménisque statique en l'absence de mouvement (V = 0).[Solid plate drawn out of a liquid bath; e is the thickness of the film entrained by the plate, the length of the dynamic meniscus (zone of transition between the static meniscus and the film) and h its thickness. The position of the static meniscus when there is no movement (V = 0) is drawn in dotted line.]

Figure 8 .

 8 Figure 8. Intégration numérique de l'équation (1.28) : la dérivée seconde (adimensionnée) du profil du ménisque dynamique est portée en fonction de son épaisseur (elle aussi adimensionnée).[Numerical integration of equation(1.28). The (normalized) second derivative of the profile of the dynamic meniscus is plotted versus its (normalized) thickness.]

Figure 9 .

 9 Figure 9. Comparaison entre la solution numérique du problème de Landau (notée e) et l'équation (1.30) (notée eL) : le rapport α = e/eL est porté en fonction du nombre capillaire. [Comparison between the numerical and the analytical (Eq. (1.30)) solution of the Landau problem. Their ratio is plotted versus the capillary number.]

Figure 10 .

 10 Figure 10. Film se drainant par gravité le long d'une plaque : e est l'épaisseur initiale du film et O son sommet. L désigne la longueur (qui croît avec le temps) sur laquelle le film liquide est aminci et h le profil du film dans cette zone. [Film flowing because of gravity on a vertical plate; e is the initial film thickness and O the position of the top. L is the length of the thinned zone close to O, and h the film profile in this zone.]

Figure 11 .

 11 Figure 11. Fabrication d'un film liquide à grand nombre capillaire (en supposant l'inertie négligeable) : le film est partout aminci (son profil parabolique est donné par l' Éq. (1.34)) et ne possède l'épaisseur de Derjaguin eD ( Éq. (1.33)) qu'à la sortie du bain. [Drawing a plate at large Ca (and neglecting inertia) : the film is thinned everywhere, with a parabolic profile (Eq. (1.34)). Its thickness is given by the Derjaguin equation (1.33) only at the point where it comes out of the bath.]

Figure 12 .

 12 Figure 12. Tirage d'une fibre (rayon b) hors d'un bain de liquide mouillant. Le trait fin indique la position du ménisque en l'absence de mouvement (V = 0). Quand on la tire, la fibre emporte un film d'épaisseur e. On a également indiqué les valeurs des surpressions de Laplace ∆p dans le film et dans le réservoir.[Drawing a fiber (radius b) out of a bath of a wetting liquid. The thin line gives the position of the meniscus in the absence of movement (V = 0). As it is drawn, the fiber is coated with a film (thickness e). The values of the Laplace pressures ∆p inside the film and the reservoir have also been indicated.]

. 38 )

 38 En combinant les deux dernières équations, on obtient : ∼ b Ca 1/3 (1.39a) et e ∼ b Ca 2/3 . (1.39b) C'est la loi de Landau, avec pour norme le rayon de la fibre. En effet, seule la courbure du ménisque statique change, en valeur absolue, de √ 2κ pour une plaque à 1/b pour un fil. En remplaçant la longueur capillaire dans l'´équation (1.30) par √ 2b, on déduit immédiatement la loi d'entraînement pour une fibre : e = 1,34 b Ca 2/3 . (1.40) Quand le rayon du fil augmente, on passe continûment de l'équation (1.40) à l'équation (1.30), la transition se faisant autour de b = κ -1 [17].

Figure 13 .

 13 Figure 13. Dépôt d'un film liquide dans un capillaire (de rayon intérieur b), obtenu en déplaçant un liquide mouillant par une bulle semi-infinie d'air. On a indiqué les valeurs des surpressions de Laplace dans le film et dans le réservoir (en supposant e b). [Deposition of a liquid film inside a capillary tube (of inner radius b), obtained when moving a semi-infinite bubble of air in a tube initially full of liquid. The values of the Laplace pressures ∆p inside the film and the reservoir have been indicated (supposing e b).]

Figure 14 .

 14 Figure 14. Entraînement de liquide par un fil : relevé des principaux travaux expérimentaux. L'épaisseur du film (normée par le rayon du fil) est portée en fonction du nombre capillaire, en coordonnées logarithmiques. La courbe en trait plein figure l'équation (1.41).[Entrainment of liquid by a fiber: summary of the principal experimental results. The film thickness (divided by the fiber radius) is plotted versus the capillary number, in a log-log scale. The curve in full line is equation(1.41).]

Figure 15 .

 15 Figure 15. Dépôt de liquide dans un tube capillaire : relevé des principaux travaux expérimentaux. L'épaisseur du film (normée par le rayon intérieur du tube) est portée en fonction du nombre capillaire, en coordonnées logarithmiques. La courbe en trait plein figure l'équation (1.40). [Deposition of a liquid film inside a capillary tube: summary of the principal experimental results. The film thickness (divided by the capillary radius) is plotted versus the capillary number, in a log-log scale. The curve in full line is equation (1.40).]

9 Figure 17 .

 917 Figure 17. Dispositif expérimental : un fil traverse à vitesse V un réservoir de liquide, qui est pesé au cours du temps.[Experimental set-up: a fiber passes at a speed V through a liquid reservoir, whose mass is recorded versus time.]

Figure 18 .

 18 Figure 18. Courbe typique délivrée par le dispositif schématisé sur la figure 17 : la masse du réservoir est portée en fonction du temps. L'expérience est faite avec une huile silicone 47V20 traversée à 3 cm/s par un fil de nickel de rayon b = 63,5 µm. Entre le point A et le point B, la fibre défile et emporte du liquide avec elle, si bien que la masse du réservoir décroît. La linéarité de cette décroissance indique que l'épaisseur du film liquide est constante en fonction du temps.[A typical recording obtained with the set-up drawn in Figure17. The mass of the bath is plotted versus time. The experiment is done with a silicone oil 47V20 from which a nickel wire (b = 63.5 µm) is drawn at V = 3 cm/s. Between A and B, the wire is moved, so that it entrains a film of constant thickness: it is observed that the reservoir mass decreases linearly with time.]

Figure 19 .

 19 Figure 19. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites pour différentes huiles silicones (dont les propriétés sont rassemblées dans Tab. 1), et avec un fil de nickel de rayon b = 63,5 µm (sauf pour le dernier point, obtenu avec un fil de molybdène de rayon b = 12,5 µm). La ligne en trait continu est l'équation (1.41). [Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for several silicone oils (see Tab. 1), and for a nickel wire of radius b = 63.5 µm (except for the higher point, obtained with a molybdenum wire of radius b = 12.5 µm). The curve in full line is equation (1.41).]

Figure 20 .

 20 Figure 20. Gros plan sur la sortie du réservoir : pour un liquide mouillant, le ménisque est un hémisphère de rayon R, sauf au voisinage du fil (dont on suppose le rayon très petit devant R).[Zoom on the exit of the bath: for a wetting liquid, the reservoir meniscus has an hemispherical shape of radius R, except close to the fiber (of radius much smaller than R, itself supposed smaller than the capillary length).]

Figure 22 .

 22 Figure 22. Tirage d'une plaque (à vitesse V ) d'un bain de liquide partiellement mouillant (à l'arrêt, le liquide rejoint le solide avec un angle θe). À faible vitesse, le liquide fait avec le solide un angle θ(V ) (θ < θe), si bien que le solide sort sec. Il peut être important en pratique de connaître la vitesse Vm, au-delà de laquelle on force un film à suivre le solide.[Withdrawal of a plate (at speed V ) out of a bath of partially wetting liquid (for V = 0, the liquid makes with the solid a contact angle θe). At low velocity, the liquid meets the solid with an angle θ(V ) (θ < θe), so that the solid comes out dry. Above a threshold in velocity Vm, a liquid film is entrained.]

Figure 25 .

 25 Figure 25. Résultat des mesures pour un fil de nickel (b = 63,5 µm) en contact avec de l'eau pure (γ = 72 mN/m). La force est portée en fonction du déplacement, et les cosinus des angles d'avancée et de reculée mesurés à l'endroit du contact (la poussée d'Archimède, alors, est nulle).[Results of the experiment described in Figure24for a nickel wire (b = 63,5 µm) and pure water (γ = 72 mN/m). The force is plotted versus the displacement of the fiber, and the advancing and receding contact angles are measured at the moment when the fiber touches the liquid surface.]

Figure 26 .

 26 Figure 26. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites pour un fil de tungstène de rayon b = 50 µm tiré d'un bain d'eau pure. Pour ce système, l'angle statique de reculée est nul et on constate que le régime sec disparaît quand on compare avec la figure 21. La ligne en trait continu est l'équation (1.41).[Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for a tungsten wire (b = 50 µm) drawn out of pure water. For this system, the static receding angle is zero, and logically the dry regime disappears (if compared with Fig.21). The curve in full line is equation(1.41).]

1 .Figure 27 .

 127 Figure 27. Zoom de la figure 21: épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites avec de l'eau pure et un fil de nickel de rayon b = 63,5 µm. La ligne en trait plein est la loi de Landau ((1.40) ou (1.41)). [Zoom of Figure 21: film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for a nickel wire (b = 63.5 µm) drawn out of pure water. The curve in full line is the Landau law ((1.40) or (1.41)).]

Figure 28 .

 28 Figure 28. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites avec un fil de nickel de rayon b = 63,5 µm tiré d'un bain d'hexaméthyldisiloxane (la plus légère des huiles silicones). La ligne en trait continu est la loi de Landau ((1.40) ou (1.41)). [Film thickness (normalized by the fiber radius) versus the capillary number, in a loglog scale. The experiments are done for a nickel wire (b = 63.5 µm) drawn out of hexamethyldisiloxane (the lightest silicone oil). The curve in full line is the Landau law ((1.40) or (1.41)).]
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 4 est le nombre de Weber, qui compare l'énergie cinétique par unité de volume du fluide, d'ordre ρV 2 , à la pression de Laplace, d'ordre γ/b (si e b ; sinon il faut remplacer b par (b + e) dans la définition de W et au numérateur dans l' Éq. (3.3)).

9 Figure 29 .

 929 Figure 29. Épaisseur du film (normé par le rayon du fil) en fonction de la vitesse de tirage, déduite de l'équation(3.3). On a pris pour cette représentation : γ = 50 dyn/cm, η = 1 cP, ρ = 1 g/cm 3 et b = 65 µm. En coordonnées logarithmiques, le comportement est linéaire (pente 2/3) à basse vitesse; puis, l'épaisseur diverge pour une vitesse finie, notée V * .[Film thickness (normalized by the fiber radius) versus the withdrawal velocity, deduced from equation (3.3) (with γ = 50 dyn/cm, η = 1 cP, ρ = 1 g/cm 3 and b = 65 µm). In a log-log plot, the behaviour is linear (slope 2/3) at small velocity; then, the film thickness diverges for a finite velocity noted V * .]

  , on a porté les résultats d'expériences faites deux fils de diamètre différent tirés d'un bain d'eau pure. On quitte le régime de Landau (courbe en trait plein) d'autant plus tard que la fibre est fine : pour V * = 1,6 m/s avec b = 12,5 µm au lieu de V * = 70 cm/s avec b = 63,5 µm. Ce décalage est bien de l'ordre de celui prédit par l'équation (3.5) (V * ∼ 1/ √ b).

Figure 30 .

 30 Figure 30. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, en diagramme logarithmique. Les expériences sont faites avec un fil de nickel de rayon b = 63,5 µm (carrés ouverts) et un fil de tungstène de rayon b = 12,5 µm (carrés fermés), tous deux tirés d'un bain d'eau pure. La ligne en trait continu est la loi de Landau ((1.40) ou (1.41)). [Film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. The experiments are done for a nickel wire (b = 63.5 µm, white squares) and a tungsten wire (b = 12.5 µm, black squares) drawn out of pure water. The full line is the Landau law ((1.40) or (1.41)).]

W e / 0 Figure 31 .

 031 Figure 31. Données de la figure30, tracées dans une représentation qui permet de les comparer à l'équation (3.3) : en ordonnées, on a porté le rapport de l'épaisseur de Landau sur l'épaisseur mesurée et en abscisses le nombre de Weber (défini par l' Éq.(3.4)).[Data of Figure(3.4), in a plot which allows us to compare them with equation (3.3): the ratio of the Landau thickness on the measured one is plotted as a function of the Weber number (defined in Eq.(3.4)).]

  White et Tallmadge (e = e W T , le plus simple passage de la loi de Landau à celle de Derjaguin, Éq. (A.3), en annexe) et de Derjaguin (e = e D , Éq. (1.33)), implicite dans la représentation (où c'est e/e D qui est porté en ordonnées).

Figure 32 .

 32 Figure 32. En trait plein, résultat de l'intégration numérique de l'équation (3.7), inspirée de [45]. L'épaisseur calculée divisée par l'épaisseur de Derjaguin eD ( Éq. (1.33)) est portée en fonction du nombre capillaire, en coordonnées semi-logarithmiques. Les courbes correspondent à différentes valeurs du nombre α = γ(ρ/gη 2 ) 1/3 , caractéristique du fluide (γ, ρ et η sont la tension superficielle, la densité et la viscosité du fluide, et g l'accélération de la pesanteur). 1) α = 0; 2) α = 0,06; 3) α = 0,8; 4) α = 5; 5) α = 18,2. En pointillés sont représentées les lois de Landau (e = eL, Éq. (1.30)) et de White et Tallmadge (e = eWT , Éq. (A3) en annexe). [In full line, result of the numerical integration of equation (3.7) [45]. The calculated thickness divided by the Derjaguin one (Eq. (1.33)) is plotted versus the capillary number, in log-normal scale. The parameter α = γ(ρ/gη 2 ) 1/3 characterizes the fluid (γ, ρ and η are the surface tension, the density and the viscosity of the fluid and g the gravity acceleration). 1) α = 0; 2) α = 0.06; 3) α = 0.8; 4) α = 5; 5) α = 18.2. The Landau law (e = eL, Eq. (1.30)) and the White and Tallmadge equation (e = eWT , Eq. (A.3), see the appendix) are drawn in dotted line.]

Figure 33 .

 33 Figure 33. Intégration numérique de l'équation (3.15) : la courbure du ménisque dynamique (adimensionnée) est tracée en fonction de son épaisseur (adimensionnée), pour trois valeurs du paramètre C (défini dans le texte), qui mesure l'importance des effets inertiels. [Numerical integration of equation (3.15): the (dimensionless) curvature of the meniscus is drawn as a function of its (dimensionless) thickness, for three different values of the parameter C (defined in the text), which takes into account the importance of inertia.]

Figure 34 .

 34 Comparaison de l'équation (3.20) (en trait plein) avec les données obtenues avec l'eau pure. a) b = 63,5 µm); b) b = 12,5 µm. La ligne en pointillés est la loi de Landau (1.41). [Comparison of equation (3.20) (in full line) with the data obtained with pure water. a) b = 63,5 µm); b) b = 12,5 µm. The dotted line is the Landau law (1.41).] 1. .3. Saturation de la divergence [26] Les expériences ne s'arrêtent pas au régime de divergence. En augmentant encore la vitesse, on constate que la divergence cesse, et que l'épaisseur semble saturer à une valeur e sat proche de celle donnée par l'équation (3.21). En particulier, e sat est proportionnel à R : pour R = 2 mm, on trouve e sat = 50±5 µm et pour R = 3 mm, e sat = 70 ± 10 µm (pour un fil de 63,5 µm de rayon tiré d'un bain d'eau pure et pour L = 1,4 cm).

Figure 35 .Figure 36 .

 3536 Figure 36. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, pour un fil de rayon b = 63,5 µm tiré d'un bain d'eau pure, pour deux longueurs de réservoir différentes : L = 5,1 cm (carrés fermés) et L = 1,4 cm (carrés ouverts). Le régime de divergence est le même mais le comportement au-delà de V * est fonction de L. La ligne en trait continu est l'équation (3.20) et celle en pointillés l'équation (1.41). [Film thickness (normalized by the fiber radius) versus the capillary number, for a nickel wire (b = 63.5 µm) drawn out of pure water, for two different reservoir lengths: L = 5.1 cm (black squares) and L = 1.4 cm (white squares). The full line is equation (3.20) and the dotted one the Landau law (1.41).]

Figure 38 .

 38 Figure 38. Sortie à vitesse V d'un solide hors d'un réservoir de longueur L. On compare l'épaisseur de la couche limite visqueuse (qui est contenue dans le paraboloïde en pointillés) en sortie de réservoir et l'épaisseur du film entraîné. [Withdrawal at a velocity V of a solid out of a reservoir of finite length L. The thickness of the viscous boundary layer (in dotted line) is compared with the film thickness, at the exit of the bath.]

Figure 40 .

 40 montre la décroissance de la masse m du réservoir avec le temps, pour un fil de Nylon (b = 110 µm) tiré à V = 160 cm/s d'un réservoir d'eau de longueur initiale L 0 = 5,1 cm : pour ces paramètres, l'inégalité (3.24) ne doit plus être vérifiée. L'expérience commence en A et dure jusqu'à vider totalement la goutte (point B). Masse du réservoir en fonction du temps, pour un fil de Nylon (b = 110 µm) tiré à V = 160 cm/s d'un réservoir d'eau de longueur initiale L0 = 5,1 cm. On tire le fil à partir du point A ; en B, le réservoir est vide. Au voisinage de ce point, la construction dite de la tangente indique que la courbe est parabolique. [Mass of the reservoir versus time, for a Nylon fiber (b = 110 µm) drawn at V = 160 cm/s out of a reservoir of pure water of initial length L0 = 5.1 cm. The fiber is drawn from A. In B, the reservoir is empty. Close to this point, the classical construction of the tangent shows that the curve is parabolic.]

Figure 41 .

 41 Ajustement des données expérimentales (carrés pleins) par l'équation (3.29). Les expériences correspondent au tirage d'un fil de Nylon (b = 110 µm) tiré d'un réservoir d'eau (L0 = 5,1 cm) à a) V = 191 cm/s ; b) V = 476 cm/s. L'ajustement fournit une valeur pour le coefficient α, indiquée dans chaque cas. [Fit of the data (black squares) with equation (3.29). The experiments are done by drawing a Nylon fiber (b = 110 µm) out of a reservoir of pure water (L0 = 5.1 cm) at a) V = 191 cm/s; b) V = 476 cm/s. The fit provides a value for the adjustable parameter α.]

, 9 FPVFigure 42 .

 942 Figure 42. Variation de α, déduit d'ajustements semblables à ceux de la figure 41, avec la vitesse V de tirage (expériences faites avec un fil de Nylon de rayon b = 110 µm tiré d'un réservoir d'eau pure). À grande vitesse, α est indépendant de V , ce qui définit le régime de couche limite ( Éq. (3.25)).[Variation of α, deduced from fits similar to the one presented in Figure41, with the withdrawal velocity V (experiments are done by drawing a Nylon fiber (b = 110 µm) out of a reservoir of pure water). At high speed, α becomes independent of V , which defines the regime of viscous boundary layer (Eq.(3.25)).]

Figure 43 .

 43 Figure 43. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire. Les expériences sont faites avec un fil de Nylon de rayon b = 110 µm tiré d'un bain d'eau pure, pour deux longueurs de réservoir : L = 3,4 cm (carrés vides) et L = 5,1 cm (carrés pleins). Les lignes décroissantes en trait plein sont l'équation (3.25) tracée pour ces deux valeurs du paramètre L (et avec α = 1,1). Les 4 numéros romains désignent successivement le régime de Landau, la divergence visco-inertielle, une zone de transition et le régime de couche limite. [Film thickness (normalized by the fiber radius) versus the capillary number, for a Nylon fiber (b = 110 µm) drawn out of pure water, for two different reservoir lengths: L = 5.1 cm (black squares) and L = 1.4 cm (white squares). The full lines are equation (3.25) (drawn for α = 1.1). The roman numbers show the four different regimes described: the Landau law, the inertial divergence, a transition zone and the boundary layer regime.]

Figure 44 .

 44 Figure 44. Masse du réservoir en fonction du temps, pour un fil de nickel (b = 88,5 µm) tiré à V = 54 cm/s d'un réservoir d'eau de longueur initiale L0 = 30 cm. Chaque marche sur la courbe correspond à l'expulsion d'une gouttelette. [Mass of the reservoir versus time, for a nickel wire (b = 88.5 µm) drawn at V = 54 cm/s out of a reservoir of pure water of initial length L0 = 30 cm. Each step on the curve corresponds to the expulsion of a droplet.]

Figure 45 .

 45 Figure 45. Épaisseur moyenne du film (normé par le rayon du fil) en fonction du nombre capillaire, en coordonnées logarithmiques. Les expériences sont faites avec un fil de nickel (b = 88,5 µm) tiré d'un réservoir d'eau de longueur initiale L0 = 30 cm. La droite en trait plein est l'équation (3.25). [Average film thickness (normalized by the fiber radius) versus the capillary number, in a log-log scale. Experiments consist of drawing a nickel wire (b = 88.5 µm) out of a reservoir of pure water of initial length L0 = 30 cm. The full line is equation (3.25).]

Figure 47 .

 47 Figure 47. Ensimage de fibres de verre : les fibres sont lubrifiées et rassemblées en mèches sur un rouleau couvert de liquide. [Lubrication of glass fibers: the fibers are wetted by passing them at high speed on a roll coated with a liquid.]

1 .

 1 Tensioactifs et mouillage dynamique : généralités 1. .1. Tensioactifs en solution dans l'eauL'effet tensioactifUne molécule de tensioactif, un savon par exemple, est constituée d'une tête hydrophile et d'une chaîne carbonée hydrophobe. Mise dans l'eau, elle se place préférentiellement à l'interface eau-air (Fig.48) : en exposant sa partie hydrophobe à l'air, elle adopte une configuration de moindre énergie qu'en volume.

Figure 48 .

 48 Figure 48. Tensioactifs au voisinage d'une interface eau-air : à cause de leur double affinité (tête hydrophile et queue lipophile), les molécules tendent à se placer à la surface plutôt qu'en volume.[Surfactants close to a water-air interface: because of their amphiphilic behaviour, the molecules tend to go to the surface rather than in the bulk.]

Figure 49 .

 49 Figure[START_REF] Landau | Fluid Mechanics[END_REF]. Interface où la tension de surface n'est pas constante : un point de la surface est soumis à une force nette, qui tend à le déplacer, des zones de faibles tensions de surface (notées γ-) vers celles de fortes tensions de surface (notées γ+). Du liquide sous-jacent est entraîné dans cette opération.[Interface with a non-constant interfacial tension: a point of surface is subjected to a force which tends to move it from the region of low surface tension (γ-) to the one of high surface tension (γ+). Some liquid below the surface is entrained in this process.]

Figure 50 .

 50 Figure 50. Retrait d'un solide hors d'un bain contenant des tensioactifs : le mouvement provoque un gradient de concentration de surface en tensioactifs (on note ∆Γ la différence de concentration de surface entre le réservoir et le film), responsable d'un écoulement supplémentaire (indiqué par la flèche) dont l'effet est d'épaissir le film, par rapport au cas d'un liquide pur.[Withdrawal of a solid out of a bath of liquid which contains surfactants: the motion provokes a gradient of surface concentration for the surfactant (∆Γ is the difference in surface concentration between the reservoir and the film). This gradient causes a Marangoni flow (indicated by the arrow), whose effect is to thicken the film if compared with a pure liquid.]

4 )

 4 On trouve ainsi la même équation qu'en supposant la surface libre ( Éq.(1.22)), mais à condition de remplacer V par 4V .Dans leur modèle, Carroll et Lucassen supposent (arbitrairement) la longueur du ménisque dynamique indépendante de la vitesse, et d'ordre b, le rayon de la fibre. Comme cela les conduit ( Éq. (1.37)) à proposer comme loi pour l'épaisseur : e ∼ b Ca 1/2 , ils en déduisent que l'épaississement maximal vaut 4 1/2 , donc 2.En fait, la longueur dépend de la vitesse ( Éq. (1.39a)) et le remplacement de V par 4V dans la loi de Landau donne pour épaisseur maximale : e = 4 2/3 e L (4.5) où e L désigne l'épaisseur de Landau (e L = 1,34bCa 2/3 ). Le facteur maximal d'épaississement vaut donc 4 2/3 , soit environ 2,5.
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 951 Figure 51. Épaisseur du film (normée par la longueur capillaire) en fonction du nombre capillaire, déduite d'une intégration de l'équation (4.8), avec η = 1 cP, γ = 30 dyn/cm et Ds = 10 -5 cm 2 /s. Le résultat est comparé à la loi de Landau ( Éq. (1.30)) et à sa variante épaissie du facteur 4 2/3 ( Éq. (4.5)). Cette courbe, établie pour des tensioactifs insolubles, est inspirée de [54].[Film thickness (normalized by the capillary length) versus the capillary number, from an integration of equation (4.8) (with η = 1 cP, γ = 30 dyn/cm et Ds = 10 -5 cm 2 /s). The result is compared with the Landau law (Eq. (1.30)) and with its parallel thickened with a factor 4 2/3 (Eq. (4.5)). This curve is drawn from[START_REF] Park | Effects of insoluble surfactants on dip coating[END_REF] and corresponds to the case of insoluble surfactants.]

  où l'indice f se réfère au film. Posons µ = Γ f /c (µ est donc une longueur). Si l'épaisseur du film entraîné vérifie e µ, cette expression se réduit à :Γ u s ≈ Γ f V (4.10)qui exprime la conservation du flux pour des tensioactifs insolubles. Pour le SDS à la cmc (c = 8 mM) et une concentration de surface d'une molécule par 50 Å2 , on a µ ∼ 0,4 µm, donc le plus souvent inférieur à e. En revanche, pour un tensioactif fluoré de cmc de l'ordre de 1 mM, µ vaut 10 µm si bien que l'équation (4.10) est satisfaite.

Figure 52 .

 52 Figure 52. Épaisseur du film (normée par le rayon du tube capillaire où il est formé) en fonction du nombre capillaire, pour le modèle convective-equilibrium de Ratulowski et Chang (diffusion du tensioactif négligeable et adsorption instantanée) [56]. La courbe, obtenue par intégration numérique, est établie pour M = 1 et différentes valeurs du paramètre K = Γ/cb. Le résultat est comparé à la loi de Landau (K = 0), à sa variante épaissie du facteur 4 2/3 (K = ∞) et à la loi empirique e = b Ca 1/2 (en pointillés). [Film thickness (normalized by the radius of the tube where it is made) versus the capillary number, in the convective-equilibrium model of Ratulowski and Chang [56]. The curve is obtained by a numerical integration for M = 1 and different values of the parameter K = Γ/cb. The result is compared with the Landau law (Eq. (1.30) or K = 0), with its parallel thickened with a factor 4 2/3 (Eq. (4.5) or K = ∞) and with the empirical law e = b Ca 1/2 (in dotted line).]

Figure 53 .

 53 Figure 53. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire. Les expériences sont faites avec un fil de nickel de rayon b = 88,5 µm tiré d'un bain d'eau savonneuse (solution de SDS à c = 72 mM, soit 9 fois la cmc). La droite en trait plein est la loi de Landau ( Éq. (1.40)). [Film thickness (normalized by the fiber radius) versus the capillary number. The experiments are done for a nickel wire (b = 88.5 µm) drawn out of a soapy water (a solution of SDS at the concentration c = 72 mM, i.e. 9 times the cmc). The curve in full line is the Landau law (1.40).]

Figure 54 .

 54 Figure 54. Épaisseur du film (normé par le rayon du fil) en fonction de la vitesse de retrait. Les données de la figure 53 (carrés blancs) sont comparées à celles obtenues en tirant la même fibre d'un bain d'eau pure (carrés noirs). La vitesse pour laquelle l'épaisseur diverge est clairement différente. [Film thickness (normalized by the fiber radius) versus the withdrawal velocity. The data of Figure 53 (empty squares) are compared with other ones obtained by drawing the same wire out of pure water (full squares). The velocity for which the thickness diverges is clearly different.]

Figure 55 .

 55 Figure 55. Épaississement α (rapport de l'épaisseur du film sur celle de Landau) en fonction de la concentration c en SDS (divisée par la concentration micellaire critique). Toutes les expériences sont réalisées dans le domaine de nombre capillaire défini par la figure 53 avec un fil de nickel de rayon b = 88,5 µm. [Thickening factor α (ratio of the film thickness on the Landau thickness) as a function of the SDS concentration (divided by the cmc, the critical micellar concentration). The experiments are done within the interval in capillary number defined in figure 53 with a nickel wire (b = 88.5 µm).]

Figure 57 .

 57 Figure 57. Même expérience que la figure 53, au rayon du fil près : il vaut ici 12,5 µm. Les données sont comparées à la loi de Landau (en bas) et à sa variante épaissie du facteur 4 2/3 (en haut). [Same experiment as in Figure 53 for a different wire radius (b = 12.5 µm). The data are compared with the Landau law (Eq. (1.30)) and with its parallel thickened with a factor 4 2/3 (Eq. (4.5)).]

Figure 58 .

 58 Figure 58. Épaississement α en fonction du rayon b des fibres. Les expériences sont réalisées dans l'intervalle de nombre capillaire 10 -3 < Ca < 10 -2 avec une solution de SDS c = 72 mM. On a également porté la valeur de l'épaississement maximal α = 4 2/3 . [Thickening factor α as a function of the wire radius b. The experiments are done within the interval in capillary number 10 -3 < Ca < 10 -2 , and with a solution of SDS c = 72 mM. The maximum thickening factor α = 4 2/3 is indicated.]

Figure 59 .

 59 Figure 59. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, pour un fil de nickel de rayon b = 88,5 µm tiré d'une solution de HTAB c = 1 mM, soit la cmc. Les droites en trait plein est la loi de Landau ( Éq. (1.40)) et sa variante épaissie de 4 2/3 . [Film thickness (normalized by the fiber radius) versus the capillary number, for a nickel wire (b = 88.5 µm) drawn out of a solution of HTAB (at c = 1 mM, i.e. the cmc). The curves in full line are the Landau law (1.40) and its parallel thickened by a factor 4 2/3 (Eq. (4.5)).]

Figure 60 .

 60 Figure 60. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, pour un fil de nickel de rayon b = 88,5 µm tiré d'une solution de DTAB c = 75 mM, soit 5 fois la cmc. Les droites en trait plein est la loi de Landau ( Éq. (1.40)) et sa variante épaissie de 4 2/3 . [Film thickness (normalized by the fiber radius) versus the capillary number, for a nickel wire (b = 88.5 µm) drawn out of a solution of DTAB (at c = 75 mM, i.e. 5 times the cmc). The curves in full line are the Landau law (1.40) and its parallel thickened by a factor 4 2/3 (Eq. (4.5)).]

Figure 61 .

 61 Figure 61. Épaisseur du film (normé par le rayon du fil) en fonction du nombre capillaire, pour un fil de nickel de rayon b = 88,5 µm tiré d'une solution de DTAB c = 375 mM, soit 25 fois la cmc. Les droites en trait plein est la loi de Landau ( Éq. (1.40)) et sa variante épaissie de 4 2/3 . [Film thickness (normalized by the fiber radius) versus the capillary number, for a nickel wire (b = 88.5 µm) drawn out of a solution of DTAB (at c = 375 mM, i.e. 25 times the cmc). The curves in full line are the Landau law (1.40) and its parallel thickened by a factor 4 2/3 (Eq. (4.5)).]

Figure 62 .

 62 Figure 62. Comparaison des différents temps caractéristiques liés au transport du tensioactif : τ est le temps de transit dans le ménisque dynamique (donné par l' Éq. (4.11)), τ et τe sont les temps de diffusion parallèlement et perpendiculairement au mouvement. Les temps sont calculés en prenant η = 1 cP, γ = 30 dyn/cm, D = 10 -5 cm 2 /s et b = 50 µm. Le nombre de Péclet P e est défini par l'équation (4.13). [Comparison between different characteristic times involved in the surfactant transport : τ is the convection time in the dynamic meniscus (given by Eq. (4.11)), τ and τe are the diffusion times parallel and perpendicular to the motion. The times are evaluated by taking η = 1 cP, γ = 30 dyn/cm, D = 10 -5 cm 2 /s and b = 50 µm. The Peclet number P e is defined in equation (4.13).]

  19b) Numériquement, en prenant M = 1, Γ 0 = 1 mol/50 Å2 , c = 10 mM, γ = 35 dyn/cm, η = 1 cP et k = 10 cm/s, on obtient λ = 100 µm, donc de l'ordre du rayon b. Dans nos expériences où la concentration c varie de trois ordres de grandeur et le rayon b d'un facteur 20, on s'attend à rencontrer tous les cas de figure pour le rapport γ ad /τ . Nous sommes à présent en mesure de comprendre qualitativement un certain nombre d'observations expérimentales.

22 ) où β vaut 1

 221 pour une interface libre ( Éq. (4.20)) ou 4 si la vitesse de surface est égale à V ( Éq. (4.21)). La suite du raisonnement de Landau, décrit au chapitre 1, permet de déduire l'épaisseur e : e = 1,34β 2/3 b Ca 2/3 . (4.23) Nous postulons qu'une loi d'épaississement constant et intermédiaire entre 1 et 4 2/3 ne peut être obtenue que si le profil du ménisque dynamique satisfait à l'équation différentielle (4.22), où β à présent est une constante inconnue, comprise entre 1 et 4. Alors, l'épaississement α auquel cette équation conduit s'écrira : α = β 2/3 .

Figure 63 .

 63 Figure 63. Épaississement α en fonction du rayon b des fibres : comparaison des résultats expérimentaux (données de la Fig. 58) avec l'équation (4.34), tracée en trait plein en traitant la longueur λ comme paramètre ajustable. Le tracé sur la figure est fait avec λ = 240 µm. [Thickening factor α as a function of the wire radius b. The data of Figure 58 are compared with equation (4.34) drawn in full line for λ = 240 µm.]

3. . 3 .Figure 64 .Figure 65 .

 36465 Figure 64. Vitesse de surface us dans le ménisque dynamique, déduite de l'équation (4.27) : us (normée par V ) est portée en fonction e/h (qui varie entre 0 et 1 quand on va du réservoir vers le film). On a tracé cette variation pour différentes valeurs du paramètre β (défini dans l' Éq. (4.22)), lié à l'épaississement α par la relation : α = β 2/3 .[Surface velocity us in the dynamic meniscus, given by equation (4.27) : us (normalized by V ) is plotted versus e/h (which varies between 0 and 1 when going from the reservoir to the film). The plot is done for several values of the parameter β (defined in Eq. (4.22)), which is related to the thickening factor α by the relation: α = β 2/3 .]

eFigure 66 .

 66 Figure 66. Réservoir de tensioactifs : dans le ménisque dynamique (dont l'épaisseur est d'ordre e) coexistent des tensioactifs en volume (concentration c) et en surface (concentration de surface Γ ). [Coexistence in the dynamic meniscus of bulk surfactants (concentration c) with surface surfactants (surface concentration Γ ).]

  On peut alors reporter sur un même graphe les résultats obtenus avec le DTAB, où les trois familles de comportements sont successivement rencontrées : la figure 67 montre comment l'épaississement α (α = e/e L ) varie avec σ, pour les données des figures 60 (c = 75 mM, carrés blancs), 61 (c = 375 mM, astérisques) et pour une solution moins concentrée présentant un épaississement constant (c = 15 mM, carrés noirs). Deux représentations sont proposées : en échelle semi-logarithmique pour voir le comportement à petit σ, et en échelle normale pour noter la saturation à grand σ.

Figure 67 .

 67 Épaississement α en fonction du nombre σ défini par l'équation (4.35) (ce nombre compare les nombres de tensioactifs en surface et en volume), pour les données des figures 60 (c = 75 mM, carrés blancs), 61 (c = 375 mM, astérisques) et pour une solution moins concentrée présentant un épaississement constant (c = 15 mM, carrés noirs). Le tensioactif est le DTAB. La représentation en échelle semi-logarithmique permet de voir le comportement à petit σ, et celle en échelle normale de noter la saturation à grand σ.

Figure 68 .

 68 Figure 68. Même représentation que la figure 67. Cette fois, c'est l'ensemble des résultats obtenus avec les tensioactifs cationiques qui est reporté (carrés noirs : dTAB, carrés blancs : DTAB, astérisques : TTAB, plus : HTAB).[Same plot as in Figure67, for all the data on cationic surfactants (black squares: dTAB, white squares: DTAB, asterisks: TTAB, plus: HTAB).]

Figure 69 .Figure 70 .

 6970 Figure 69. Tirage d'un fil de nickel (b = 88,5 µm) d'une solution 0,6 mM de tensioactif fluoré. L'épaisseur (divisée par le rayon du fil) est portée en fonction du nombre capillaire (calculé en prenant la tension de surface à l'équilibre de la solution de tensioactif). Au lieu d'une courbe bien définie, on obtient un nuage de points décalé par rapport à la loi de Landau et à sa variante épaissie (toutes deux en trait plein). [Drawing a nickel wire (b = 88.5 µm) out of a bath of water containing fluorinated surfactant (c = 0.6 mM). The film thickness (divided by the wire radius) is plotted as a function of the capillary number (calculated by taking the equilibrium surface tension of the solution). Data form are scattered around the Landau law and its parallel thickened by a factor 4 2/3 (both in full line).]

Figure 71 .

 71 Figure 71. Tirage d'un fil de nickel (b = 88,5 µm) d'une solution 0,6 mM de tensioactif fluoré. On a maintenant porté les épaisseurs dans le premier et dans le deuxième régime (voir Fig. 70 pour une définition de ces régimes) en fonction du nombre capillaire. [Drawing a nickel wire (b = 88.5 µm) out of a solution of fluorinated surfactant (c = 0.6 mM). The film thicknesses in the first and in the second regime (see Fig. 70 for the definitions) are plotted as a function of the capillary number.]

Figure 72 .

 72 Figure 72. Tirage d'un fil de nickel (b = 88,5 µm) d'une solution 0,6 mM de tensioactif fluoré : durée du premier régime, ou régime d'épuisement, en fonction de la vitesse de défilement V . On compare les données à deux temps élémentaires, notés τ0 et τ1, et donnés par l'équation (4.40). [Drawing a nickel wire (b = 88.5 µm) out of a solution of fluorinated surfactant (c = 0.6 mM). The duration of the first regime τ is plotted versus the withdrawal velocity V . The data are compared with two natural time scales (τ0 and τ1) defined in equation (4.40).]

  confronte (favorablement) l'équation (4.42) (utilisée sans souci de coefficient numérique et avec D ∼ 10 -5 cm 2 /s) avec quatre séries de mesure de τ obtenues pour deux rayons de fil (b = 12,5 µm et b = 88,5µm) et deux concentrations en tensioactifs fluorés (c = 1,2 mM et c = 0,6 mM).

Figure 73 .

 73 Figure 73. Durée du régime d'épuisement en fonction de la vitesse du fil, pour deux rayons de fil (b = 12,5 µm et b = 88,5 µm) et deux concentrations en tensioactif fluoré (c = 1,2 mM et c = 0,6 mM). Les données sont comparées à l'équation (4.42), tracée en traits pleins. [Duration τ of the first regime as a function of V , for two radii (b = 12.5 µm et b = 88.5 µm) and two concentrations of fluorinated surfactant (c = 1.2 mM et c = 0.6 mM). The data are compared with equation (4.42), drawn in full line.]

Figure 74 .

 74 Les deux régimes d'épaisseur, pour des expériences de tirage de fibre (b = 12,5 µm et b = 88,5 µm) hors d'une solution de tensioactif fluoré (c = 1,2 mM et c = 0,6 mM). Le nombre capillaire est toujours calculé en prenant la tension de surface à l'équilibre de la solution de tensioactif. On a également tracé, en traits pleins, la loi de Landau et sa parallèle épaissie du facteur 4 2/3 . [The two different regimes for the film thickness when drawing wires (b = 12.5 µm et b = 88.5 µm) out of solutions of fluorinated surfactant (c = 1.2 mM et c = 0.6 mM). The capillary number is calculated by taking the equilibrium surface tension of the solutions. The Landau law and its parallel thickened by a factor 4 2/3 are drawn in full line.] 4. .3. Le régime épuisé Deux observations complémentaires Comme nous l'avons vu, le second régime (en carrés blancs sur les Figs. 70 et 74) suit la loi de Landau écrite pour l'eau pure. La surface libre est donc appauvrie en tensioactifs, ce que deux observations viennent confirmer.

Figure 75 .

 75 Figure 75. Tirage d'un fil hors d'un réservoir biseauté. Pendant le premier régime (t < τ), le ménisque de sortie mouille le tube (a). En revanche, au-delà du temps τ, le ménisque se rétracte, ce qui indique que la solution est devenue non mouillante (b).[Drawing a fiber out of a reservoir cut obliquely. During the first regime (t < τ), the meniscus at the exit wets the tube (a). Conversely, for t > τ, the solution is nonwetting (b).]

  fil

Figure 76 .

 76 Figure 76. Fil sortant du réservoir, vu de face, dans le régime épuisé : du talc déposé à la surface du réservoir reste piégé et décrit les mouvements circulaires schématisés sur la figure. [Front view of the fiber drawn out of the reservoir in the second regime: particles at the surface of the reservoir indicates that this region flows as indicated by the lines.]

Figure 77 .Figure 78 .

 7778 Figure 77. Tirage hors d'un bain d'eau pure d'un fil de nickel (b = 63,5 µm) pollué sur 60 cm par des tensioactifs. La masse du réservoir est portée en fonction du temps : entre A et B, le fil est entraîné à V = 25 cm/s ; la première flèche repère le moment où la zone polluée arrive dans la goutte et la deuxième celui où elle en sort. [Drawing out of pure water a nickel wire (b = 63.5 µm) first coated on 60 cm with surfactants. The mass of the servoir is plotted versus time: between A and B, the wire is entrained at V = 25 cm/s. The first arrow indicates the moment when the polluted zone enters the reservoir and the second when it comes out.]

Figure 79 .

 79 Figure79. Situation à grande vitesse de tirage, pour un fil couvert de tensioactifs : le film est plus épais que la couche limite de diffusion du tensioactif. [Situation at small velocity (the whole fiber is supposed to be covered with surfactants). Then, the film is thicker than the diffusion boundary layer.]

Figure 80 .

 80 Figure 80. Masse d'un réservoir d'eau pure en fonction de la vitesse de tirage : a) pour un fil de nickel (b = 63,5 µm) entièrement couvert de tensioactifs (SDS, Γ = 2,4 × 10 -8Mol/cm 2 ) ; b) pour le même fil propre ; c) donnée par le calcul, en supposant l'épaisseur donnée par la loi de Landau. Ces deux dernières courbes se superposent sur tout l'intervalle de vitesses explorées, tandis que la première ne les rejoint que pour V > 65 cm/s. La masse du réservoir, tarée à 0 au début de l'expérience, est mesurée en tirant les fibres avec une vitesse décroissante en fonction du temps (dV /dt = -2,9 cm/s 2 ).[Mass of a reservoir of pure water as a function of the withdrawal velocity: a) for a nickel wire (b = 63.5 µm) completely coated with surfactants (SDS, Γ = 2.4 × 10 -8 Mol/cm 2 ); b) for the same wire, but clean; c) result of the calculation, supposing that the thickness is given by the Landau law. Curves b) and c) are the same on the whole interval in velocity, while the first one a) joins them only for V > 65 cm/s. The mass of the reservoir is noted 0 at the beginning of the experiment and is measured while the fiber is drawn with a constantly decreasing velocity (dV /dt = -2,9 cm/s 2 ).]

Tableau 2 .Figure 81 .

 281 Figure81. Viscosité de solutions de POE de masse comprise entre 3 × 10 6 et 4 × 10 6 g en fonction du taux de cisaillement (figure inspirée de[START_REF] Powell | Rheological properties of polyethylene oxide solutions[END_REF]).[Viscosity of PEO (polyethylene oxide) solutions for a PEO molecular mass ranging between 3 × 10 6 and 4 × 10 6 g as a function of the shear rate (from[START_REF] Powell | Rheological properties of polyethylene oxide solutions[END_REF]).]

Figure 82 .

 82 Figure 82. Épaisseur du film (normé par le rayon b = 63,5 µm du fil de nickel) en fonction de la vitesse d'extraction, pour les cinq solutions de POE (carrés blancs : c = 0,001 % ; ronds : c = 0,01 % ; triangles blancs : c = 0,1 % ; triangles noirs : c = 0,5 % ; carrés noirs : c = 1 %).[Film thickness (normalized by the fiber radius) versus the capillary number, for a nickel wire (b = 63.5 µm) drawn out of a solution of PEO (white squares: c = 0.001%; circles: c = 0.01%; white triangles: c = 0.1%; black triangles: c = 0.5%; black squares: c = 1%).]

•cFigure 83 .

 83 Figure 83. Comparaison des données de la figure 82 avec la loi de Landau ( Éq. (1.41), tracée en trait plein). Pour chaque point expérimental (mêmes symboles que sur la Fig. 82), le taux de cisaillement est estimé à V /e et la viscosité correspondante lue sur la figure 81 : on peut ainsi calculer le nombre capillaire.[Comparison between the data of Figure82and the Landau law (Eq. (1.41), drawn in full line). For each experiment (same symbols as in Fig.82), the shear rate is estimated by V /e and the corresponding viscosity is read in Figure81, which allows to calculate the capillary number.]

. 2 )

 2 Les coefficients k, n et le taux de cisaillement seuil u • c sont déterminés par l'expérience, comme le montre par exemple la figure81; l'exposant n varie de 1 à 0,5 quand on augmente la concentration en polymère (n = 1 définit un fluide newtonien).Les termes diagonaux de τ contiennent la pression (τ xx + τ yy + τ zz = -3p). Pour un liquide newtonien, on a τ xx = τ yy = τ zz = -p. Avec contraintes normales, on a seulement : τ yy = τ zz et l'on définit le coefficient ζ : montre que pour de nombreuses solutions de polymères, ζ est proportionnel à η 2[START_REF] Vinogradov | Rheology of Polymers[END_REF]. Si l'on a u• > u• c , on peut réécrire l'équation (5.3) sous la forme : τ xxτ yy = N est un coefficient de proportionnalité (N ∼ k 2 ). Le tenseur des contraintes s'écrit alors : de Navier-Stokes, toujours dans l'approximation de lubrification, devient :

. 14 )

 14 On élimine grâce à l'équation (5.11), si bien que l'on obtient (toujours en sup-

Tableau 4 .

 4 Trois valeurs de l'intégrale I(n) définie par l'équation(5.19).[Three values of the integral I(n) defined in equation(5.19).]

Figure 85 .

 85 Figure 85. Comparaison des données expérimentales de la figure 82 (symboles identiques) au meilleur ajustement obtenu avec l'équation (5.21), où N est traité comme un paramètre ajustable. [Comparison between the data of Figure 82 (same symbols) and the best fit obtained with equation (5.21), where N is an ajustable parameter.] Il reste à s'assurer que les valeurs de N ne sont pas absurdes. La figure 81 montre que la viscosité du POE est bien décrite par la relation (5.2). De ce comportement, on peut déduire [71] : N ≈ 0,36k (u • c ) n •

Tableau 6 .

 6 Comparaison des coefficients N déduits de l'expérience (via l'ajustement présenté sur la Fig. 85) et de l'équation (5.22) (où u • c est déterminé sur la Fig. 81). La comparaison ne porte que sur les trois solutions les plus concentrées ; pour les deux autres, l'effet rhéoamincissant est trop faible pour pouvoir mesurer N. [Comparison between the coefficients N deduced from the experiments (thanks to the fit displayed in Fig. 85) and equation (5.22) (where u • c is measured in Fig.

'

  

Figure 86 .

 86 Tirage d'un solide hors d'une émulsion. Selon le rapport de l'épaisseur du film sur la taille des gouttes d'huile, deux cas peuvent se présenter : a) emport d'un film de même composition que le réservoir ; b) tirage d'un film de composition différente (la figure évoque la possibilité d'un film appauvri en huile).

Figure 89 .

 89 Figure89. Comparaison des données de la figure 88 (où chaque groupe de points est remplacé par sa moyenne) avec : 1) en pointillés, la loi de Landau écrite en supposant que le film entraîné a la même composition que le réservoir ; 2) en trait plein, l'équation (5.23) qui suppose que la fibre emporte avec elle toutes les gouttelettes qu'elle a rencontrées en traversant le réservoir.[Comparison of the data of Figure88(where each group of points is replaced by its average value) with: 1) in dotted line, the Landau law written considering that the wire entrains a continuous film of same composition as the reservoir; 2) in full line, equation(5.23) where it is supposed that the fiber entrains with it all the droplets it has met while it has passed through the reservoir.]

dFigure 90 .

 90 Figure 90. Modèle statique de capture : on dénombre l'ensemble des gouttes d'huile se trouvant dans une gaine de rayon d, le diamètre des gouttes, autour de la fibre. [Static model of capture: the drops in a sheath of radius d (the drop diameter) around the fiber are counted.]

A

  Fabrication d'un film sur une plaque B Abandon du raccord asymptotique : une méthode alternative A Fabrication d'un film sur une plaque Nous avons établi au premier chapitre que pour une plaque solide tirée d'un bain, on passe d'un régime capillaire (loi de Landau, Éq. (1.30)) au régime de gravité (loi de Derjaguin, Éq. (1.33)) autour de Ca = 1 (Ca désigne le nombre capillaire). Le passage d'un régime à l'autre a été étudié par White et Tallmadge [17], qui ont proposé, à partir de l'équation (1.27), un calcul analytique complet du problème de Landau avec gravité. La principale difficulté réside dans le calcul de la courbure que prend le ménisque dynamique au raccord avec le ménisque statique ( Éq. (1.25)). Dans le cas de Landau, un raccord asymptotique pouvait être fait dans la mesure où dès qu'Y est assez grand (Y 10), la courbure est pratiquement constante (Y ∼ 1,34), comme le montrent la figure 8 et la discussion autour de la figure 9. Or l'équation (1.27) montre que Y ne tend plus vers 0 quand Y → ∞ : la condition (1.25), qui implique une limite finie pour la courbure du ménisque dynamique, ne peut plus être satisfaite. En linéarisant l'équation (1.27), on s'affranchit de cette difficulté. En posant : Y = 1 + ε (ε 1), on obtient : ε = -3ε 1 -e 2 κ 2 Ca . (A.1) Cette équation est, à un facteur près, l'équation de Landau linéarisée : la courbe solution de Y Y 3 = 3(1e 2 κ 2 /Ca)(1 -Y ) est asymptotiquement proche de la courbe solution de (1.27) dans la région du film plat. Sa courbure en Y → ∞ vaut Y Y →∞ = 1,34 (1e 2 κ 2 /Ca) 2/3 . On en tire : e = 0,94κ -1 (Cae 2 κ 2 ) 2/3 (A.2) qui peut se réécrire comme la plus simple interpolation entre les équations de Landau et de Derjaguin : Ca = 1,09e 3/2 κ 3/2 + e 2 κ 2 . (A.3)

Figure 91 .

 91 Figure91. Intégration de l'équation (A.4), en imposant un raccord avec un film plan (en X infini). Pour 0 < T < 1 (on a pris ici T = 0,71), la solution engendre un bourrelet. Dans notre problème où le ménisque dynamique rejoint le ménisque statique sans que la courbure change de signe, la zone en-deçà du point d'inflexion I (en pointillés) est non physique.[Integration of equation (A.4), imposing a matching with a flat film at infinite X. For 0 < T < 1 (here for example T = 0.71), the solution generates a bump. In our problem, the dynamic meniscus joins the static meniscus without changing the curvature sign, so that the zone in dotted line is unphysical (I is the inflection point).]
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 219233 Figure 92. Comparaison entre les lois de Landau ( Éq. (1.30)) et de Derjaguin ( Éq. (1.33)) avec l'équation de White et Tallmadge ( Éq. (A.3)) et la solution numérique obtenue en intégrant l'équation (1.27). En ordonnées, on a porté l'épaisseur e du film normée par l'épaisseur eD de Derjaguin (eD = κ -1 Ca 1/2 ). [Comparison between the Landau and Derjaguin laws (Eqs. (1.30, 1.33)), the White and Tallmadge equation (Eq. (A.3)) and the numerical solution numérique obtained by integrating numerically equation (1.27). The film thickness e is normalized by the Derjaguin thickness (eD = κ -1 Ca 1/2 ).]

Figure 93 . 4 )Figure 94 .

 93494 Figure 93. Intégration de l'équation (B.1), en traitant la quantité 1/5 Re Ca 1/3 comme un paramètre noté C. [Integration of equation (B.1), treating the quantity 1/5 Re Ca 1/3 as a parameter noted C.]

Figure 95 .

 95 Figure 95. Comparaison de la courbe numérique obtenue sur la figure 94 est des données expérimentales (carrés noirs), pour le retrait d'une fibre de 63,5 µm de rayon tirée d'un bain d'eau pure. [Comparison between the numerical curve obtained in Figure 94 and data (black squares) obtained by drawing a nickel wire of radius 63.5 µm out of pure water. The fit is not really convincing.]

  14b) où f est une force extérieure par unité de volume (la gravité, par exemple) et p la pression. L'équation (1.14a) est l'équation de Navier-Stokes. En coordonnées cartésiennes, en appelant u et ν les composantes de la vitesse selon x et y, et en considérant comme seule force la gravité, elle s'écrit :

	ρ	∂u ∂t	+ u	∂u ∂x	+ ν	∂u ∂y	= -ρg -	∂p ∂x	+ η	∂ 2 u ∂x 2 +	∂ 2 u ∂y 2	(1.15a)
	ρ	∂ν ∂t	+ u	∂ν ∂x	+ ν	∂ν ∂y	= -	∂p ∂y	+ η	∂ 2 ν ∂x 2 +	∂ 2 ν ∂y 2	(1.15b)
	à laquelle il faut adjoindre l'équation (1.14b) :		
							∂u ∂x	+	∂ν ∂y	= 0		(1.16)

  .]

	L'eau, un liquide déviant		
	La plupart des liquides d'ensimage utilisés industriellement sont des solutions
	aqueuses et nous avons donc entrepris une seconde série d'expériences avec l'eau.
	Pour comparer les résultats à ceux obtenus avec les huiles silicones, il faut travailler
	à des vitesses bien supérieures, à cause de la faible viscosité de l'eau (η = 1 cP)
	et de sa tension de surface élevée (γ = 72,8 dyn/cm). Les expériences, réalisées
	avec le même fil de nickel, sont faites à des vitesses allant de 7 à 130 cm/s. Les
	résultats sont présentés sur la figure 21 et comparés à la loi de Landau.	
	De façon surprenante, les données expérimentales suivent une courbe en S :	à
	grande comme à petite épaisseur, on constate des déviations vis-à-vis de la loi de
	Landau qui peuvent atteindre un ordre de grandeur. Seul un minuscule intervalle
	en nombres capillaires (la vitesse est alors comprise entre 20 cm/s et 60 cm/s)
	semble conforme aux prévisions.		
	Les équations (1.36-1.38) se corrigent en remplaçant γ/b par γ/b + 2γ/R, et
	l'épaisseur e devient, au premier ordre en b/R :	
	e = e L 1 -	2b R	(1.43)
	où e L est l'épaisseur de Landau ( Éq. (1.41)). La correction est au maximum
	de 6 % en considérant la fibre la plus utilisée (b = 63,5 µm). Nous nous sommes
	affranchis de cet effet en surremplissant le réservoir de façon à éliminer le ménisque
	(ancrage à 90 • du bord de la goutte à la sortie du tube en Téflon).	

  .3a) Blake appelle V m la vitesse maximale de démouillage. Si V est plus grand que V m , l'équation (2.2) n'a pas de solution : un film est entraîné. L'angle (dynamique) nul apparaît comme la limite à partir de laquelle le régime sec disparaît. En pratique, pour K 0 = 10 4 s -1 , λ = 1 nm et θ e = 60 • , V m vaut 2 mm/s.

	Remarquons enfin
	que si l'angle d'équilibre est petit, l'équation (2.3a) devient :

  [START_REF] Derjaguin | On the thickness of the liquid film adhering to the walls of a vessel after emptying[END_REF] où Re est le nombre de Reynolds construit avec pour longueur caractéristique l'épaisseur du film (Re = ρeV /η). C'est bien là une forme qui généralise l'équation de Landau (1.28) et simplifie celle d'Esmail et Hummel (3.7) en l'absence de gravité et à faible nombre capillaire.

  En rassemblant les équations(3.16, 3.19), on obtient une loi qui généralise l'équation de Landau et qui a bien l'allure dimensionnelle de l'équation (3.3) : La solution de l'équation implicite (3.20) se calcule par itération. Nous l'avons fait pour deux fibres (b = 63,5 µm et b = 12,5 µm) et deux liquides pour lesquels nous disposions de données expérimentales :

	Comparaison avec les expériences	
	e =	1,34(b + e)Ca 2/3 1 -β(e)W	(3.20a)
	avec (i) pour l'eau (Figs. 34a et 34b) ;	
	W = (ii) pour l'huile silicone légère (correspondant aux résultats de la Fig. 28) (Figs. 35a ρV 2 (b + e) γ (3.20b) et 35b).
	En pointillés est figurée la loi de Landau (1.41). Dans tous les cas, l'équation et (3.20), tracée en trait plein, décrit de manière satisfaisante les résultats : le seuil
	β(e) = à partir duquel on s'écarte de la loi de Landau est bien prévu, ainsi que l'allure de 1 5 ln R e -3 . (3.20c) la divergence.
			coor-
	données cartésiennes peuvent devenir inadaptées. La formule dimensionnelle
	(3.3) ne pouvait conduire à une saturation car le raisonnement ignorait le
	détail du profil du ménisque dynamique, si bien que la divergence logarith-
	mique de la courbure n'était pas prise en compte.	

.

[START_REF] Taylor | Deposition of viscous fluid on the wall of a tube[END_REF] 

Cette expression diverge logarithmiquement avec Y (qui est l'épaisseur h du ménisque divisée par e), comme le montrait la figure
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. Or le profil h(x) est limité par la géométrie de l'écoulement. Dans nos expériences par exemple, il ne peut excéder le rayon R du réservoir d'où l'on extrait la fibre. Il est donc naturel de bloquer la divergence en h = R soit Y = R/e.

Comme nous l'avons vu plus haut, le nombre W qui découle du calcul s'interprète comme le nombre de Weber, qui compare les pressions dynamique ρV 2 et capillaire γ/(b + e).

La dépendance de l'épaisseur du film avec la vitesse, implicitement donnée par l'équation (3.20), est complexe. On peut la décomposer en plusieurs régimes :

1) Régime visco-capillaire. Pour W 1, l'équation (3.20a) est la loi de Landau ( Éq. (1.41)).

2) Divergence. Quand W augmente, l'épaisseur se met à croître plus vite que Ca 2/3 (e ∼ V 8/3 ), puis diverge quand β(e)W tend vers 1. En pratique, la divergence se produit à vitesse finie car β(e) varie logarithmiquement avec l'épaisseur et peut en première approximation être remplacé par une constante de l'ordre de l'unité : on retrouve le critère approché (W = 1) déduit de l'équation (3.3). 3) Saturation. La divergence a lieu tant que e reste petit devant R/ exp(3), valeur qui annule β(e). Quand la vitesse (et donc W ) augmente, β(e) tend vers zéro si bien que la solution devient constante. Elle ne dépend plus que de l'ouverture du tube : e = R/ exp(3). (3.21) Toutefois, la valeur de saturation donnée par l'expression (3.21) est très approximative. Les hypothèses faites ne sont plus vérifiées : à grande vitesse, il n'y a plus de ménisque statique et l'épaisseur e excède b si bien que les

  , sont alors justifiés. Il est aisé de vérifier que la condition (3.24) est satisfaite dans toutes les expériences présentées jusqu'ici (sauf pour les mesures "à saturation" de la Fig.37).

	d'ordre V 2. À grande vitesse, en revanche, la condition (3.24) cesse d'être remplie. En
	outre, un tirage très rapide nous place dans un régime purement inertiel
	(W	1) : il n'y a plus de rappel capillaire. Alors seule part avec le solide la
	couche de liquide que celui-ci a pu mettre en mouvement. On attend donc
	comme loi d'entraînement :	
		e = α	ηL ρV	(3.25)
	où α est un coefficient numérique. Deux expériences nous ont permis de
	mettre en évidence ce régime de couche limite.
		ηL ρV	> e	(3.24)
	où e est l'épaisseur donnée par une des lois établies jusqu'ici. Les rai-
	sonnements tenus pour décrire les régimes de Landau et visco-inertiel, qui
	supposent que le liquide arrive dans le ménisque dynamique à une vitesse

1. À faible vitesse, la couche limite englobe le ménisque dynamique, dont l'épaisseur est d'ordre e. Cette condition, satisfaite sur la figure 38, s'écrit : 2. .2. Vidange du réservoir Principe L'expérience consiste à laisser le réservoir se vider (Fig. 39). À cause de l'emport de liquide, la longueur L du bain diminue au cours du temps. Si c'est bien la couche limite qui fixe l'épaisseur du film ( Éq. (3.25)), alors ce dernier doit s'amincir avec le temps, comme L(t). L L(t) 0 Figure 39. Vidange d'un réservoir non ré-alimenté : le solide emportant du liquide, le réservoir (de longueur initiale L0) se vide avec le temps. Le temps qu'y passe un morceau de fibre diminue si bien que la couche limite visqueuse en sortie de bain est de plus en plus mince.

  .31) Lorsque f η excède f γ , le ménisque se retourne (tel un parapluie dans le vent) et une goutte est expulsée. L'intervalle de temps entre deux expulsions permet le renouvellement de la couche limite : il vaut donc L/V , et décroît sur la figure 44, le réservoir se raccourcissant avec le temps. L'égalité des deux forces f η (où δ est donné par l' Éq. (3.25)) et f γ donne le seuil d'apparition du régime d'expulsion : Pour R = 2 mm et L = 30 cm, on trouve un seuil en nombre capillaire de 0,007, proche de la valeur expérimentale lue sur la figure 45.

	L Ca ∼ R.	(3.32)

3. .3. Seuil en longueur

Pour une vitesse et un rayon de tube donnés, on n'observe pas de gouttes tant que la longueur L du tube est inférieure à L * , longueur critique d'apparition du régime d'expulsion donnée par l'équation (3.32) (L * = R/Ca). Si l'on laisse un très long réservoir se vider, des gouttes sont expulsées tant que sa longueur L est supérieure à L * . Pour L < L * , l'expulsion cesse : cette longueur critique est donc très facile à mesurer. Nous avons reporté sur la figure
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sa valeur en fonction de la vitesse pour deux liquides différents (l'eau et l'hexaméthyldisiloxane) et pour un tube de rayon R = 2 mm.

  1/2 . Longueur critique du réservoir L * au-dessus de laquelle, à vitesse donnée, il y a expulsion, en fonction de la vitesse de tirage. Les expériences sont réalisées avec un réservoir de rayon R = 2 mm pour deux liquides : de l'eau (carrés pleins) et de l'hexaméthyldisiloxane (carrés vides). Les droites en trait plein figurent l'équation (3.32) tracée pour ces deux liquides.[Critical length L * versus the velocity V , measured for water (black squares) and for hexamethyldisiloxane (white squares). The continuous lines correspond to equation(3.32).]
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  le rappelle, la tension de surface dans le ménisque est supérieure à cette dernière : nous nous demandons quelle est sa valeur. L'équation (4.2), condition à la surface libre en présence de tensioactifs, s'écrit aux dimensions : À petit nombre capillaire, la différence de tension de surface ∆γ entre le réservoir et le film est négligeable : un faible écart suffit à engendrer un fort effet d'épaississement. Nous serons toujours dans ce cas, où prendre la tension de surface à l'équilibre pour calculer le nombre capillaire est une bonne approximation.

	ηV e	∼	∆γ	(4.6)
	où e et sont l'épaisseur et la longueur du ménisque dynamique, qui suivent les
	lois d'échelle habituelles ( Éq. (1.39) : e ∼ bCa 2/3 et ∼ bCa 1/3 ). On en déduit la
	variation de tension de surface le long du ménisque dynamique :	
	∆γ γ	∼ Ca 2/3	(4.7)

1 .

 1 La concentration et le rayon fixent le rapport τ ad /τ . Si sa valeur est d'ordre 1 (ou plus), seule une partie des tensioactifs a le temps de s'adsorber si bien que l'on attend un effet Marangoni. Dans ces régimes, on comprend que l'épaississement soit indépendant de la vitesse (Figs.53, 57, 59 et 61). En revanche, pour une solution donnée (c'est-à-dire à λ fixé), plus la fibre est fine, plus le temps d'adsorption est grand et donc l'épaississement important. Ceci correspond à l'effet relevé sur la figure 58. On attend donc que l'épaississement α (sans dimension) soit une fonction du seul rapport λ/b défini par l'équation(4.19).

	2.
	Cette propriété nous avait d'abord semblé surprenante : on pourrait pen-
	ser qu'à basse vitesse, le tensioactif ayant du temps pour s'adsorber pendant
	son séjour dans le ménisque dynamique ( Éq. (4.11)), l'épaississement devrait
	disparaître. En fait, les basses vitesses induisent de faibles différences de ten-
	sion de surface entre l'entrée et la sortie du ménisque dynamique ( Éq. (4.7))
	et donc une adsorption lente ( Éq. (4.15)).

  On introduit alors leurs lois d'échelle pour e et , l'épaisseur et la longueur du ménisque dynamique, en y faisant figurer le coefficient β ; étant la moyenne géométrique de e et de b ( Éq.(1.38)), les lois de puissance en β ne sont pas les mêmes pour e et . On a, à partir des équations (4.23, 1.38) : e ∼ β 2/3 b Ca 2/3 , Si β = 1 par exemple, on retrouve que l'épaississement disparaît s'il n'y a pas de gradient pour l'engendrer. En outre, β croît avec ∆γ : plus le gradient est fort, plus l'épaississement est important.Il faut enfin tenir compte de l'adsorption du tensioactif. Le transport du tensioactif résulte d'un équilibre entre convection et adsorption (la diffusion de surface est négligeable comme le montre la Fig.62), ce qui s'écrit :

	∼ β 1/3 b Ca 1/3 .
	L'équation (4.28) s'écrit alors :			
	∆γ γ	≈	β -1 β 1/3 Ca 2/3	(4.29)
	qui est l'équation (4.7) agrémentée d'une dépendance en β.
					.27)
	Raisonnons à présent aux dimensions. L'équation (4.24) s'écrit :
	ηV ≈	γe 3 3 +	∆γe •	(4.28)

(Γ u s ) x = j (4.

30) où j est le flux d'adsorption donné par l'équation (4.15) :

  Ainsi, comme on pouvait le soupçonner dès l'équation(4.19), α ne dépend que du rapport λ/b, qui compare les temps caractéristiques d'adsorption et de convection ; α passe de 1 à 4 2/3 quand b diminue ou quand λ augmente. La forme trouvée pour λ montre que l'épaississement sera d'autant plus important que le rapport Γ/c sera grand et que le transfert du volume vers la surface sera lent (k faible).

					Ca 2/3	(4.33)
	où λ est la longueur définie par l'équation (4.19). La comparaison des équations
	(4.33, 4.29) permet d'obtenir la valeur de β. On trouve :
		β -1 4 -β	≈	λ 2b
	soit pour l'épaississement α :				
		α ≈	4λ + 2b λ + 2b	2/3	.	(4.34)
	Notons que la simplification faite dans l'équation (4.31) est justifiée tant que
	l'on a :	Ca		λ b	3/2

.

Cette inégalité est vérifiée dans nos expériences, même pour la fibre la plus fine pour laquelle elle s'écrit pratiquement : Ca < 10 -2 . Elle peut toutefois cesser de l'être, en particulier avec des solutions très faiblement concentrées (on se rapproche alors du cas d'un tensioactif insoluble, pour lequel logiquement le terme de volume s'efface devant celui de surface).

Confrontons l'équation (4.34) aux résultats expérimentaux obtenus avec le SDS. La figure
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reprend les données de la figure

  2 γ Tableau 5. Valeurs des coefficients n et k définis par l'équation (5.2) pour les 5 solutions employées. La mesure de ces coefficients est faite sur la figure 81. [Values of the coefficients k and n defined in equation (5.2) for the five solutions used in the experiments. The values are deduced from Figure 81.] Pour ce faire, nous avons déterminé sur la figure 81 les paramètres n et k pour les cinq solutions. Les valeurs obtenues sont reportées dans le tableau 5.Seul N est traité comme paramètre ajustable. La figure 85 compare, pour chaque solution, les données de la figure 82 au meilleur ajustement obtenu avec l'équation (5.21) (la valeur ainsi déterminée pour N est reportés dans le Tab. 6). L'accord obtenu est très satisfaisant.

	c	n		k				
	0,001	1	0,01				
	0,01	1	0,012				
	0,1	0,99 0,027				
	0,5	0,7		0,8				
	1	0,52		10				
	On peut finalement résoudre l'équation (5.21) et la confronter aux données expé-
	rimentales.							
		2/3	+	2n (2n + 1)	I(n)	N γ	3V e	2n	. (5.21)

  défilement d'une vingtaine de centimètres de fibre, le solvant est prélevé et dosé par chromatographie en phase gazeuse. La quantité d'huile ainsi mesurée est exprimée sous la forme d'une épaisseur équivalente, notée e * et calculée comme Figure87. Dispositif expérimental pour doser sélectivement l'huile emportée par la fibre. Après que le tirage a eu lieu, la goutte de tétrachlorure de carbone (qui est un solvant de l'huile) est analysée par chromatographie en phase gazeuse.[Experimental set-up for the titration of the oil in the film. First the film is made by drawing the fiber out of an emulsion; then, the oil is selectively dissolved in a drop of solvent (carbon tetrachloride) which is analyzed by gas chromatography.]
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P Figure 88. Quantité d'huile entraînée en fonction de la vitesse de retrait (pour un fil de nickel de rayon b = 63,5 µm) et transcrite en "épaisseur équivalente", notée e * : e * est l'épaisseur d'un film d'huile continu correspondant à la quantité entraînée. Trois concentrations d'huile dans le réservoir ont été testées : 1 % (carrés noirs), 5 % (carrés blancs) et 20 % (carrés gris). La ligne en trait plein est la loi de Landau écrite en supposant que le fil emporte un film continu d'hexadécane.

  1. Pour des solutions semi-diluées de polymère, le film est gonflé (d'un facteur 2 à 10) et son épaisseur varie linéairement avec la vitesse. Nous avons établi que cet effet est dû aux contraintes normales qui s'exercent alors dans le ménisque dynamique. 2. Pour des émulsions d'huile dans l'eau, nous avons montré que le film peut être enrichi en huile par rapport au réservoir. Cet effet est d'autant plus marqué que la vitesse est faible : le film est mince, mais il emporte des gouttes beaucoup plus grosses que lui. Un mécanisme de capture des gouttes par la fibre rend compte de manière satisfaisante des observations.

Une série d'expériences pour mesurer la vitesse seuil d'entraînement a été faite par Petrov et Sedev[38]. Elles consistent à tirer des solides plans ou cylindriques d'un bain de liquide non mouillant, et à mesurer V m , la vitesse critique d'entraînement d'un film. Les auteurs montrent que V m dépend de la viscosité de la solution et de sa force ionique mais pas de la géométrie du solide. Les déviations qu'ils constatent entre leurs données et l'équation (2.3) les incitent à rechercher un ajustement avec une théorie tenant compte également de la dissipation visqueuse. L'accord alors est satisfaisant, les paramètres ajustables (au nombre de 3) prenant des valeurs plausibles.L'angle dynamique θ dans le régime sec est également mesuré, en fonction de la vitesse V du solide. Au-dessus de la vitesse seuil, le régime transitoire de croissance du film est étudié : la hauteur du film L, mesurée en fonction du temps t, augmente linéairement avec t. Si t = 0 désigne le moment où l'expérience commence, les auteurs trouvent : L(t) = (V -V * )t, où V * est bien de l'ordre de V m . En revanche, l'épaisseur du film, dans ce même régime, n'est pas mesurée.3. .2. Vidange de tubes non-mouillantsNous avons réalisé une expérience complémentaire, où une goutte de liquide est poussée par une légère surpression d'air dans un long tube (transparent) en Téflon[START_REF] Quéré | Sur la vitesse minimale d'étalement forcé en mouillage partiel[END_REF]. L'épaisseur du film est déduite du raccourcissement de la goutte, photographiée au début et à la fin de son voyage. Les liquides utilisés sont des alcanes longs, non mouillants pour le Téflon, y compris à la reculée. Pour un liquide donné, différentes vitesses sont testées.

Sous la vitesse seuil, nous avons recherche la présence d'un éventuel film microscopique en envoyant derrière la goutte d'alcane une goutte "balai" constituée d'un solvant de l'alcane. Récupérée, cette dernière est dosée par chromatographie en phase vapeur. Nous avons ainsi montré que la goutte, dans le régime sec, abandonne en fait un film microscopique de quelques nanomètres d'épaisseur. L'épaisseur de ce film augmente à une dizaine de nanomètres peu avant la transition macroscopique de mouillage forcé.3. .3. Fils sortant secsRevenons sur la première anomalie constatée quand on sort un fil de nickel d'un bain d'eau pure (Fig.21). Pour comprendre les résultats à faible nombre capillaire (films plus minces que prévu, en-dessous de 20 cm/s), nous avons mesuré les angles de contact d'avancée et de reculée entre l'eau et le fil de nickel à l'aide du montage présenté sur la figure24.La force capillaire qui s'exerce sur le fil vaut :f (θ) = 2πbγ cos θ.En levant le plateau à une vitesse d'une dizaine de microns par seconde (quasistatique), on mesure f (θ a ), et en le redescendant f (θ r ). La figure 25 est l'enregistrement de la force capillaire (divisée par 2πbγ) s'exerçant sur le fil plongé puis retiré de l'eau. L'opération est répétée trois fois. On en déduit des angles d'avancée et de reculée valant : θ a = 73 ± 3 • et θ r = 30 ± 5 • . Le mouillage du nickel par l'eau n'est donc que partiel, probablement à cause d'une oxydation de surface.

& & & & &