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Shape of a cohesive granular heap

Alain de Ryck*, Rodrigo Condotta, John A. Dodds

École des Mines d’Albi-Carmaux, UMR 2392 du CNRS, route de Teillet, 81000 Albi, France

Abstract

We propose an analytical expression for the shape of a heap of cohesive powder when the cohesion is constant, and when the cohesion
increases proportionally with the stresses applied. From the results obtained, we discuss the possibility to extract quantitative information on
the flowability of a powder from this shape.
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1. Introduction

When a non-cohesive granular media (like dry sand) is
poured from a single point, it forms a conical pile. The angle
of the free surface from the horizontal / is called the angle of
repose (Fig. 1-a). The explanation, given by Coulomb, is that
granular media sustain shear stresses as in solid friction. The
pile remains stable if in all parts we have s <lr, where s and
r are, respectively, the shear and normal stress; l is called the
apparent coefficient of friction of the granular media.

This solid friction behaviour limits the slope of a granular
pile to a maximum value given by l. This maximum slope is
obtained by the pouring experiment described above,
leading to a simple experimental measurement of the
apparent coefficient of friction: l =tan /.

This description remains valid whilst the inter-particles
forces are negligible compared to gravity. When these forces
are of same order of magnitude or greater than the weight of
the particles, the powder is said cohesive and the stability
criterion becomes:

s < lrþ c; ð1Þ

where c is the so-called cohesion.

When cohesion is present, which is the case for fine
particles (their size d is less than a ten micron), or when
there is some liquid meniscii between them (like wet sand),
it is possible to build vertical slopes (Fig. 1-b). But the
elevation L is limited in size. Coulomb’s method of wedges
[1] leads to:

L <
4cos/
1$ sin/

k ð2Þ

where k =c /qg is a length obtained by the ratio between
inter-particles forces per unit area c and gravitational forces
per unit volume qg.

We apply this Coulomb’s method of wedges in order to
obtain an analytical expression for the profile of a 2-
dimensional pile, in the case of constant cohesion (Section
2). We then discuss the possibility of measuring the friction
coefficient l and cohesion c from a pouring experiment
(Section 3). Finally, these results are compared to experi-
ments (Section 4).

2. 2D semi-symmetric model

We focus our attention to the case of a semi-symmetric
pile, whose height at a distance x from the centre is h(x). In
order to be stable, the powder above the plane inclined by an
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angle a must not slip (see Fig. 2) for a ranging from 0 to
archtan($hV(x)). Its weight is given by:

P ¼ qg
Z x

0

h uð Þ $ h xð Þ þ tana u$ xð Þð Þdu: ð3Þ

The shear and normal stresses s and r in the stability
condition (Eq. (1)) are the ones exerted by the weight P on
the plane. They are given by:

s ¼ P

x
sinacosa and r ¼ P

x
cos2a: ð4Þ

These expressions may be rewritten, using Eq. (3) and
the trigonometric relations on double angle as:

s ¼ 1

2
qg zsin 2a$ x

2
þ x

2
cos 2a

! "

ð5Þ

and

a ¼ 1

2
qg zþ zcos2a$ x

2
sin 2a

! "

; ð6Þ

where

z ¼ 1

x

Z x

0

h uð Þ $ h xð Þð Þdu: ð7Þ

Eqs. (5) and (6) are the parametric equations for a circle
in the s –r plane of radius R ¼ qg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x= 2ð Þ2 þ z2
q

=2, centred on
the point C (qgz /2, $qgx /4), passing through the origin
(0,0) for tana =2z /x, and through the point S (qgz,0) for
a =0 (Fig. 3).

The limit of stability is then given when this Mohr-
circle tangents the Coulomb criterion given by Eq. (1). It
may be expressed, using the right-angled triangle UTC
(Fig. 2), by:

sin/ ¼ R

cþ qgx=4
tan/

þ qgz=2
; ð8Þ

leading to:

z2 $ 2l 2kþ x

2

! "

zþ 1þ l2
$ % x2

4
$ 2kþ x

2

! "2

¼ 0; ð9Þ

using the relation cos/ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p

. If all the lengths are
scaled by k:

X ¼ x=k; Z ¼ z=k; H ¼ h=k; ð10Þ

Eq. (9) reduces to:

Z ¼ l 2þ X=2ð ÞF2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2ð Þ 1þ X=2ð Þ
p

: ð11Þ

To solve this differential equation, it is convenient to
notice that we have by derivation of Eq. (7):

XZð ÞV ¼ $ XH V: ð12Þ

Then, introducing Eq. (11) in Eq. (12) leads to the slope
of the heap profile as a function of the distance to the centre:

H V ¼ $ l 1þ 2=Xð Þ $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2

1þ X=2

s

3þ 4=Xð Þ: ð13Þ

The lower root of Eq. (11) is disregarded since it leads to
a positive slope for the profile. Finally, Eq. (13) may be
integrated in order to obtain the heap profile:

H ¼ $ lX $ 2llnX $ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p

& 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X=2
p

$ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X=2
p

1$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X=2
p

!

: ð14Þ

Fig. 1. a) Non-cohesive heap of radius D at the base. The slope gives the

coefficient of friction l =tan /. b) Vertical elevation L for a cohesive

powder bed.

Fig. 2. Sketch of the heap profile. P is the weight above the plane tilted by

a from the horizontal and joining the free surface at the distance x from the

centre. h(u) is the height of the heap at a position u from the centre.
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Fig. 3. Mohr circle in the shear-normal stress plane describing the shear (s)
and normal stress (r) acting on the plane when changing the tilting angle a.
In this figure, the Mohr circle tangents the Mohr–Coulomb failure criterion

(Eq. (1)).



This profile diverges when XY0 and tends to have the
slope l when XYV, as shown in Fig. 4.

2.1. Determination of the failure plane

The plane of incipient failure has an angle of inclination
h, which is half the angle

;;
TCS (Fig. 3). As a consequence,

we have
;;
TOS ¼ ;;

TAS ¼ h. From the first angle relation, it
can be deduced the co-ordinates of the point of contact
T c

s$l ;
cs
s$l

! "

, where s =tan h is the slope of the failure
plane. Then, the co-ordinates of the point B are

qgx=2
sþ s$lð ÞX=2 ; 0
! "

. From the second angle relation, it can
be deduced that

;;
OAB ¼ h$ /. It leads to the relation:

tan h$ /ð Þ ¼ 1

sþ s$ lð ÞX=2
: ð15Þ

This equation can be easily solved to find the
dependency of the slope of the failure plane versus its
position X:

s ¼ lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2

1þ X=2

s

; ð16Þ

which means that the angle of failure has the limit hYp /
4+/ / 2 when XY0, and the limit hY/ when XYV.
The comparison between Eq. (13) and (16) shows that the
failure plane is inside the powder bulk and does not
tangent the free surface of the pile.

3. Discussion

3.1. Singularity at the origin

The theoretical result at the origin is a logarithmic
divergence of the height of the pile. In practical situations,
we have to stop the profile at a position x which
corresponds to the size d of the particles or to the size
of the particles distributor. An other size limitation is that
the thin column of particles at the apex must sustain

horizontal stresses due to air fluxes and impact of the
flowing particles. To do that, the elevation of the mass
centre Z must not exceed the base X by a factor
corresponding to the ratio of horizontal to vertical stresses.
In practise, we have to cut the profile at a distance Xb for
which we have:

Z=X ¼ bl=2 ð17Þ

corresponding to a relative centre mass elevation b times
higher than the one obtained at infinity (XYV). Fig. 5-a
presents this dimensionless distance Xb as a function of /
for b =5 and b =10. Fig. 5-b gives the corresponding angle
Wb at this point.

One conclusion on the fact that the height at the
origin is linked to the particle size or to the geometry
of the distributor or to its equilibrium to horizontal
forces disturbances is that it is then meaningless to
measure a mean slope from the apex to the edge of the
pile. This is not the case if we measure the local slope
at the edge of the pile, as demonstrated in the next
paragraph.

Fig. 4. Dimensionless shape of a cohesive heap for l =0.4. The height and
width are scaled by the cohesive length k.

Fig. 5. Dimensionless distance of the base (a) and slope angle at the base (b)

for b =5 (continuous line) and b =10 (dashed line).



3.2. Shape of the pile

Depending on the ratio between the length of the base
of the pile D and the cohesive length k, we obtain
different shapes of piles. As an example, the Fig. 6, from
left to right, show respectively a ratio 1 to 10, 1 to 100
and 1 to 1000 between k and D, for the same coefficient
of friction l =0.4. (For this figure, the divergence of the
profile has been stopped at the grain size x =d, with
d =0.01 D.) When k is lower than three order of
magnitude than the size of the pile, the latter has a
shape which becomes close to the shape of a non-
cohesive powder.

The slope w at the base may be calculated from
Eq. (13), as a function of the angle of internal
friction and reduced position X (Fig. 7). From that
figure, we observe that it is feasible to obtain the

cohesive length k from the measurements of both the
angles w and /.

3.3. Shape when cohesion is proportional to consolidation

For numerous cohesive powders, the yield criterion
cannot be reduced to Eq. (1), with a constant cohesion [2].
It depends on the state of consolidation, and a better
approximation is drawn on Fig. 8. In this model, the yield
criterion, for a given consolidation rc is a segment (of
slope l) which ends at the point of co-ordinates (rc, tan
drc). The d is found experimentally to be independent on
the consolidation and called the internal coefficient of
friction.

If we consider a pile of cohesive powder consolidated by
its own weight, then the point T on Fig. 3 remains on the
same line passing through the origin, of angle h=d. In that
case, Eqs. (16) and (11) lead to the conclusion that z /x is
constant, then using Eq. (12) that the slope of the pile $hV(x)
is constant. This slope may be determined by using the
tangent relation in the OSA square triangle in Fig. 3. We

Fig. 6. Dimensionless shape of a cohesive heap. The height and width are scaled by the base radius D. a) D =10 k; b) D =100 k; c) D =1000 k.

Fig. 7. Slope angle w versus the scaled distance to centre X =x /k, for 5
values of the friction angle /. Circles: slope angles from Fig. 10-a for the

fine dolomite. The x position is scaled with k =0.7 mm to fit the / values of

Table 1. Squares: slope angles from Fig. 10-b for the mixed dolomite. The x

position is scaled with k =3 mm to fit the / values of Table 1.
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Fig. 8. Yield locii for a powder whose cohesion is proportional with the

consolidation.



have:

tan 2d$ /ð Þ ¼ 2z=x ¼ $ hV xð Þ: ð18Þ

With such a powder, the heap formed is conical, with a
slope w =2d$/. From both the angles w and /, we can
obtain the cohesion:

c=rc ¼ tan /þ wð Þ=2ð Þ $ tan/: ð19Þ

4. Experimental observations

4.1. Powders

In order to check the validity of such measurements, we
have taken photographs of heaps of fine (F) and mixed (M)
dolomites. These powders have been previously character-
ised for a European project [3]. Their volume weighted
mean diameter d4,3 is respectively 12.5 and 204 lm. There
yield loci have been measured in a Jenike shear cell for 4
different normal stresses of consolidation rc (Fig. 9) using
the ASTM procedure [4]. The Table 1 gives for each yield
locus the normal stress of consolidation rc, the values l and
c, which have been obtained by a linear fit. The last column
of this table gives the ratio c /rc. Whether c and c /rc vary
with the consolidation, which means that the real behaviour
of these powders is in between the two descriptions
proposed.

4.2. Results

These powders have been poured on a disk of radius b =4
cm (Fig. 10-a,b) using the pluvation technique: the powder
passes through two sieves of 250 and 315 Am, respectively,
of same diameter than the disk which receives the powder.

The slope angles w(x) measured on the Fig. 10 have
been compared with the slopes on the graph presented in
Fig. 7, which compiles the results for a constant cohesion.
The X position is adjusted with a fit on the cohesive
length k in order to match as close as possible the /
values of Table 1. This leads to k =3T1 mm for the fine
dolomite and to k =0.7T0.1 mm for the mixed dolomite
powder.

Nevertheless, it can be observed than close to the centre,
we do not observe the high angles predicted. This
discrepancy for xY0 seems due to the fact that the kinetic
energy of the particles flowing down from the sieves is
sufficient to break the mechanical equilibrium of the thin
column of particles at the apex since it occurs for X values
close to 1 as expected by the curves given in Fig. 6-a.

Another explanation for this discrepancy close to the
center (xY0) is that the cohesion is not constant since the
yield locii (Fig. 9) are close to the model described by Fig.
8. In that case, we must observe a constant slope. If we
extract a mean slope from the Fig. 10, we obtain w =68- for

Fig. 9. Experimental yield locii for the dolomite powders, scaled by the

consolidation normal stress rc. Black symbols: fine dolomite (diamonds,

square, triangles and circles: respectively rc=3.66, 6.58, 9.50 and 15.34

kPa). White symbols: mixed dolomite (diamonds, square, triangles and

circles: respectively rc=2.11, 5.03, 9.41 and 15.25 kPa).

Table 1

Measured parameters for the dolomites powders

rc (kPa) / (-) c (kPa) d (-) 2d$/ (-) c /rc

Dolomite M 3.66 24.7 0.90 35.2 45.7 0.25

6.58 33.0 1.13 39.4 45.8 0.17

9.50 32.2 1.41 37.9 43.6 0.15

15.3 32.7 1.71 36.9 41.1 0.11

Fig. 10. Shape of heaps obtained by pluvation for the fine dolomite (a) and

mixed dolomite (b).



the fine dolomite and w =56- for the mixed dolomite. These
values are greater than that predicted by the theory (2d$/)
since, from Table 1, we expect respectively 47- and 44-.
Disregarding this discrepancy, we can compute from Eq.
(18) the ratio c /rc=0.54 for the fine dolomite and c /
rc=0.29 for the mixed dolomite in order to estimate the
cohesion of these powders and compare this estimation with
the previous one.

4.3. Comparison with shear cell measurements

These results have been compared to the flow function
fc=F(r1) obtained for the two powders and presented on
Fig. 11 (respectively white diamonds and circles for the fine
and mixed dolomites). To do this, we have to estimate the
major principal stress r1 and the unconfined yield stress fc.
This comparison has been made using the two approxima-
tions studied: constant cohesion and cohesion proportional
to the consolidation.

Constant cohesion—in the case of constant cohesion, fc
is given by:

fc ¼ qgk
2cos/

1$ sin/
; ð20Þ

and the maximum principal stress r1 depends on the
height z(r1!qgz). It ranges from 0 at the centre to a value
obtained with z given by Eq. (11) with X =D /k. The
values obtained (black points in Fig. 11) are compared
with the flow functions. The data obtained well extrapolate
well the flow function for very low values of consolidation
stresses.

Cohesion proportional to the consolidation—in this
case, the major principal stress r1 is linked to the cohesion
by:

r1
c

¼ 1

tand$ l
1þ tand

1$ sin/
cos/

& '

: ð21Þ

This expression has been computed using the / values of
Table 1 and the angle d deduced from the slope w. Where
d =(w +/) /2. The ratio r1 /c obtained leads to the two
dashed lines presented on Fig. 11, the upper line for the
mixed dolomite, and the lower line for the fine dolomite.
Here again, the agreement with the flow function measured
by the Jenike method is quite good.

The fact that we obtain in both hypotheses the same
agreement with the shear cell measurement gives some
confidence to the use of angle measurements for the
estimation of the cohesion since this method is not highly
sensitive to the model employed. The use of both
approximations gives a range of uncertainty due to the
method, which is quite good in the case of the dolomite
powders tested whose behaviour is intermediate between the
two theoretically investigated.

5. Concluding remarks

We discuss the feasibility of measuring the cohesion of a
powder using a slope measurement of a pile formed by this
powder. The theoretical study gives the shape expected in
two cases: constant cohesion and cohesion proportional to
consolidation for 2-dimensional heaps. It is not limitative
for comparison with experimental 3-D heaps since this
comparison is known to be very robust for non-cohesive
powders for which the heap slope is the coefficient of
friction measured in shear experiments.

For both cases (constant cohesion or cohesion propor-
tional to consolidation), an information about the cohesion
of the powder may be extracted if the friction angle / may
be measured in addition to the slope angle w. This has been
checked successfully using dolomite powders of different
sizes, but the issue of an independent measurement of the
friction angle / remains to be solved.

This double angle measurement issue enlightens and
gives credit to the Carr’s empirical indices [5], where an
angle of repose and an angle of fall are measured. In return,
the idea to perturb the powder heap by taps is interesting.
With extra forces larger than the gravitational forces, we
may reduce the cohesive length k enough to obtain a pile
with the slope /. Preliminary experiments with the dolomite
powders show that taps after the formation of the heap are
not sufficient to obtain this angle. We are currently
investigating experiments where vertical sinusoidal vibra-
tions of acceleration greater than the gravity acceleration are
applied during the heap formation in order to obtain heaps
of slope the friction angle like non-cohesive heaps.

Fig. 11. Unconfined yield stress fc versus the maximum principal stress r1.

White diamonds: flow function for the fine dolomite obtained from Fig. 9.

White circles: flow function for the mixed dolomite obtained from Fig. 9.

Black diamond: unconfined yield stress estimated from the shape of a fine

dolomite heap with the hypothesis of constant cohesion. Black circle:

unconfined yield stress estimated from the shape of a mixed dolomite heap

with the hypothesis of constant cohesion. Dashed lines: flow functions

estimated from the shapes of the heaps of Fig. 10 with the hypothesis of a

cohesion proportional to the consolidation (upper line: fine dolomite, lower

line: mixed dolomite).
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