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Flows of granular material on ‘non-frozen’ and ‘frozen’ heaps are considered numerically and theoretically in
this work. The surface flow on a ‘non-frozen’ heap is first investigated numerically using the discrete element
method. The flow profiles of the surface granular flow and the creep motion of particles in the heap are
studied. It is shown that the mean velocity of the surface flow exhibits a linear relationship with the distance
from the heap surface, while that of the particles in the heap decays exponentially with the distance. The
existence of such a creep motion may be attributed to the variation of the porosity distribution of the heap.
The granular flow on a ‘frozen’ static heap is also simulated, and compared with the one on the
corresponding ‘non-frozen’ heap. The results show that the surface conditions of the heap, to some extent,
affect the flow upon it. The surface flow on a static heap is then theoretically examined in detail by using a
recently developed continuum model. The depth of the steady-state surface flow and its dependence on wall
friction and heap width are investigated. In addition, the theoretical results are compared with the DEM
simulation results and the experimental ones in the literature, and qualitatively good agreements are
observed.

1. Introduction

Surface flow of granular materials is often observed in many
industrial processes such as those in mining, iron-making, chemical
and civil engineering [1], and geophysical situations such as landslides
[2] and snow avalanches [3]. The study of the dynamical behaviour of
such flow is of significance for formulation of optimal design and
control strategies under industrial conditions and development of the
rheology of granular material [4,5].

In the past, many theoretical, numerical and experimental efforts
have been conducted to study surface flows on heaps. Bagnold [6]
contributed his pioneered work on the fundamental laws at work
inside surface flows. Savage and Hutter [4] developed a general model
to describe the flows based on depth-averaged mass and momentum
balance equations. Pouliquen and Renaut [7] investigated the effect of
the dilatancy on the onset of granular flows on an inclined rough
surface. Brewster et al. [8] studied the plug flow and breakdown of
Bagnold scaling in cohesive flows. Jop et al. [9] proposed a continuum
model for surface flows by introducing a strain rate law in the constant

frictionmodel developed by Jenike [10]. de Ryck et al. [11] and de Ryck
[12] developed the model of Jop et al. [9] to investigate the velocity
field of parallel flows of non-cohesive and cohesive particles. These
studies aremainly restricted to the flows over static heaps (referred to
as ‘frozen’ heaps here) or chutes. Recently, the experimental study of
Komatsu et al. [13] and the numerical study of Richard et al. [14]
suggest that in the case of free surface flows on a heap (referred to as
‘non-frozen’ heap here), even the particles in the deep of the heap still
exhibit slow flow. Such creepmotion can be detected anywhere in the
heap. Although these above studies are useful to the development of
the dynamics of granular material, there is still a lack of the systematic
study of the description of the surface flows in heaps. The difficulty lies
in the coexistence of both liquid and solid behaviours of the material
when a layer of granular material flows on the surface of a heap.

In this work, flows of granular material on ‘non-frozen’ and ‘frozen’
heaps are investigated numerically and theoretically. The granular flow
on a ‘non-frozen’ heap is first numerically studied using the discrete
element method (DEM). The flow profiles of the flow and the creep
motion of particles in the heap are investigated. The flow on a ‘frozen’
static heap is also simulated, and compared with the one on the cor-
responding ‘non-frozen’ heap. The continuum model proposed by Jop
et al. [9] is thendeveloped topredict theoretically thedepthof the surface
flow on a static heap. The theoretical results are also compared with the
DEM simulation results and the experimental ones in the literature.
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2. Simulation method and conditions

DEM is used for the present numerical simulation. In this method,
the motion of a particle in a considered system, which can undergo
translational and rotational motions, is described by Newton's laws of
motion. The equations of motion are based on the forces and torques
originated from its interactions with neighboring particles. Our
present numerical study is only focused on the case of non-cohesive
granular media. Therefore, the equations can be written as:

mi
dvi
dt

= ∑
kc

j=1
F ij + mig ð1Þ

Ii
dωi

dt
= ∑

kc

j=1
T ij ð2Þ

where mi and Ii are the mass and moment of inertia of particle i,
respectively, vi andωi are the translational and angular velocities of the
particle, and kc is the number of particles in interactionwith the particle.
The forces involved are: inter-particle forces between particles, Fij, and
gravitational force,mig (g is the gravity acceleration). The torque acting
on particle i by particle j, Tij, includes two components: one is generated
by the tangential force and causes particle i to rotate, and another
commonly known as the rolling friction torque, is generated by asym-
metric normal forces and slows down the relative rotation between
particles. A particlemayundergomultiple interactions, so the individual
interaction forces and torques are summed over the kc particles inter-
acting with particle i. The equations used to calculate the particle–
particle interaction forces and torques are listed in Table 1, which have
been adopted in our previous studies [15–17]. The equations of motion
are solved by using an explicit time-stepping scheme.

Numerical experiments have been carried out using a two-
dimensional slot model and different spherical particles: wooden balls
and glass beads. The model geometry is shown in Fig. 1, consisting of
two parts: a container and a hopper upon it. The container is used to
form a heap of particles, while the hopper is used to load particles
discharged towards theheap. Toensure a stable granularheapand shear
flow layer formed andmaintained, there is a short wall on the right side
of the container. There are two treatments on the front and rear walls.
First, the realwalls are used in order that the numerical experiments are
comparable with physical ones. Then, in the further numerical experi-
ments, periodic boundary conditions are implemented to eliminate the
influence of the front and rear walls. The properties of particles in the
present simulations, listed inTable2, are quoted fromourpreviouswork
[17].

A simulation involves a few steps. First, particles to be used to form
a heap are charged into the hopper. These particles pass through the
orifice of the hopper, and settle down to form a heap under gravity in
the container. Secondly, the orifice of the hopper is closed, particles to
be used to form a shear flow layer on the heap are charged in the
hopper. Finally, the orifice of the hopper is opened so that these
surface flow layer particles fall down under gravity, and then move
along the surface of the heap towards the right side of the container. In
order to form a steady flow on the surface of the heap, particles
moving out are re-filled into the hopper. Once the outflux of particles
on the right side is equal to the influx on the left, a steady state is
considered to be established.

Two cases are simulated in this work. One is the case with ‘non-
frozen’ heap, where the particles in the heap can move under the
impact of the particles in the surface flow layer. Another is the case
with ‘frozen’ static heap. In this case, all particles of the heap are
considered to be static after the heap is formed.

3. Mathematical formulation for theoretical study

Surface flow on static heap is also studied theoretically using the
continuum model recently proposed by Jop et al. [9]. The flows
considered are assumed to be parallel symmetric steady-state flows
and confined by the lateral walls. Fig. 2 shows the sketch of the
geometry of the flow considered in this work. The heap has a width of
2a and an angle of θ from the horizontal plane, and the surface flow
layer on the heap has a thickness of D (D is set to be high enough in
order to have a remaining static layer of grains below the surface
flow). The behaviour of the flow is analyzed in a fixed frame (x, y, z)
whose origin of the coordinates is at the midway of the free surface

Table 1
Components of force and torque acting on particle i.

Force and torque Symbol Equation

Normal elastic
force

Fcn,ij − 4
3 E

*
ij

ffiffiffiffiffiffi
R*ij

q
δ3 = 2
n n

Normal damping
force

Fdn,ij −cn 8mijE*ij
ffiffiffiffiffiffiffiffiffiffi
R*ijδn

q" #1=2

Vn;ij

Tangential elastic
force

Fct,ij −μp|Fcn,ij|(1−(1−δt/δt,max)3/2)δ̂t (δtbδt,max)

Tangential damping
force

Fdt,ij −ct 6μpmijjFcn;ijj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−jvt j=δt;max

p
=δt;max

$ %1=2
V t;ij

(δtbδt,max)
Coulomb friction
force

Ft,ij −μp|Fcn,ij|δ̂t (δt≥δt,max)

Torque Tt,ij Ri×(Fct,ij+Fdt,ij)
Rolling friction
torque

Tn,ij μr,ij|Fn,ij|ω̑ t,ij
n

where 1
Rij
# = 1

jRi j
+ 1

jRj j
; E*ij =

1
2 ð Ei

2 1−v2ið Þ +
Ej

2ð1−v2j Þ Þ
1
mij

= 1
mi

+ 1
mj
; ⌢ωt;ij =

ωt;ij
jωt;ij j

;

δ̂t = δt
jδt j ;

δt;max = μp 2−v
2 1−vð Þ δn; Vij=Vj−Vi+ωj×Rj−ωi×Ri, Vn,ij=(Vij·n)n, Vt,ij=(Vij×n)×n.

Note that tangential forces (Fct,ij+Fdt,ij) should be replaced by Ft, ij when δt≥δt,max.

Fig. 1. Geometry of the model used (units: mm).

Table 2
Parameters used in the simulations.

Variables Glass beads Wooden balls

Particle diameter (mm) 10 14 (blue)
13.9 (pink)

Particle density (kg/m3) 2450 583 (blue)
573 (pink)

Sliding friction (PP) (−) 0.3 0.5
Sliding friction (PW) (−) 0.3 0.3
Rolling friction (PP, PW) (mm) 1%d 1%d
Young's modulus (PP, PW) (Nm2) 106 106

Poisson ratio (PP, PW) (−) 0.3 0.3
Damping coefficient (PP, PW) 0.3 0.3



from the walls, with the x-axis horizontally along the surface, the y-
axis perpendicular to the surface downwards, and the z-axis along the
surface downwards.

For a steady-state flow, the velocities of particles are oriented by
the z-axis and do not depend on z. Therefore, we only need to consider
the velocity field with a set of iso-velocity lines on a cross-section
plane (x, y) (Fig. 2). The flow is assumed to be non-cohesive and
satisfy a conical yield criterion and a co-axiality between the stress
and strain rate tensor, with no dilatancy [9,10]:

σ = −PI + μ Ið ÞP
γ̇
‖γ̇‖ ; ð3Þ

where σ is the stress tensor, P=σii/3 the mean pressure, I the unit
matrix, γ ̇ the strain rate tensor, and ‖γ̇‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̇ijγ̇ij = 2

q
the second

invariant of γ ̇. I is the inertial number, given by I = ‖γ̇‖d=
ffiffiffiffiffiffiffiffiffiffi
P = ρ

p

(where d is the diameter of particles, and ρ the bulk density). μ(I) is
the coefficient of bulk friction, increasing from μs to a finite value μ∞
when I increases from zero to infinity, and satisfying (μ−μs)∝Im, with
exponentm being between 0 and 2when I→0. Accelerated flowsmay
occur for cases with slopes greater than μ∞, while intermittent
avalanche flows may be triggered for cases with slopes lower than μs.
Since only steady-state flows are concerned, we will not consider the
two cases.

The force balance along a slope can be integrated, and leads to an
exact differential equation along an iso-velocity line in the cross-
section plane. Thus, the shape of the velocity field can be given by a set
of parametric equations for the iso-velocity lines. Therefore, similar to
the derivations of [11] and [12], we can obtain the equations to
determine the iso-velocity line passing through point (0, h):

dx
ds

= μ0 hð Þ− tanθð Þh + y−ywAϕ

& '
tan θ + μw ywð Þyw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p
Aϕ; ð4Þ

dy
ds

" #2
= μ2y2− dx

ds

" #2
; ð5Þ

where s is a curvilinear co-ordinate along the iso-velocity line. μ0(h)
is the friction coefficient at the point (0, h), μw(yw) is the friction at
the point (±a, yw), Aϕ = ∫h

y
dμ
dI Iydy=∫

h
yw

dμ
dI Iydy, δ = min μw = μs;1ð Þ.

The boundary between the dead and flow zones can be obtained
by considering the limit when the inertial number I tends to zero, i.e.
for μ≈μs and Aϕ≈ hb−yb

$ %
= hb−ybw
$ %

, with b=1−m/2, and the
depth of a flow layer at the centre, hmax, can be given by:

a = ∫yw
hmax

dx
ds
dy
ds

dy: ð6Þ

Eq. (6) gives an implicit relation between the depth of the flow zone,
hmax, and the depth of the slip zone at the walls, yw. The latter can be
obtained by writing the force balance on the flowing layer contour,
that is

∫yw
hmax

y2

dy
ds

dy + δ2
y2w
2

− tanθ
μs

∫yw
hmax

dx
ds
dy
ds

ydy = 0: ð7Þ

The first and the second terms in Eq. (7) are respectively the scaled
basal and lateral shear forces, and the third is the scaled weight along
the slope.

The lateral shear force is explicitly known for a smooth wall for
which δ2=δ. For rough walls, the friction on the wall is the bulk
friction and its distribution depends on the exact shape of function
μ(I). In such a case, the exact value for μw cannot be obtained but only
a range since μ(I) ranges between μs and μ∞, and δ2 is a number
between 1 and μ∞/μs.

Eqs. (6) and (7), with Eqs. (4) and (5), form a closed system.
Therefore, for the case of a smooth wall (for which the wall friction
does not identify to the bulk friction), we can use these equations to
determine the ratios hmax/a and yw/hmax with respect to R=tanθ/μs, δ
and the exponent m of the asymptotic behaviour of the bulk
coefficient of friction when the shear rate tends to zero. For the case
of a rough wall (for which the wall friction identifies to the bulk
friction), without the knowledge of the exact form of μ(I), we only
obtain a scope of values using 1bδ2b(μ∞/μs).

4. Results and discussion

4.1. Numerical investigation

Simple physical and numerical experiments have been first carried
out in a 2-D slot model with real front and rear walls. Both
experimental and simulation conditions, including the geometrical
and operational conditions, are similar. For each experimental run, a
triangle shape heap of particles is first formed in the container.
Particles are then continuously fed into the hopper, and then
discharged to form a shear flow layer on the surface of the heap. All
the physical experimental processes have been recorded by a digital
video camera. Two cases have been considered for the comparative
study: one in which glass beads are used, another where blue and red
wooden balls are utilised to form heap and flow layer respectively. It
has been observed that the flow patterns for physical and numerical
experiments are quite similar in the two cases. Two different layers
can be identified: a stable granular heap and a steady-state surface
flow upon it. In the experiments with glass beads, the interface
between the two layers is not clear in the photos captured in the
experiments as all glass beads have the same colour. Therefore, only
the results for the case with wooden balls are shown here (Fig. 3). The
similarity of the flow patterns in both numerical and physical
experiments demonstrates the applicability of the numerical model
in this work. Then, in the further numerical experiments, periodic
boundary conditions are implemented to eliminate the influence of

Fig. 2. Sketch of: (a), surface flow on a static heap and the coordinates fixed on it; and
(b), iso-velocity lines in a cross-sectional plane for the theoretical study.



the front and rear walls. Glass beads are used to form the heap and
surface flow layer.

In the surface flow layer, particle velocities are approximately
parallel to the surface of the layer. So only the velocity in the direction
parallel to the surface is considered here. For the convenience of
description, we employ a coordinates similar to that defined in Fig. 2,
which is fixed at the centre of the surface of the flow layer. Fig. 4
shows the variation of the mean velocity along the y-axis, where the
mean velocity, v(yi), is the average of the velocities of particles whose
mass centres are in the range of [− l, l]× [yi, yi+Δy]. Δy and l are one
and three blue wooden ball diameters, respectively. It can be observed
that the velocity profile contains two distinct parts, respectively
corresponding to the two layers. Roughly, the flow layer has a linear
velocity distribution, as shown in Fig. 4(b). Increasing y will decrease
the velocity. Under the flow layer, the heap undergoes a slow creep
motion. Such a motion can be detected anywhere in the heap.
Furthermore, our results show that the mean velocity of the particles
in the heap exponentially varies with the distance from the surface of
the heap. This feature is similar to that obtained by the experiments of
Komatsu et al. [13].

It has been known that the flow rate of the particles discharged
from a hopperwould affect the particle flow on heaps [18,19]. This has
also been confirmed in the present numerical simulations. The
increase of flow rate is realized by increasing the hopper orifice size
here. Four sizes, namely 4d, 6d, 8d and 10d have been considered. It
has been shown that the slope and thickness of the flow layer increase
with the flow rate. But the slow creep motions of particles in the heap
for different flow rates have very similar distributions.

Angular velocity distribution of particles has also been examined
in this work. It has been observed that the angular velocities about the
y and z axes are very small. The angular velocity about the x-axis is
relatively large and linearly decreases with y in the flow layer. These
results are not shown here for brevity.

The flow structure of particles is examined in terms of porosity. A
snapshot of porosity distribution is shown in Fig. 5(a). It can be seen
that the static layer has a lower porosity while the flow layer a higher
porosity. The high porosity should be from the relatively unconfined
movement of particles. In order to consider the variation of the
porosity, four representative regions are chosen: A is in the flow layer,
B the interface region between the static and flow layers, C the lower
part near the interface and D the deep region in the heap. As shown in
Fig. 5(b), the porosities of the four regions vary with time, although
the variation is getting smaller from A to D. The large variation in the
flow layer means that the particles can move more freely, while the
small variation in the deep region indicates that more contacts
between particles occur in the static layer. The particles in the regions
with lower porosity may move to the regions with higher porosity,
which may be the reason causing the creep motion of particles in the
heap.

In order to consider the influence of the surface conditions of the
heap on the surface flow, a case with the so called ‘frozen’ static heap
is simulated. This case is similar to the surface flow on an inclined
plate, a case extensively investigated in the past [3–5,11,12]. Fig. 6
shows the velocity profiles along the y-axis for both cases with the
‘frozen’ and ‘non-frozen’ heaps. The velocity profiles for the two cases
are similar, but the value of the velocity for the ‘non-frozen’ heap is

Fig. 3. Flow patterns observed in: (a), physical experiments; and (b), numerical
experiments. Most particles above the white line are red wooden balls, while those
below the line are mainly blue wooden balls.

Fig. 4. Mean velocity distribution along the y-axis: (a), whole region; and (b), flow
layer, where y0 is the flow layer thickness, v is the mean velocity of particles, v0 is the
mean velocity at y=y0.



larger than that for the ‘frozen’ heap. The result indicates that the
surface conditions of heap affect the velocity profiles of surface flow.

Furthermore, we also have performed DEM simulations to
examine the effect of the slope angle of the static heap. Fig. 7 gives
the surface velocities and depth velocity profiles at the centre of the
channel for slope angles ranging from 22° to 36°. The flow at 22° is at
the onset of the present model, where the boundary between the flow

and deadzone does not attain the lateral walls (see the dashed line in
Fig. 7(a)). In Fig. 7(b), we notice that the velocities of the particles
upon the static heap are non zero, but two distinct zones are ob-
served: a creep zone where the velocity field exponentially decrease
with the decrease of the distance from the static heap surface, and an
upper zone where the particles have higher velocities. It can be
observed that the depth of the flow zone (upper zone) increases with
the increase of the slope angle of static heap.

4.2. Theoretical investigation

In the theoretical study, the flows on a static heap with smooth or
rough lateral walls are considered, and the prediction of the depth of
the flow layer is focused on.

Fig. 8 shows the influence of the lateral walls friction conditions on
the depth of the flow layer. For smooth lateral walls, the results are
represented by the continuous lines. The thick one is for μw=μs and

Fig. 5. (a), Porosity distribution in the heap and surface flow layer; and (b), variation of
porosity in different regions with time.

Fig. 6. Velocity profiles of the flow layers for the cases with the ‘frozen’ and ‘non-frozen’
heaps.

Fig. 7. (a), Surface velocity versus the axial position x/d (from top to bottom, the slope
angle θ ranges from 36° to 22° by a 2° step. Dashed line: θ=22°); and (b), depth
velocity profile for x=0 (from bottom to top, the slope angle θ ranges from 36° to 22°
by a 2° step. Dashed line: θ=22°).



the thin ones are for δ=0.2, 0.4, 0.6 and 0.8. It can be seen that the
depth is affected by the wall friction. The smaller the wall friction, the
bigger the depth. The dependence of the depth on parameter m is
small, so the results in Fig. 8 remain valid for all the values of m
between 0 and 2. For the case of rough walls, we have considered
different μ∞/μs values, which are represented by the dashed lines
below the thick continuous line in Fig. 8. These dashed lines are for μ∞/
μs=2, 3, 5 and 10. It can be observed that the larger the ratio, the
lower the flow layer depth. Note that these dashed curves end at a
point. This is because there is no steady-state solution when the heap
slope is greater than μ∞.

Fig. 9 shows the ratio yw/hmax as a function of the relative
difference between the slope and static coefficient of friction for the
same values of the properties used in Fig. 8. Similar to the depth of the

flow at the centre, the depth at walls decreases with the increase of
the wall friction for smooth lateral walls or ratio μ∞/μs for rough walls.

We can also investigate the asymptotic behaviour when the
heap inclination angle tends to the angle of repose (R→1) or when it
tends to the value with R≫1. The asymptotic development of Eqs. (6)
and (7) for R close to 1 leads to: hmax∼ 2

ffiffiffi
6

p
= π

& '
a

ffiffiffiffiffiffiffiffiffiffiffi
R−1

p
f mð Þ, and

yw/hmax∼1−3(R−1), where f(m) is a function which ranges from
1.015±0.001 to 1 when m ranges from 0 to 2. Practically, the
asymptotic behaviour only depends on the relative difference be-
tween the actual slope and the slope at the onset of flow. For high
inclination angles, the asymptotic behaviour is: hmax∼2aR/δ2, and
yw = hmax∼1−δ2 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p& '
= 2Rδð Þ, but remains a limit since there

is no steady-state solutions for tan θNμ∞, i.e. RNδ2.
The theoretical results obtained for the depth of a granular surface

flow are compared with the numerical results obtained in the above
section. From Fig. 7, we can determine the values of the depth of the
flow at the centre hmax and the depth of the flow at the lateral walls yw
for different slope angle, as shown in Fig. 10, where hmax and yw,
scaled by the half-width of the channel, versus the slope angle are

Fig. 8. Depth of the flow layer scaled by the half-width of the heap versus the relative
difference between the heap slope and the static coefficient of friction. Continuous
lines: smooth wall with μw/μs=1 (thick line), 0.8, 0.6, 0.4 and 0.2 (thin lines from
bottom to top). Dashed lines: minimum value for rough wall with μ∞/μs=2, 3, 5 and 10.
These lines end at R=μ∞/μs (represented by circles).

Fig. 9. Depth of the flow layer at the walls scaled by the half-width of the heap versus
the relative difference between the slope and the static coefficient of friction. The same
symbols as in Fig. 8 have been used.

Fig. 10. (a), Depth of the flow layer scaled by the half-width of the heap versus the slope
angle θ; and (b), depth of the flow layer at the walls scaled by the half-width of the heap
versus the slope angle θ. Data points: results from DEM experiments. The black points
are for a slope angle higher than 24°. The white point is for θ=22°, for which there is no
slip at the walls. Dashed line: theory for ϕs=20.60 and μw/μs=0.8.



given. The relevant theoretical results are also given in this figure for
comparison. Two variables, the apparent static angle of friction
ϕs=20.60±10 and the ratio μw/μs=0.8±0.1, have been adjusted in
order to fit both hmax and yw with the present theory within a 10%
error.

Taberlet et al. [20] have reported their experimental results on the
depth at the walls of granular flows in narrow channels. Here, we
attempt to compare our theoretical results with themeasured ones. In
their experimental study, yw was not considered. But we can estimate
the value of yw from the velocity profile they presented in [20]. It was
found that yw is approximately 50 to 70% higher than the depth they
obtained based on the extrapolation of the slope at the inflexion point
of the velocity profile. The data are reported in Fig. 11 with the
corresponding error bars (stars, black and white squares for a channel
width of 5, 10 and 20 times the particle size respectively). In this
figure, the theoretical prediction obtained based on the rheology
proposed by Jop et al. [9] and smooth walls (similar to the conditions
of the experiments) is also shown to compare with the experimental
data. Since the coefficient of friction between the granular material
and the glass windows is not documented in the study of Taberlet et
al. [20], we compare the experimental data points with the theoretical
results obtained with different wall friction: μw=μs (upper dashed
line), μw=0.8 μs (middle dashed line), and μw=0.6 μs (lower dashed
line). It can be observed that there is a qualitatively good agreement
between the experiments and the theory with a smooth wall whose
friction is about 80% the static bulk friction, and a static bulk friction
μs=tan(27.4°).

The agreements based on the above comparisons confirm the
applicability of the theory proposed by Jop et al. [9] to the description
of the flow profiles of granular surface flow on static heaps.

5. Conclusions

Surface flows on ‘non-frozen’ and ‘frozen’ granular heaps have
been studied numerically using the discrete element method. It has
been observed that the mean velocity of the surface flow on ‘non-
frozen’ heap exhibits a linear relationship with the distance from the
heap surface. Slow creep motion can be observed anywhere in the
heap. The mean velocity of the particles in the heap decays

exponentially with the distance from the heap surface. The existence
of sucha creepmotionmaybe attributed to thevariation of theporosity
distribution of the heap. The granular flow on a ‘frozen’ static heap is
also simulated, and comparedwith the one on the corresponding ‘non-
frozen’ heap. The results show that the surface conditions of the heap,
to some extent, affect the flow upon it. In particular, the ‘non-frozen’
heap surface would lead to a larger flow velocity.

The surface flow on static heaps is also examined theoretically
using the continuum model recently developed by Jop et al. [9]. The
theoretical study illustrates that the depth of the surface flow can be
exactly obtained in the case of a smooth wall, and within a range in
the case of a rough wall, irrespectively of the detailed knowledge of
the relationship between the coefficient of friction and the strain rate.
Thus, we can readily predict the depth of flow layer on static heaps.
The study of the steady-state surface flow on a heap indicates that the
flow layer depth depends on the ratios: wall to bulk static friction μw/
μs, particle size to heap width d/a for a smooth wall. More precisely,
the depth decreases with the increase of the wall friction for smooth
lateral walls or ratio μ∞/μs for rough walls. In addition, the theoretical
results have been compared with the DEM simulation results and the
experimental ones in literature. Qualitatively good agreements have
been observed, which confirms the applicability of the theory
proposed by Jop et al. [9] to the description of the flow profiles of
granular surface flow on static heaps.

List of symbols
a half-width of the channel heap (m)

Aϕ =
∫h

y
dμ
dI Iydy

∫h
yw

dμ
dI Iydy

cn normal damping coefficient between particles
ct tangential damping coefficient between particles
d diameter of particles (m)
D thickness of surface flow layer (m)
E Young's Modulus (kg/m s2)
F inter-particle forces (N)
g gravitational acceleration (m/s2)
hmax depth of flow layer midway from walls (m)
Ii moment of inertia of particle i (kg⋅m2)
I unit matrix
I inertial number
T torque (N⋅m)
m mass of particles (kg)
n exponent for the asymptotic behaviour of µ versus I when I

tends to zero
b exponent, equals to 1−n/2
P mean pressure (Pa)
R vector from the mass centre of particle to contact point (m)
R = tanθ

μs
t time (s)
V velocity (m/s)
yw depth of slip zone at walls (m)

Greek letters
δt vector of the accumulated tangential displacement between

particles (m)
δ̂t unit vector defined by δ̂t=δt/|δt|
δn normal displacement between particles (m)
δ = min μw

μs ;1
& '

v Poisson ratio
ω particle angular velocity, s−1

ω̂ unit vector defined by ω̂=ω/|ω|
ρ bulk density (kg m−3)
σ stress tensor (Pa)
γ ̇ strain rate tensor (s−1)
μ coefficient of bulk friction

Fig. 11. Heap slope versus the depth at the wall scaled by the half-width of the heap.
Stars, black and white squares: experimental results of Taberlet et al. [20] for
respectively a channel width of 5, 10 and 20 mm. Dashed lines: present theoretical
results for a smooth wall (from bottom to top, μw/μs=0.6, 0.8 and 1) and μs=0.52.



μs static friction coefficient (with no shear rate),
μ∞ friction coefficient when shear rate tends to infinity
μ0(h) friction coefficient at point (0,h)
μw(yw) friction coefficient at point (±a, yw)
μp friction coefficient between particles
δ2 equals to δ (smooth wall) or a number between 1 and μ∞/μs

(rough wall)
δt,max = μp 2−v

2 1−vð Þ δn
θ angle of heap surface from the horizontal plane

Subscripts
i particle i
ij between particles i and j
j particle j
n normal component
r rolling friction
t tangential component
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