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Abstract. The response of a granular material during a stop-and-go shear experiment is investigated using
an annular shear cell and silicagel powders of different particle sizes. The experimental results are examined
on the basis of the Dieterich-Rice-Ruina model for solid friction. In addition to making this analogy with
solid friction, we describe a new instability that is observed when restarting shear, where the powder bed
is found to slip and compact for short hold times but only dilates for long hold times. The minimum hold
time to restore a non-slip behaviour has been investigated for different size particles and normal loadings.
The observed dependencies show analogies between this behaviour and the sliding rearrangements seen
above the stick-slip threshold.

PACS. 83.80.Fg Granular solids – 45.70.-n Granular systems

1 Introduction

The mechanical resistance of bulk solids to flow and
its temporal evolution is an important topic for the
correct handling and storage of these materials. At low
shear rates, and for non-cohesive powders, the behaviour
observed is similar to solid friction where the shear stress
τ necessary to make the powder move is proportional to
the normal stress σ. However, the internal coefficient of
friction, µ = τ/σ, is not single-valued since, the coefficient
of friction to start the flow µs is greater than the dynamic
coefficient of friction µd, necessary to maintain the sliding
at constant velocity. Stop-and-go shear experiments
at constant normal loading may demonstrate such be-
haviour [1]. These consist in interrupting the sliding for a
hold time T before restarting shear. The shear stress then
goes through a maximum, which increases logarithmically
with the hold time.

In solid friction, the first physical explanation for this
ageing is the plastic creep of the contact points between
the two surfaces (due to the increase of the real area of
contact and to the ageing of the adhesive junction at in-
terface). Some recent experiments using polymer glasses
at temperatures up to the glass transition temperature
confirm these hypotheses [2,3]. A second origin is the con-
densation of humidity, which leads also to a logarithmic
strengthening with time [4,5]. In this case, ageing should
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vanish in dry air, which is what Dieterich and Conrad have
observed in rock friction [6].

These two mechanisms also apply in granular friction.
But, in this case, there is a third possibility where fric-
tion can be changed by small rearrangements between the
grains during the creep phase. These rearrangements have
been observed numerically in loading experiments [7,8]
and shown experimentally by direct imaging in a 2D gran-
ular assembly [9].

Here, we present some experimental results of stop-
and-go shear experiments for non-cohesive silicagel pow-
ders, showing not only this strengthening but also a new
temporal behaviour, not previously reported in the case
of solid-solid friction. In Section 2, some results of the
phenomenological model of solid friction developed by Di-
eterich, Rice and Ruina [10,11] are introduced in order to
present the granular-friction results given in this paper.
In Section 3, the experimental set-up and granular mate-
rials are presented. In Section 4, the mechanical response
of these granular materials during steady-state shear ex-
periments is detailed. Finally, Section 5 describes and dis-
cusses the stop-and-go shear experiments.

2 Theoretical background

2.1 The Dieterich-Rice-Ruina model

Logarithmic ageing is embedded in the phenomenolog-
ical state-and-rate model formulated by Dieterich, Rice



and Ruina to describe rock-rock friction. This model has
been developed from the following experimental evidences:
a) The steady-state sliding coefficient of friction decreases
logarithmically with the sliding velocity V for numerous
materials. b) The static coefficient of friction increases log-
arithmically with the contact time between the two solid
bodies. c) When a jump is imposed in the driving velocity,
the friction force relaxes to its new value over a charac-
teristic distance D, which is of the order of a micrometer.
The Dieterich-Rice-Ruina model can be written as [10,11]

µ = µ0 + a ln
V

V0
+ b ln

V0φ

D
, (1)

with
dφ

dt
= 1 − V φ

D
, (2)

where µ0 is the steady-state coefficient of friction at the
sliding velocity V0. a and b are two numerical constants
which depend on the material. φ is the age of the contact.
Its evolution is given by equation (2): If there is no sliding,
dφ/dt = 1 and φ = t. For steady-state sliding, we have
φs = D/V and µs = µ0 + (a − b) ln(V/V0).

2.2 Dynamics on an axisymmetric geometry

Disregarding inertia, the equilibrium of a frictional annu-
lus of internal and external radii Ri and Ro entrained by
an elastic motor at the rotational velocity ω reduces to

2πσ

Ro
∫

Ri

µr2dr = Γα , (3)

where r is the radial co-ordinate. Γα is the torque de-
veloped by the spring of which the angular deformation
is α and the elastic constant is Γ . In practical cases, the
elasticity comes from the elasticity of the drive motor and
the elastic contacts between the two surfaces. This elas-
ticity has a feedback on the friction force since the latter
depends on the sliding velocity. We have

V = r(ω − dα/dt) . (4)

2.2.1 Onset of instability

If the sliding velocity is taken to be constant at the shear
plane (Ro/Ri → 1), a linear stability analysis of the sys-
tem (Eqs. (1) to (4)) shows that it becomes unstable in
the case of a velocity weakening force (b > a) when the
normal stress σ is higher than the threshold value:

σ1 =
D

b − a
Γ

3
π (Ro + Ri) (R3

o − R3
i )

. (5)

At this threshold, the system oscillates with a pulsa-
tion Ω1 = ω Ro+Ri

2D

√

1 − a/b [12].
More generally, taking into account the radial depen-

dency of the sliding velocity leads to a threshold value

Fig. 1. Percentage relative difference between the normal
stress at the onset of instability in an annular cell and the
onset of instability in a linear geometry (continuous lines) for
two ratios of outer to inner radii. Same percentage relative
difference for the pulsation at the onset (dotted lines).

σℓ, which depends both on the ratio a/b and on the ratio
Ro/Ri. Figure 1 gives the correction in percentage be-
tween σℓ and σ1 and for the pulsation Ωℓ. It can been
concluded from this figure that the hypothesis of constant
sliding velocity remains a good approximation for radii
ratios Ro/Ri up to 2, or when the coefficient a is close to
b. When not mentioned, the coefficient of friction will be
considered as constant in the shear plane and evaluated
from the expression 3Γα/2πσ(R3

o − R3
i ).

2.2.2 Creep relaxation

If the motor is stopped from a steady-state regime (α = αs

and φ = φs are constant) at t = 0, the angle α decreases to
insure the continuity of the sliding velocity. We then have
dα/dt(t = 0+) = −ω and dφ/dt(t = 0) = 0. (The conti-
nuity of the latter is due to Eq. (2).) The time derivative
of equation (3):

2πσ

Ro
∫

Ri

(

a
d2α
dt2

dα
dt

+ b
dφ
dt

φ

)

r2dr = Γ
dα

dt
(6)

reduces to

d2α

dt2
∼ 3Γ

2πσ(R3
o − R3

i )a

(

dα

dt

)2

(7)

at the beginning of the relaxation. Equation (7) means
that the coefficient of friction decreases logarithmically
like

µ − µs = −a ln(1 + t/t0) , (8)
with t0 = 2πσ(R3

o − R3
i )a/3Γω.

2.2.3 Resuming shear

After a creep period of duration T , the shear driving motor
is restarted. This leads to an increase of the shear force,



Fig. 2. Sketch of the experimental set-up.

which goes through a maximum before attaining a plateau
value corresponding to the steady-state regime. At the
maximum, dα/dt = 0 and equation (3) reduces to

2πσb

∫ Ro

Ri

r2 ln
(

rωφ

D

)

dr = Γ (αmax − αs) , (9)

where Γαmax and Γαs are, respectively, the maximum
shear torque and the torque at steady state. Since the
maximum occurs just at the beginning of the resuming,
we have φ ≈ T and equation (9) leads to a logarithmic
increase of the maximum friction coefficient with the du-
ration of creep:

µmax − µs ∝ b lnT . (10)

The coefficients a and b are then separately measurable
by a series of stop-and-go shear experiments, as described
in the following paragraph.

3 Experimental set-up

3.1 The shear cell

The experimental set-up is shown in Figure 2 and de-
scribed in detail in [12]. The powder is poured inside an
annulus of internal and external radii, respectively 5 and
10 cm and height H = 4 cm. A smaller cell was also used,
whose dimensions are all reduced by a factor λ = 3/5.
Both cells have a radii ratio of 2 and then, considering the
conclusion of Section 1.2, the coefficient of friction will be
considered constant on the shear plane.

Shear loading

This annulus is put into rotation by a motor at a rotational
velocity ω = 3 · 10−4 rad/s. A cover plate with 20 teeth
(12 for the small cell) of 4 mm height, is placed on the
powder surface. This cover plate is loaded by weights and
held against rotation by two force transducers (at L =
12.5 cm from the axis of rotation), which measure the
force F = Γα/2L induced by the shear torque due to

the friction between the particles. The friction measured
is due to the fact that the powder gets trapped between
the teeth of the cover plate, while the powder below is
entrained by the rotation of the annulus. A gap between
the cover and the annulus prevents friction between them
but has the consequence of allowing extrusion of powder
during the shear. The powder is also sheared in this gap,
but the contribution to the measured torque is negligible,
since, on the one hand, the surface times the lever arm is
15% lower than that developed by the base and, on the
other hand, the normal loading on the side is expected to
be lower than that exerted on the cover plate.

Normal loading

The cover plate is loaded by a weight M placed on a rod
hooked on the cover plate. Since the cover plate and the
rod are counter-weighted (not represented in Fig. 2 for
clarity), the normal stress acting on the shear plane is
σ = (M + Mp)g/π(R2

o − R2
i ), where Mp is the mass of

the powder between the teeth (of order 50 g) and g is the
acceleration due to gravity.

An inductive transducer measures the vertical dis-
placement h of the cover plate caused by dilatancy of the
powder sample and the extrusion. All the experiments are
performed in ambient air.

3.2 The powders

The powders used are nanoporous silicagel (mean diame-
ter of the pores: 60 Å) which have been ground and sieved
(Fig. 3a). This material absorbs humidity well which en-
sures that the mechanical properties are insensitive to air
humidity and no electrostatic effects are present when they
are handled in ambient atmosphere. Two particle size cuts
of similar size spread in logarithmic coordinates have been
used: 5 to 20 µm and 60 to 200 µm as measured in ethanol
suspension with a Malvern Mastersizer laser diffraction in-
strument (Fig. 3b). The finer powder is slightly cohesive.
Thus, after a series of shear experiments, the powder re-
mains as a block inside the annular cell which may be
attributed to the fact that the van der Waals forces be-
tween particles are of the same order of magnitude as their
weight. The coarser particle size cut is a free-flowing pow-
der. Figure 4 shows the averaged shear stress in steady
sliding versus the constant normal stress. The data, ob-
tained at a rotation rate ω = 3 · 10−4 rad/s, follow the
same line for both cell sizes and particle sizes, which is
fitted by µ = τ/σ = 0.68 ± 0.03.

4 Constant rate shear experiments

In permanent shearing, these powders present a stick-slip
instability when the normal loading overcomes a threshold
value. This instability has been extensively studied in [12]
with the same silicagel sieved between 40 and 63 µm and
also by Gollub and co-workers [13]. This is illustrated here



Fig. 3. a) SEM images of the silicagels used. Left: 5–20 µm. Right: 60–200 µm. b) Cumulative size distribution of the silicagels
used as obtained by laser diffraction in ethanol.

Fig. 4. Mean shear stress in steady sliding versus the nor-
mal stress. Open symbols: 60–200 µm silicagel. Solid symbols:
5–20 µm silicagel. Squares: annular shear cell of 5 to 10 cm
radii. Circles: smaller cell of 3 to 6 cm radii.

by Figure 5 for the case of the 60–200 µm silicagel in
the big cell. The onset of the stick-slip instability, with
the occurrence of a small sinusoidal modulation of the
shear stress, occurs for a critical loading mass Mc close
to 4 kg. When the loading mass is increased further, the
amplitude of the oscillations increases. For a loading mass
of M∗ = 6 kg or above, we observe a second instability
where huge sliding occurs, leading to a reorganisation of
the grains with a packing-down of several microns. This
loss of height is recovered during the stick phase (Fig. 5).

The stick-slip instability and the sliding instability,
presented in Figure 5, are also observed for different par-
ticle sizes and/or cell sizes, as described, respectively, in
the next two sections.

Fig. 5. Shear at constant rotational velocity (ω = 3 ·
10−4 rad/s) of a 60–200 µm silicagel powder with a normal
load of 4 and 6 kg in the annular shear cell of 5 to 10 cm radii.
Two upper curves: shear stress versus time. Two lower curves:
height of the granular bed versus time.

4.1 Steady-state shearing and the onset of the
stick-slip instability

Figure 6 shows the root mean-square deviation of the
shear force versus the normal load M for the 5–20 and
60–200 µm silicagel (black and white points, respectively)
and the small and big cells (circle and square points, re-
spectively). Figure 7 shows the same data expressed as a
percentage of the mean force.

At low normal load, the fluctuations of the shear force
are proportional to the normal force (dashed lines in
Fig. 6) and independent of the geometry. These fluctu-
ations are greater for the coarser grains by a factor 3.3,
which is close to the square root of the size ratio between
the two size distributions. The origin of these fluctuations



Fig. 6. Fluctuations of the shear force versus the loading mass.
Open symbols: 60–200 µm silicagel. Solid symbols: 5–20 µm
silicagel. Squares: annular shear cell of 5 to 10 cm radii. Cir-
cles: smaller cell of 3 to 6 cm radii. Dashed lines: indication
of slope 1. The vertical arrows point to the onset of stick-slip
instability (Mc = 4 kg for the annular cell of 5 to 10 cm radii;
Mc = 12 kg for the annular cell of 3 to 6 cm radii). The horizon-
tal arrow points to the limit of sensitivity of the force sensors.

has not been studied and will be examined in a further
investigation.

The onset Mc is then determined at the departure of
this linear regime. This threshold value is independent of
the size of the particles, to within the precision of the
measurements. However, it depends on the cell size: Mc ≈
4 kg for the big cell (open and solid squares in Fig. 6) and
Mc ≈ 12 kg for the small cell (open and solid circles). This
size dependency is in accordance with equation (5), which
predicts that the mass threshold scales with the inverse
square of the size cell.

4.2 Sliding instability

On increasing the loading mass past the onset of the stick-
slip instability, we reach the second instability where huge
rearrangements (sliding) occur. This behaviour is size de-
pendent. In Figure 7, the experiments corresponding to
the points above the dashed line present sliding. The mass
thresholds M∗ to obtain this huge sliding corresponds to
the same amplitude of variation δµ∗ ≈ 1.4 · 10−3 of the
coefficient of friction for both sizes of grain and both sizes
of cell.

A qualitative explanation for this second instability,
given in [12], is that the rearrangements occur as soon as
the sliding velocity exceeds a critical value. This point has
been checked by evaluating the maximum of the sliding
rotational velocity ω∗

max at the threshold M = M∗ for each
series of experiments. Assuming sinusoidal oscillations it
can be expressed as

ω∗
max = ω +

2M∗g
(

R3
o − R3

i

)

3Γ ∗ (R2
o − R2

i )
δµ∗Ω∗. (11)

Fig. 7. Amplitude of the fluctuations of the coefficient of fric-
tion expressed as a percentage, versus the loading mass. Open
symbols: 60–200 µm silicagel. Solid symbols: 5–20 µm silicagel.
Squares: annular shear cell of 5 to 10 cm radii. Circles: smaller
cell of 3 to 6 cm radii. The dashed line indicates the slippage
threshold. The vertical arrows point to the onset of stick-slip
instability (Mc = 4 kg for the annular cell of 5 to 10 cm radii;
Mc = 12 kg for the annular cell of 3 to 6 cm radii).

Here Γ ∗ and Ω∗ are the apparent elastic torque con-
stant and the pulsation of the oscillations at threshold.
Γ has been determined using the slope observed when
restarting shear after a period of rest (as presented in the
next paragraph). As in a previous study with a 40–63 µm
silicagel [12], it is found that the sliding instability occurs
when the sliding rotational velocity reaches a same critical
value of 4.7 ± 0.6 · 10−4 rad/s.

This sliding instability is the ultimate permanent
shearing regime observed. When the loading mass M is
much higher than M∗, the powder bed reacts as a regular
succession of stick phases and sliding phases.

5 Stop-and-go shear experiments

We now focus on the description of the force response to an
interruption followed by a restarting of the shear. Figure 8
shows an experimental time recording of the shear stress
τ and sample height h in the case of the coarse particles.
In this experiment, the rotation rate is ω = 3 · 10−4 rad/s
for t < 0 s (region I), and is stopped between t = 0 s
and t = 65 s (ω = 0 rad/s; region II) and set again to
ω = 3 · 10−4 rad/s for t ! 65 s (region III).

The region I is the permanent regime. The shear stress
oscillates around 5.85 kPa. In this regime, the height of the
sample decreases linearly with time by 0.12 ± 0.01 µm/s
due to the extrusion of the particles past the cover.

During the hold time (region II), it can be observed
that there is a creep response, and a peak in the shear
stress curve when starting the shear rotation again (be-
ginning of region III). These two effects are successively
described in the two next paragraphs.



Fig. 8. Simultaneous recording of the shear stress (lower curve)
and height of the granular bed (upper curve) during a stop-and-
go experiment of hold duration T = 65 s. The experiment is
performed with the 60–200 µm silicagel and a load mass of 5 kg
(2.2 kPa). In regions I and III, ω = 3 · 10−4 rad/s. In region II,
ω = 0 rad/s. Circles: fit of the creep with equation (8). The
slope indicated in region I is the extrusion observed during
permanent shear at ω = 3 · 10−4 rad/s.

Fig. 9. Coefficient a versus the load mass. Open symbols:
60–200 µm silicagel. Solid symbols: 5–20 µm silicagel. Squares:
annular shear cell of 5 to 10 cm radii. Circles: smaller cell of 3
to 6 cm radii.

5.1 Creep during stop

During the hold time, the shear stress and the height of
the powder bed decrease. This relaxation is logarithmic
and the time and the coefficient of friction may be fitted
by equation (8). Such a fit is shown in Figure 8 as a curve
made of circles. It leads to a value of the coefficient a which
is found to be of the order of 10−2, as in solid friction [1].
Furthermore this value appears to be slightly dependent
on the loading mass, as can be observed in Figure 9, which
includes the values extracted by the fit for different normal
loads. The white points are for the fine particles (5–20 µm)
and the black points for coarse particles (63–200 µm) for
both cell sizes.

Fig. 10. Coefficient a versus the load mass for the 5–20 µm
silicagel. Crossed circles: experiments performed by increasing
the load mass from 100 g to 30 kg. Solid symbols: same points
as in Figure 9, obtained by decreasing the load mass from 30 kg
to 100 g.

The measurement of a for the fine powder (5–20 µm)
is less easy since, as illustrated in Figure 10, the coefficient
is less the denser is the powder. In this figure, the upper
points have been obtained by increasing the loading mass
and the lower points have been obtained by decreasing
the loading mass after a 12-hour hold at M = 30 kg. The
coefficient a measured in the dense state is similar to the
one measured with the coarser powder (Fig. 9).

These experimental observations suggest that a, the
coefficient of logarithmic dependence of the coefficient of
friction with the sliding velocity, is a function of the pack-
ing fraction of the powder. For large particles, the particle
bed quickly attains its state of maximal packing fraction
and the relaxation response is unique. For the fine pow-
der, the kinetics of rearrangements to attain the maximal
packing fraction are slower and it is possible to observe
the relaxation response of a loose sample.

The other point is that a depends on the loading mass
M , and not on the normal stress σ. This feature is in
accordance with the Da Vinci-Amontons observation that
the friction force is independent of the apparent area of
contact.

5.2 Resuming shear

5.2.1 The increase

When the rotation of the lower part at the angular velocity
ω is restarted, we observe a linear increase in the shear
torque (beginning of region III in Figure 8; a detailed view
of that region is shown in Fig. 13a below). The slope gives
the apparent elasticity Γ of the system which appears to
be dependent on the loading mass. This is illustrated in
Figure 11, which includes the experimental results for the
two particle size cuts and the two cell sizes. This elasticity



Fig. 11. Elastic torque constant Γ versus the load mass. Open
symbols: 60–200 µm silicagel. Solid symbols: 5–20 µm silicagel.
Squares: annular shear cell of 5 to 10 cm radii. Circles: smaller
cell of 3 to 6 cm radii. The two bars scale, respectively, the
λ2 and λ3 ratio of the surface and bulk term in equation (12),
which should be respected, between the two cells.

has three origins and can be written as

1
Γ

=
1

Γapparatus
+

1
Γbulk

+
1

Γsurface
. (12)

Here the contribution of the apparatus does not de-
pend on the loading mass. Γbulk = µLaméπ(R4

o − R4
i )/2H

is the elastic contribution of the whole assembly of parti-
cles whose apparent shear modulus µLamé may depend on
the loading. This term scales with λ3, where λ is the ratio
between the linear size of the big and the small cell. λ =
3/5 in these experiments. Since the elastic torque is mea-
sured after a shear and relaxation experiment, we expect
that a shear zone has been created, leading to a surface
contribution for the elasticity: Γsurface = kπ(R2

o − R2
i ),

where the stiffness k depends on the loading. This surface
term scales with λ2. From Figure 11, we deduce (from
the ratio between the measures with the big and small
cells) that the surface term is predominant and grows with
M1/2. This square-root dependency is different from the
linear relationship predicted and observed in solid fric-
tion [14], different from the M1/3 prediction for Hertzian
contact, but similar to the shear-modulus–normal-force
dependency observed in bulk materials [15]. Various in-
terpretations for this M1/2 have been proposed [16,17].

5.2.2 The peak

The linear increase of the shear force when restarting
the flow ends with a peak of force before attaining the
plateau value, as in solid friction. This maximum of force
increases logarithmically with the time of creep T as in
equation (10) (see insert in Fig. 12). It is in accordance
with other experimental observations [18,19] which found
that this logarithmic increase vanishes if the shear stress

Fig. 12. Coefficient b versus the load mass, measured using
the annular cell of 5 to 10 cm radii. Open symbols: 60–200 µm
silicagel. Solid symbols: 5–20 µm silicagel. Insert: maximum
of the coefficient of friction versus the hold time for the 60–
200 µm silicagel with M = 500 g.

is not applied during the waiting time. The experimen-
tal coefficient b is plotted in Figure 12 versus the loading
mass. We observe that b has the same mass dependency
as does a and does not depend on the particle size of the
silicagel.

Comparing Figures 10 and 12 suggests that, for the
5–20 µm powder in the loose state, the coefficient a is
greater than b, so there is no stick-slip. This is corrobo-
rated by the experimental observations. After filling the
cell and beginning the shear at high normal load, there is
a waiting time before the occurrence of the stick-slip os-
cillations. The powder bed compacts and a diminishes till
the onset of instability given by equation (5) is attained.

With this last measurement, and using the stick-slip
onset of instability (Eq. (5)), we find that the characteris-
tic length of the Dieterich-Rice-Ruina model is D = 0.6±
0.3 µm for the 5–20 and 60–200 µm silicagel. This length
is similar to that previously observed for a 40–63 µm sil-
icagel [12] and similar to the D lengths reported for solid
friction [1]. This indicates that the particles do not play
the role of roughness in solid friction. There remains to in-
vestigate the behaviour of a sub-micronic silicagel powder,
whose size is less than D.

5.2.3 The instability

When restarting the flow with these silicagel powders, we
notice a new instability not observed in solid friction. The
granular bed slips and compacts when the hold time is
lower than a critical value T ∗. This phenomenon is illus-
trated by Figure 13a for a 60–200 µm silicagel powder
sheared in the cell of 5 to 10 cm with M = 5 kg. For hold
times T below 1 min, there is a slip which decreases the
coefficient of friction by 0.15. This slip disappears for hold
times greater than 1 min.

These slip events look like the sliding observed dur-
ing permanent shearing at loading M > M∗. They are



Fig. 13. a) Peak of friction after a period of rest ranging from
1 s to 18 h. The dashed line gives the slope corresponding to
a sliding velocity of 4.7 · 10−4 rad/s. b) Height of the powder
bed for the experiments of Figure 5b. The zero level is set at
the beginning of the resumption of shear.

associated with a settling of the powder bed (Fig. 13b),
which is recovered after 5 s of shear (see upper curve in
Fig. 8), that is after 100 ± 25 µm of tangential displace-
ment. If the hold time T is greater than T ∗, the powder
sample dilates during the resumption of shear and recovers
the height lost during the creep.

This critical time T ∗ increases with the normal load-
ing and depends on the cell size and the particle sizes,
as shown in Figure 14. For the same normal loading, T ∗

is lower in the smaller cell for the two particle sizes. T ∗

also depends on the size of the particles. In this case, the
tendency is less clear since for the big cell (5 to 10 cm
diameters) the smaller particles lead to smaller T ∗ values,
and the contrary for the small cell (3 to 6 cm diameters).

However, Figure 14, which displays the mass depen-
dency of T ∗, can be seen to be quite similar to Figure 2,
which displays the mass dependency of δµ. This empha-
sises the fact that the hold time T ∗ necessary to avoid
sliding, increases sharply when the loading approaches this
onset of sliding instability. To be more precise, the data
of Figure 14 have been plotted in Figure 15 versus the
reduced load mass M/M∗. The data then collapse into
two curves, depending on the particle size. Such a collapse
does not occur when the load mass is rescaled by Mc, the
mass at the onset of shear instability. A link between the

Fig. 14. Minimal hold time to avoid the sliding instability
when resuming the shear versus the loading mass. Open sym-
bols: 60–200 µm silicagel. Solid symbols: 5–20 µm silicagel.
Squares: annular shear cell of 5 to 10 cm radii. Circles: smaller
cell of 3 to 6 cm radii.

Fig. 15. Minimal hold time to avoid the sliding instability
when resuming the shear versus the loading mass M divided
by M∗. Open symbols: 60–200 µm silicagel. Solid symbols: 5–
20 µm silicagel. Squares: annular shear cell of 5 to 10 cm radii.
Circles: smaller cell of 3 to 6 cm radii.

two sliding instabilities —one occurring when the loading
mass overcomes a critical value (M > M∗), the other one
when restarting a shear flow after a short period of rest
(T < T ∗)— is thus demonstrated.

This correlation between the two sliding instabilities
may come from the fact that both occur when the sliding
velocity exceeds a critical value. In Figure 13a, the dashed
line gives the slope of the temporal µ curve corresponding
to the rotational sliding velocity of 4.7 · 10−4 rad/s lead-
ing to the sliding instability in permanent shearing exper-
iments. We observe in this figure that the longer is the
hold time, the lower is the sliding velocity after the peak
of friction. This behaviour, confirmed by the other experi-
ments, awaits explanation since the numerical simulations
of hold experiments using the Dieterich-Rice-Ruina model
lead to the opposite conclusion.



The other remaining issue is to explain why T ∗ di-
verges at a lower value of the reduced mass M/M∗ for
the finer powder. A plausible hypothesis is that the tex-
ture acquired by the shear band is different for the two
powders due to the inter-particles forces. These can be
considered to be negligible for the coarser particles, but
sufficient to induce rearrangements for the finer particles.
When removing the cover plate after experiments with the
fine powder, a sharp shear zone is observed between two
blocks that act like a solid. It is not feasible to access the
shear zone for the free-flowing coarser particles; investiga-
tion and confirmation of the hypothesis may best be made
by numerical simulations.

6 Conclusion

The friction behaviour of silicagel powders of different par-
ticle sizes has been experimentally investigated in an an-
nular shear cell, of inner and outer size ratio equal to 2,
and thus small enough to allow this device to be consid-
ered as being analogue to a linear shear cell. The results
may be arranged into two categories.

Size-independent behaviour

These results may be described on the basis of the
Dieterich-Rice-Ruina model for solid friction. The coef-
ficient a of logarithmic variation of the friction coefficient
with the sliding velocity and the coefficient b of logarith-
mic variation of the friction coefficient with the ageing
time are found to be of the same order of magnitude as
in solid friction. They both have very a slight dependence
on the normal loading force, which has not been reported
for solid friction. Another difference with solid friction is
that the creep response depends on the packing fraction
of the granular media.

The other characteristic measured is the apparent
shear elasticity of this granular media, which appears to
be a surface and not a bulk shear elasticity, with a square-
root dependency on the normal load.

These results well fit the onset of stick-slip instability
observed with these particles, for a renewal length of the
population of contacts D of order a micron. This leads to
the conclusion that this microscopic length scale is inde-
pendent of the size of the particles, at least when their
size is greater than D.

Size-dependent behaviour

Beyond these analogies, we have demonstrated a sliding
instability which takes place after a short-time creep pe-
riod. This behaviour is compared with the sliding instabil-
ity observed in the permanent shearing regime for normal
loading high enough to ensure the stick-slip instability. In
both cases, the sliding occurs when the sliding velocity
exceeds a critical value. Contrarily to the onset of insta-
bility, this behaviour is size dependent. More theoretical
investigation is now needed to identify the origin of this
rate-dependent instability and to build a granular friction
model accounting for this behaviour.

We thank Julien Robert, student from the IUT of Nancy for
his precious help in the experiments, John A. Dodds, Pierre
Labourt-Ibarre and Rhodia for their constant interest and fi-
nancial support.
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