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In this paper, we introduce and analyze some two-grid methods for nonlinear elliptic eigenvalue problems
of the form —div(2Vu) + Vu+ f(u?)u = Au,|jul|,2 = 1. We provide a priori error estimates for the
ground state energy, the eigenvalue A, and the eigenfunction u, in various Sobolev norms. We focus
in particular on the Fourier spectral approximation (for periodic boundary conditions), and on the P;
and P, finite element discretizations (for homogeneous Dirichlet boundary conditions), taking numerical
integration errors into account. Finally, we provide numerical examples illustrating our analysis.

Keywords: Nonlinear eigenvalue problem, Spectral and pseudo spectral approximation, Finite element
approximation, Ground state computation, Numerical analysis, Two-grid method.

1. Introduction

Nonlinear eigenvalue problems are encountered in various applications in sciences and engineering,
including the simulation of Bose-Einstein condensates (Gross-Pitaevskii equation, see e.g. Pitaevskii &
Stringari (2003)), electronic structure calculation (Hartree-Fock method, orbital free and Kohn-Sham
Density Functional Theory), and the study of the vibration modes of structures in nonlinear elasticity.

TEmail: cances@cermics.enpc.fr

*rachida.chakir @ifsttar.fr

$helianhua86 @ gmail.com

ICorresponding author. Email: maday @ann jussieu.fr

(© The author 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 40 E. CANCES, R. CHAKIR, L. HE, Y. MADAY

The first results on the numerical analysis of nonlinear eigenvalue problems have been published
in Zhou (2004). These first results were improved by three of us in Cances et al. (2010), where optimal
a priori error bounds for nonlinear elliptic eigenvalue problems were obtained for the first time. The
techniques introduced in Cances et al. (2010), based on estimates in negative Sobolev norms, have
then been applied to a variety of nonlinear eigenvalue problems (see Cances et al. (2012); Chen et al.
(2013)), among which the Kohn-Sham problem (Kohn & Sham (1965)), which is currently one of the
most widely used models in computational physics and chemistry.

As in Cances et al. (2010), we focus on the nonlinear elliptic eigenvalue problems arising in the
study of variational problems of the form

I:inf{E(v),veX,/vzzl}, (1.1
Q

where
Q is a regular bounded domain or a rectangular brick of RY and X = H}(Q),

or
Q is the unit cell of a periodic lattice 2 of R? and X = Hi(Q),

withd =1, 2, or 3, H# (L) denoting the space of the restrictions to £ of the Hl1

o> Z-periodic functions
on R¢, and where the energy functional E is of the form

1 1
E(v) = fa(v,v)—&—f/ FOA(x)) dx,
2 2Jo
with
a(u,v):/ (QVM)-VV—F/ Vu.
Q Q
In all what follows, we assume that

o ¢ (L7(Q))" 9 (x) is symmetric for almost all x € Q;

Ja > 0 such that ET 2 (x)& > a|é?, VE € RY and almost all x € Q; (1.2)
e V eLP(Q) for some p > max(1,d/2); (1.3)
e FcC'([0,+%),R)NC?((0,%),R), F'(0) = 0and F” > 0 on (0, +o0); (1.4)
J0< g <2, IC € Ry such that vt > 0, |F'(t)| < C(1+19); (1.5)
e F"(t)t is locally bounded on [0, +o). (1.6)

To simplify the notation, we denote by f the derivative of F. Note that there is no loss of generality in
assuming in (1.4) that £(0) = F’(0) = 0 since the minimizers of (1.1) are not modified if F(¢) is replaced
with F(r) +ct.

Problem (1.1) has exactly two minimizers u and —u, one of them, say u, being positive on £. In all
what follows, u will be the positive minimizer of (1.1). The function u is solution to the Euler-Lagrange
equation

WweX, (E'(u)—Auv)yx=0, (1.7)

for some A € R (the Lagrange multiplier associated with the constraint ||u||;2 = 1) and equation (1.7),
complemented with the constraint ||u||;2 = 1, takes the form of the nonlinear eigenvalue problem

{ Auu = Au,

(1.8)
l[ull 2 =1,
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where forall v e X,
A, = —div(2V ) +V + f(v?)

is a linear self-adjoint operator on L?(Q) with form domain X. Note that E’(u) = A,u. It can then
be inferred from (1.8) that u € X ﬂCO(ﬁ), u>0in Q, and A is the ground state eigenvalue of A,.
An important point is that A is a simple eigenvalue of A,. These results are classical; their proofs are
recalled in Cances et al. (2010).

We now consider a family of finite-dimensional subspaces (Xs)s~o of X such that

Vv e X lim min |[v—v H =0 1.9
’ 5~>0V5€X5H 6” 1 ( )
and the variational approximations of (11) COl’lSiStil’lg in SOlVil’lg

15:inf{E(v5),v5 € Xs, / v%zl}. (1.10)
Q
Problem (1.10) has at least one minimizer ug such that (u,ug);2 > 0, which satisfies

W5 € X5, (Ausus,vs)x' x = As(us,vs)p2,
for some A5 € R. It is easily seen that (see, e.g., Cances et al. (2010); Zhou (2004))

li —ull;n =0, 1.11
lim Jlus —ul 1 (1.11)

or, in words, that the approximate ground state eigenfunction converges to the exact ground state eigen-
function in the H'-norm, from which we deduce that I5 and A5 converge to I and A, respectively, when
0 goes to 0. Optimal convergence rates have been obtained in Cances et al. (2010) (under stronger
assumptions on the nonlinearity F) for finite element and spectral Fourier discretizations.

The numerical simulation of problem (1.10) can be too costly if the approximation space Xg is high-
dimensional. We will denote by X5, such a space and call it the fine discretization space. In two-grid
methods, problem (1.10) is first solved in a lower-dimensional approximation space X5 C X, that we
will call the coarse discretization space. Then, the so-obtained solution us, is improved by solving
a linearized problem in the fine discretization space Xs.. A nice feature of this approach is that, for

appropriate choices of the linearized problem and of the coarse discretization space X, the solution ug:
obtained with the two-grid method has the same accurary as the solution ug obtained by solving the
nonlinear problem (1.10) in the fine discretization space Xs.. Two-grid methods thus allow us to obtain
the same accuracy at a much lower price. Such methods were first introduce ind Xu & Zhou (2000) in the
framework of nonlinear elliptic boundary value problems. A very nice two-grid approach is presented
in Henning et al. (2014). This approach, that appears to have a better behavior as far the eigenvalues of
the nonlinear system are concerned, is much more intrusive than ours and, regardless of this aspect, the
evaluation of its computational cost for a given accuracy on the energy or the eigenvectors with respect
to our approach needs to be further analyzed.

This article is organized as follows. In Section 2, we introduce three different two-grid algorithms
to solve (1.1). In Section 3, we provide some abstract a priori error analysis for one of these algorithms.
We then show how these abstract results can be applied to spectral Fourier and finite element discretiza-
tions in Sections 4 and 5 respectively. Numerical integration errors are dealt with in Section 6. Finally,
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we give several numerical examples to illustrate our theoretical results in Section 7. The class of non-
linear eigenvalue problems considered in this work is very similar to the one considered in the previous
work Cances et al. (2010) (only some assumptions on the nonlinearity F will differ). For this reason,
some of the proofs of the results below are simple adaptations of proofs in Cances et al. (2010), and will
therefore not be detailed for the sake of brevity. Let us mention that some of the results contained in this
article have been published (in French) in the PhD thesis of the second author (Chakir (2009)).

2. Two-grid algorithms

Let X5, and X, be coarse and fine discretization spaces such that X5 C X5 C X. As mentioned above,
two-grid methods consist, first in computing a solution of (1.10) in a coarse discretization space X, and,
second in improving it by solving a linearized problem in the fine discretization space Xs,.

Several two-grid algorithms can therefore be proposed, depending on the type of linear problem we
choose to solve in the fine discretization space. In the following, we introduce three of them, the first
and third steps of these three schemes being the same.

1. Solve (1.10) in the coarse discretization space X;_ . Recall that the solution ugs, of this problem
is such that there exists Ag, € R such that (Ag,,us,) is also solution to the nonlinear eigenvalue
problem:

find (As,,us,) € R x X5, such that
{ Wi, € X5 (Aug s, Vs )x'x = As, (Us,: Vs, )12

2. Two-grid scheme 1. Solve the following linear eigenvalue problem in the fine space Xg:

find (l& ) € R x Xj, such that

Ws, € X, ( 5f7v5f +/ u5 u5 Vs = A0 / ”8 Vs, @
O S )

Hu5f||L2 = 13 (u7u5f)L2 2 0’

lgfc is the lowest eigenvalue of the above spectral problem.

Two-grid scheme 2a. Solve the following linearized right-hand side problem in the fine space
X(;fl

find u?: € X, such that
VV&EX&, a( &,ng —‘r/ Sflu us Ve = l&‘/gugc V-

Two-grid scheme 2b. Solve the following linearized right-hand side problem in the fine space
ngi

find ug: € X5, such that
Vs, € X, a(us Ve) = / S( u5 ug, ve, + As, / Us, Vs,

3. Compute the Rayleigh quotient Igf“ for uggz

(2.2)
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In the limit & = O (that corresponds to X5 = X), the second step of scheme 1 amounts to computing

the ground state (l(;s <, ugc) of the self-adjoint operator A, ;. , while schemes 2a and 2b amount to solving

M&C )
the boundary value problems A, ugc = Ag us, and Aoug° =(As,— f (uéc))ugc, respectively.

In this paper, we shall focus on the analysis of the first scheme, both from the theoretical and simu-
lation points of view. The analysis of the other two schemes will be the matter of a forthcoming work.
Let us just mention here that on preliminary simulations, schemes 2a and 2b provide similar results as
scheme 1 (see Chakir (2009)).

3. Abstract error analysis of scheme 1
We denote by u the unique positive solution of (1.1), by us, a minimizer of the discretized nonlinear
problem (1.10) such that (u,ug,);2 > 0, and by ug; the approximation of # computed with scheme 1.

The aim of this section is to establish error bounds on ||u — ug;HHl, [|u— ug; ;2 and |A — l§f°|, in the
general framework of assumptions (1.2)-(1.6) and (1.9).

3.1 Preliminaries
Our analysis relies on the introduction of the solution ugc of the two-grid scheme in the limiting case
when & = 0 (that is for X5 = X). Recall that ug° is the positive ground state eigenfunction of A,; . We

denote by QL(;SC the associated eigenvalue. The minmax principle gives
l(fc:inf{(Au&v,v)X/,X,veX, / \;2:1}7 3.1
Q

and the solution (lgfc , ug;) provided by the two-grid scheme 1 can then be interpreted as the solution of
the variational approximation

ﬁ,gfc = inf{<Au5cV5f,V5f>X/’X, v € Xso /-Q v%f = ]} (3.2)

of problem (3.1) in the discretization space X,
Problem (3.2) has at least one minimizer ugi, which satisfies (2.1), for some 7L§f° € R. Note that, when
o = O, ugf = ug, is solution to (3.2).

The following numerical analysis relies on the properties of the mapping v — (4,,z,), where A, de-

notes the lowest eigenvalue of the self-adjoint operator A, and z, > 0 the associated positive normalized
eigenfunction:

Ava = 2'\/Zw
zy >0,
2ol 2 = 1.

The function z, is also the minimizer of the problem

inf{(A,,w,w}X/)X, weX, / w2 = 1},
Q

(which amounts to minimizing the Rayleigh quotient associated with the self-adjoint operator A,). In
the special case when v = u, we have (4,,z,) = (A,u).
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The following technical lemmas will be used throughout the article. For the reader’s convenience,
we first state all the lemmas, and postpone their proofs until the end of the section.
LEMMA 3.1 Under assumptions (1.2), there exist By € R, and M € R, such that
(04
YweX, EHVWH%Z —ﬁo||w||i2 <a(w,w) < M||w||12q.. (3.3)

We recall that f denotes the derivative of F' and u the unique positive minimizer of (1.1) that satisfies
Ayu=Auwith A € R,

LEMMA 3.2 Assume that F satisfies assumptions (1.4)-(1.6). Denoting by r = % (g r < 6), there
exists a constant C € R, such that for all (v,w,z) € X3,

[ 763wz <€ (10138 Il el 64
| (02 = ) | <€ (1 113 Il =l (3.5)
|02 = £ 2 <0 (1L b3 ) =l (3.6)
0< /QF(V2) —F(u?) = f(u?) (vV* —u? C(l +v ||2q“) =Vl 3.7)

Besides, in the case where X = H,} (), there exists C € R such that for all (v,w) € X,
/Q (f(u®) = FOP)) w* < C/Q Lsp(w—v)w* (X =H}(Q) only),! (3.8)

while, in the case where X = H} (), for all € > 0, there exists C¢ € R, such that for all (v,w) € X2,

/Q (f(@?) = f(*)w? < elwlf +Ce /Q Lep(—vw? (X =Hj(Q)only). (3.9

LEMMA 3.3 There exist 0 < M, < M| < oo such that

WEX, 0 (A=A v)yx < Millv, (3.10)
and
weut:={veX, (u,v)2 =0}, M2||v||§1 <((Au—2A)v,v)x x. 3.11)
Moreover, there exists ¥ > 0 such that, for all w € X such that |w||,;2 = 1 and (u,w);2 > 0,
Yiw =z < (A= 2A) (w —u), (w = 10)) xr x.- (3.12)

The properties of the ground state eigenpair (4,,z,) of A, are collected in the following lemma.

LEMMA 3.4 There exists a constant C € R such that
weX, |hl+lall <c(1+M3), (3.13)

2
WeX, |u—ully <C (1 + ||vHLZ> [t — (3.14)

In addition,

I'The notation 1 4 stands for the characteristic function of the set where the property & holds.



TWO-GRID METHODS FOR A CLASS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS 7 of 40

e in the case when X = H} (), there exists C € R such that

WX, A=A <C (1) v =ul ) (X = H} (L) only); (3.15)

e in the case when X = H(% (Q), there exists, for any € > 0, a constant C¢ € R, such that
WeX, |A—A]<2e+Ce (1 + vl ) =] ey (X =H{(Q) only).  (3.16)

Estimates (3.15)-(3.16) are sufficient for our purpose, but are not optimal; refined estimates are actually
given in the proof of Lemma 3.4.

For all v € X, we denote by A, ,, the second eigenvalue of A,. Since A = 4,, is a simple eigenvalue of A,,
there is a gap, denoted by g = A , — A, > 0, between the first and second eigenvalues of A,,.

LEMMA 3.5 There exists 0 < 1 < 1 such that for all v € X such that ||v —ul| ;1 <1, we have Ay, — A, >
g/2.

PROPOSITION 3.1 There exist7 > 0and 0 < ¢y < Cp < oo such that for all v € X such that ||v —u||;1 <7
and all w € X such that ||w||;2 = 1 and (z,,w);2 > 0, we have

collw—zllZ < ((Av = 4)(w—2), (W —2,))x x < Collw—2z]| %1 (3.17)

Proof of Lemma 3.1.  For brevity, we only explain in detail the arguments for d = 3, in which case
p > 3/2. Under assumptions (1.2), there exists a positive constant M such that

vweX, a(ww) <2Vl + IV I w7y, < Mlwlg:,

L2
where 1 < p' = (1 — p~1)~! < 3. Using Holder’s inequality, we have that for any w € X,
a(w,w)z/ QVW-VW—F/ Vw?
2-3 3
>al|Vw| 2 = IV o w77 w387
2-3 3
>a|Vwl2 =PIV e Il > w7

where Cg is the Sobolev constant such that for all v € X, ||v[|;6 < Csl|v||g1-
Using Young’s inequality, we have for all € > 0 and w € X,

1
GV WP IR = (562 IV Il ) (el

2p—3 1 3 2-3 2r/(2p=3) 3 3 2p/3
K22 (LWl wE )+ (el

2p £
2p—3/,1 c3p 2/3 3/@p=3) 2 3 apan2
=" ((8 e\ 477 ||WHL2+ES P13 w21

Choosing 5 .&‘21’/3 £, we get

/p 2-3/p1,113/P < 2p-3 2p/3 32p=3) 2
IVIlzelwll2 ™ liwll < 2 \ra C6||V|| Iwll72 + = IIWHL2+2H Vwl[}2,
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which implies

3/(2p-3)
alw,w) > 5 [Vwl3: - (21) G GRIVIE + 3 ) Il
Hence, there exists a positive constant §y such that
a
YweX, a(ww)> §||Vw||i2 —Bo\\w||i2.

This completes the proof. 0
Proof of Lemma 3.2.  In this proof, C denotes a non-negative constant independent on v, w and z, but

whose value is allowed to change from one line to another. We recall that r = ﬁ.

Proof of (3.4). 1t follows from assumption (1.5) that for all (v,w,z) € X3,

[ 702 < [ Pl ll <€ (14 I13E) Il
Proof of (3.5). We first write
2\ 2
/ (FOP) = () )uw = / Boalt—v)w, with iy — L0 =S0T (3.18)
Q 0 u—v

Since u € L*(2) and u > 0, it holds

20+ f(lluliF=)) when |v| < u/2,
[Wou| < 4SUP,€(074HuHiw}F”(t)t, when u/2 < |v| < 2u, (3.19)
LA+ f([lullZ=), when [v| > 2u.
The above estimate is easily obtained in the case when |v| < u/2 or |v| > 2u. When u/2 < |v| < 2u, we

observe that

<2 sup  F"(t)t | Inu—In|v|].
1€ (0,4 |ul| 7o

v (¢
/ () 4
u

2 t

VZ
/ F'(t)dt
u2

It follows that when u/2 < |v| < 2u, there exists u/2 < & < 2u such that

|f?) = ()] =

- Inu—1
ol <2 s F0r | [T 2

1€(0.4]ul7]

u=2 sup  F"(t)t <4 sup  F'(r).
e(0.4ule] & ic0aul-]

u—vy

Thus, (3.19) is proved. This estimate, together with assumptions (1.5) and (1.6), yields
Wil < C(1+v[*),

which, combined with (3.18), straightforwardly leads to (3.5).
Proof of (3.6). For all v € X, we can write

207~ )

V—Uu

/(f(vz)—f(uz))v2=/ Wiu(v—u), with wy,=v (3.20)
Q0 Q
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As u € L*(£), we have (see the proof of (Cances et al., 2010, Theorem 1))

120 SUPye (0 4uf2..) F'(0)t, when |v| < 2u,
2 (IFOA) 1+ Flullz=)) I, when [v| > 2u.

We infer from assumptions (1.5) and (1.6) that

vl < ’

[Wou| < C(1+|vPH). (3.21)

Putting together (3.20) and (3.21), we obtain

| 002 = s

2q+1
< wvallgsreza lu—=vlir <€ (14 W28 llu= vl

Proof of (3.7). The left-hand side inequality in (3.7) follows from the convexity of F (assumption (1.4)).
On the other hand,

weX, [ FOP)=F)—f) (P =) = [ (F&) =) (% =)
with & € [min(u?,v?), max(u?,v?)]. Using assumption (1.5) and the boundedness of u, we get
| F0)=F) = rw) (P =) < [ (1P vl <€ (1 W) vl

Proof of (3.8). We assume here that X = H; (). Since u is continuous, everywhere positive, and
periodic, there exists a positive constant o such that u > o > 0.
Denoting by Q_ = {x€ Q | |[v(x)] < 2} and @ = {x€ Q| [v(x)| = 2}, we have

vow) X [ ()= 0w = [ () =07+ [ - retm 622

_ Q,

Since, over _, v is such that |v| < u < |ju||z= and f is monotonically increasing, we have |f(v?)| <
| £(||ul|2-)| over Q_, so that

|6 =02 <2f(lulfe) [ A=
4f(lulf-)
< [ mvp?
<C /Q (u—v)w?. (3.23)

Denoting by Q1 = {x€ Q | u(x) > [v(x)| > L} and Q2 = {x€ Q| |v(x)| > u(x) > o}, and using
the fact that f is monotonically increasing, we obtain

/Q(f(uz)—f(vz))WZZ Q,(f(uz)—f(vz))wz+ (f(?) = F(2))w?
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where & € [V, u?] C [af /4, ||ul|3~]. Since F € C*((0,0),R) (assumption (1.4)), we get

/ (f(u®) = FOP))W? < C/ (> —vH)w? < C/‘ 2u(u—v)w? <C . (u—v)w?. (3.24)
Sy Ql o} Jal

Combining (3.22), (3.23), and (3.24), we obtain (3.8).
Proof of (3.9). We now consider the case when X = H} (). Since F € C'([0,+),R) and £(0) =0,
there exists, for any € > 0, a constant 3¢ > 0 such that for all 0 < ¢ < [382,

If(t)| <e. (3.25)

Since f is monotonically increasing, we have for all (v,w) € X2,

L 0@ =020 = [ 1 (762 =022+ [ Ly (F62) =022
< L () = 70D (3.26)

Denoting by Q; ¢, ={x€ Q |0 < [v(x)| <u(x) < e}, Qe ={x€ Q[0 |v(x)] < Pe/2,u(x) > Be}.
and Q3. = {x € Q| B¢/2 < |v(x)| < u(x)}, we split the right-hand side of (3.26) into three parts. Using
(3.25) and the boundedness of u, we get

Jy R =0 < 2e il

and
4
Jo, SO =502 < ) [, v

We then note that there exists & with v < & < u? such that

/523_£(f(”2) —f(P))w? = /523‘3 FE) 2 —vHw?r <2 ( max ]F”(I)> | ua] | == /S2318(M_V)W2_

1€[B2 /4 |ul e
Thus, (3.9) is proved with Ce = isf(||u\\%w) +2(maxze[63/47uuu§m] F"(1)) |lul| = O
Proof of Lemma 3.3. The detailed proof of (3.10) and (3.11) can be found in Cances et al. (2010). Let
us prove (3.12). We know from inequality (20) in Cances et al. (2010) that there exists 11 > 0 such that

weX, ((Av—2AWwv)xx =n(IVI[2Z—|(u,v).*) > 0. (3.27)

Since ||w||;2 = 1 and ||u||;2 = 1, we have
2 2 2 1 2
1w —ullz2 = 10w —u,u) 2 2> [lw = ull = (1= (w,u) 2) = 5 [|w —ul| 2,
which together with (3.27) implies

((Au=2) w—1), (0 =)o x > 2w a2 (3.28)
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In view of inequality (22) in Cances et al. (2010), there exists a constant C € R such that

o
(A= 2A)(w—u), (w—u))xrx = S[[V(w— )72 = Cllw—ul| . (3.29)
We obtain (3.12) with y = m +2C) by combining (3.28) and (3.29). O
Proof of Lemma 3.4. In this proof, C, Cy, C> denote non-negative constants independent of v, but

whose values are allowed to change from one line to another. As A, is the lowest eigenvalue of A,, we
infer from (1.4), (3.3) and the boundedness of u that

b= (A <Ay = alu) + [ f0?
<MulZy+C (1+IV34, ) <€ (1+ M35, - (3.30)

Using (3.3), the fact that ||z,]|;2 = 1, and the positivity of F”() (which implies that f(t>) > 0 for all
t € R), we obtain
a

_ 22 @ 2
h=aza)+ [ f0P2 > Sl -
which, together with (3.30), readily leads to (3.13).

We now turn to the proof of (3.15) and (3.16). Let v € X. We shall analyze each case of the
alternative A, > A = 4, or A4, < A = A,,. In the former case, since A, is the lowest eigenvalue of A,, we

have

— Bo,

A <A = Az, zo)xx < (A )y x = A+ /Q(f(vz) — f?)).
In the latter case, we use this time the fact that A, is the lowest eigenvalue of A, to get
A <A = (Autt, iy x < (Auzor2n)xrx = Ao+ / )= F()

Therefore, using either (3.5) with w = u (former case), or (3.8)-(3.9) with w = z,, and (3.13) (latter case),
we obtain that, for all v € X,

A= 21 <C (1 VI3 =l oy (X = H}(Q) only)

and
A=A <28 4+Ce (14 V3 ) lu—vllmar (X = HY(2) only).

Since A,z — Auu = Ayz, — Ay, we have
(Mvzy — Ay, 2y — 1) =(Ayzy — Ay, 2y — ) xr x
—a(z—uz =)+ [ f0P)ala )= [ futz—w)
=a(z =z —u)+ [ f0P) =0+ / (1062 = £ )zl =)
=z =), =)+ [ (F0P) = F6)a (=)
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Hence, we have

(A=A =) =0 = (=) [ 2=+ [ (762) = 07)arle—u),

which together with (3.12) implies that

)/ +/ (v*))zv(zy — 1)

(A = ) llz — ull 72 +/ —fv ))M(Zv—u)Jr/Q(f(Mz)—f(vz))(zv—u)2~

2
iz = ull

<
1
T2

To conclude the argument, we need again to distinguish the two cases X = Hj () and X = H}(Q). In
the former case, we can use (3.5), (3.8), (3.13) and (3.15) to get

2
Pz = ulZ <C (14 IWI2E) (lzw = ull3s + 2w =l 5) llu = 1l

+Cllu = vllp2llzy — w3 llzy — ull s

2,
<C (11128 o =l e = vl e (331)

where we have used that ||z, — ul|;2 < ||zv||;2 + ||u||;2 = 2. In the latter case, from (3.5), (3.9) and (3.16)
we have

1
2 2 2
Yl =l < 5 (28 + Ce(1+ IV =Vl i ) N2 =l
2
+C (14 V1130 ) Nz = ll sl = vl
ez, —ul}s + Cellu— vl 212 — ull s 12y — ulls (3:32)

We can choose € = y/4 and get (3.14). This completes the proof. O
Proof of Lemma 3.5.  We first notice that if A, > A5 ,,, then

Aoy—RAy 28+ A=Ay,

so that Ay, — A, > g/2 follows from (3.15) and (3.16) provided ||u — v||;;1 being small enough.
Let us now deal with the case where 15, < A2 ,. Since

)LZ,u = <AuZ2,uaZZ,u> <C,

we have
YveX, /12,", <C.

On the other hand, using again (3.3), we get

= Po-

o o
Vv € X7 /’1'2,\/ = <AVZ2,vaZZ.v> 2 EHZZ,VH?{l - E

Hence, there exists a constant C € R such that

WweX, |zylm <C. (3.33)
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We now decompose 22, as z2,, = (,22,) 2U+ OCZ,VZ%‘V with o, > 0 and z%-_v € u' such that ||z§-1|
We have '

L2:1.

0, =1—(u,22)70 = 1= (=2, 220} > 1= u—2|[7- (3.34)
We deduce from (3.14) that there exists 0 < 719 < 1 such that

We Buny  Nu—zllg <1/2,
where %, 5, is the ball in H ! with center u and radius 1. It then follows from (3.34) that

1
Yy € %,“70, OCT < 1+2““_ZV||1%2'

2,v
As Ay, is the smallest eigenvalue of A, in u’, we obtain, using again (3.34) and the above estimate,

1 L
Vv € ‘%)M-ﬂov A’zsu <<AIAZ2,vaZZ,v>

1
= (Au(zay — (u,22,0) 12u), 22,0 — (U, 22,0) p211)

N

5 (<Au12,wz2,v> - 2'(uaZZ,\))iz)
v

2
1
2
2

1
gaZ (<AMZ27V7ZZ,V>+M|||”7Z12H1242)
2,
1
o (a6 -707) 3, +HAll-a 1

2,v

v

<(1+2u-al) (Tt Rllu-sl+ [ (63 -709)3, ).
hence
= (=2~ (1422 l) (14l 2+ [ (762 - 707 ).

Therefore, for any v € @u,no’ we have

Aoy — Ay 28— (A —A) =220, Jlu— 2172
- (2l-al) (1Ml alb+ [ 060 - 100 E,). 639)
The existence of some 0 < 1 < 1o such that A, , — A, > g/2 for all v € %, ;, easily follows from (3.14),
(3.15), (3.16), (3.33) and (3.35) also in the case where A5, < Az . O

Proof of Proposition 3.1.  Let 0 <1 < 1 be as in Lemma 3.5, v € X such that |ju —v||; <1, and
w € X such that |w||;> = 1 and (w,2,);2 = 0. Note that ||v||;1 < ||u||g1 + 1. Using (3.3), (3.13) and the
fact that f is non-negative on R, we have

VzeX, ((Av—A)z2)xx =a(z,2) +/Qf(v2)z2 _MHZHiz
>%||VZH%2 - ()vv —l—ﬁo)HZHiZ

o 2 2
>Z1val% - Bllzlz,
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where the constant f is independent of v and z. In particular,
(A= M) (w=2), (=2 = 5 V0w =222 = Bllw =20/ (3:36)
From Lemma 3.5, we see that for all z € X such that (z,z,) > 0,
(A~ M)z, > Slle (o 2)zanlle = Sl ~ (an,2)i2 ).
Therefore, we have
(A=) =), (v =2))xrx 25 (Iw =2l = @w—=2))
>3 (Iw=alf = (1= (@w))
%wazvuiz. (3.37)

Combining (3.36) and (3.37) provides the lower bound of (3.17). We get the upper bound from the
following estimate

(A=) =), (0 =2 =alw =z =)+ [ F0P) 0=z =4, [ (=)
<Clw—22s,

where we have used (3.3), (3.4) and (3.13). Il

3.2 Basic error analysis of scheme 1

LEMMA 3.6 Let ugi be a solution of (2.1). Under assumptions (1.2)-(1.6), we have

. 5
lim —us =0.
0<5f<5ﬁ0||u ug ||

Proof. 1In this proof, C and C¢ are constants independent of 8. and &. We first notice that
s S S _ &
||”_”5f||1-11 < = u || g =+ Jug _”5f||1-11- (3:38)

We know from (1.11) that [Jus, || ;1 < ||u/| g1 + 1 for all & > 0 small enough. Using (3.14) with v = us,
(so that A, = /'L(ﬁSC and z, = ug“), we obtain

3
lJu—ug’ |1 < Cllu—us |1,
which together with (1.11) with § = &, implies
. S
lim ||u—uy’ =0. 3.39
Py | o (3.39)
For each ¢ > 0, let I15, : X — X5, be the orthogonal projection on X5, for the H I_scalar product: for any

weX,
[[w— H&WHH' = V;:g}é [[w— V5f||Hl .
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Again from (1.11), for any 1 > 0, there exists 80 > 0 such that for all 0 < & < &2, |lu—us, | ;1 < 7.
Assuming that (ug: , ugc) 12 = 0, we deduce from Proposition 3.1 that for all 0 < & < & < 660,

0 & & 8
||’4 _uo ||H1 € Augc )(“5 — U ), (“5t — Uy ‘))x X' X
& O
C -1 (< “&uc‘i s X — <AUECMO ’MO >X/,X)
s, uy s, uy’

S O
<Au M()L » uoc >X/,X
wa%npnmwum>x *

C SC
5 E % 0
||H6fu0 ”L2 ”H&uo HL2 X' X

2

Ils.u &
<061C0 7&50 —ugC
([ TTs,uq || 2 H
S 2
1 (| sy || 1 5
<¢y Go <1 + HITEfTLH ([ TT5,ug° *”o ||H1
Slo L2

5 2

O g’ Nl 1 & 82

SCO Co <1+|H 0u5C|| ) HH&L{OC MOCHH]'
SUo Il

Since (%fim ||1,tgC - ngugc l;2=0and ||1,tgC [|;2 = 1, there exists 87 > 0 such that
—0

1
VO < &<, |Msull2 > 5
It follows that for 0 < & < 8, < 5f0,
: 8 _ 6 _
élflin()”ugf — g’ || =0,
which, together with (3.38) and (3.39), leads to the desired result. O

LEMMA 3.7 Let Py, : u™ — u- NXg, be the projection operator defined by
Vws, € ut NXs,, Vv e ut, (v—Psv,wg. )1 = 0.
We have

=Pyl <€ mip v -

Proof. For any v € u', we have

Isv,u), I1su
(Hér 7( % )Lz &

1
cutnXs,
(s, u) 2 > ! o
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so that
Isv,u) 2 I1su
v = Ps || < v—Hgfv—i-M
(H(Stl/l u)L2 H!
(Is.v —v,u) 2 Is.u
S
(Msu,u);2 =
[T, 1
B (L L L IV
(1 () I~ T
<C mi)l} Vs, — vl - (3.40)
Vo <A
This completes the proof. O

In order to state the main result of this section, we need to introduce the following object: for all
v € L2(), we denote by v, € u the unique solution to the adjoint problem: find , € u" such that

Yweut,  {((Au— )W, Wy x = (w)2. (3.41)

The existence and uniqueness of the solution to (3.41) is a straightforward consequence of (3.11) and
Lax-Milgram lemma. It follows from (3.11) that

WweLX(Q), [lnlly <My Il <My ]2

THEOREM 3.2 Under assumptions (1.2)-(1.6), there exist §; > 0 and C € R such that for all 0 < & <
60 < 613

D=3 B < EGid) — E() < Cllu—u 3 (3.42)
andforallrsuchthatggr:ﬁ<6:

Ju— (mm = vyl + llu = u&nmnuug;u), (343)
(2= A < € (= s+ o=+ o =) (3.44)

S22 _ 2 24,6 8

Ja—uf I = [ (F03) = 1) Poy+ A =28) [ —wPyy
. 1 .

(A= 2) (v~ Py w), (u— g + 5 lu— g 2 (3.45)

where we have set Y = Vo
—u

Proof. Let us recall that for all w € X such that |w|| 2 =1,

E(w) — E () =3 ((Au— A)ow— ), (w 1)) x

+3 / F(u) — ) (w* 1)) (3.46)
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This equality, referred to as (32) in Cances et al. (2010), can be derived easily. Using (3.12) and the
convexity of F', we obtain, for w = ugf

Se Y S
E(ug)—E(u) > Ellu—ugflli,n

that is the lower bound in (3.42). We now observe that

FOR) = FO) = 1680 1) =0 =) [ (70 410 =) - £60))

:(WZ_MZ)Z/Ol </Otf'(u2+s(w2 —uz))ds> dt
=(w? — u2)2/01(1 —5)f' (4 s(w* —u?))ds. (3.47)

We are led to split the domain £ into four parts

={xeQ,u(x) < wh Q= {xegaw Su(x) < [w(x)[},

Q3 ={xecQ,|wkx)| <ulx) <2lwkx)|} and Q4={xeQ,ulx)>2w(kx)|},

where we remark that, over Q, U Q3, |w(x)| < 2||ul|.=. Hence, from the assumption (1.6) made on
F" = f', we deduce that (u® +s(w? — u?)) (f'(u* 4 s(w* — u?))) is bounded over £, U ;3 by a constant
(say C3).

We infer from (3.10), (3.46) and (3.47) that

G

2 Ja,ue, (W2 _M2)2 (/o1 uz+sl(v;;—uz)ds>
+§ (w* ) (/0 (f( +1(w* —u?)) = f(u)) dr)

J 21Uy

M C u2 C W2
B 3 (oo in(2) 2, o)

5 / 2w (/1(f(uz)—f(uzﬂ(wz—uz)))dt)
1

5/ WP — i </01(f(u2+t(w2—u2))—f(u2))dt).

Using that —In(1 —a) < a+24?, forany a, 0 < a < 3/4, we first get that, on £2,,

Ew) ) <5 w -l + G

2

22 22
(u* —w?) —w ln( ) (u* —w?) —w?In <l_wwzu )SZ(W qu) <8(Iw| —u)? < 8(w—u)>.

Then, using that In(1 — —a and —In(1 —a) < 4a, for any a, 0 < a < 3/4, we get that, on 3,

a) <
2 2,2 2,2
u? —w? +w?ln (WQ) =u? —w'+u’ln <1u zw )+(w2u2)ln (lu 2W >

u u
2 2\2
% <16(|w| —u)? < 16(w—u)>.
u

<4
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Finally, the facts that f is positive, increasing, and that 0 < [w? —u?| < 3(|w| — u)? < 3(w —u)? on
QU Qy, we get

E(w)—E(u)<%||w—u||1211+8C3/92U w—w +3/f P43 fwh)(w—u)’

Q

<%IIW-M|I%,1 +8C3/£.2 (u—w)? +3~/91 F®) (w—u) +C/£.24(1+|w|2q)(w—u)2.

rUL23
Taking w = ugC, we obtain
f

S S
E(u) ~ E(uw) < Mallu— %,

where the constant M, depends on the H'-norm of ugi, which is itself uniformly bounded when 0 <

O < 8 < 91. The proof of (3.42) is complete.
Recall that (see (33) in Cances et al. (2010))

M= 2= (A= D)) =+ [ (F0R) =) @§PR 34Y)

Using on the one hand (3.4) with w = ug: +us,z= ug: —ug, and both v = u, and v = u;_, and on the
other hand (3.6) with v = us , we get

| ()= 1) @ = [ (£d) ) (@2 =)+ [ (703 = £
<C (Jlu—us, 1 + ||u—u3;||u) :
Therefore, we obtain that for all 0 < & < &, < 61,

S S O
A& =21 < (= + = ). (.49

Let us now estimate |ju — u§; [l;71. We have

S Oc* S *
P [ P 7o P (3.50)
where u(st is defined by
Oc* 0, [
us =us + 1—/uu°)u 3.51
& & ( o & ( )
It is easy to see that v : _”_”& € ut and
W~y = lu||u u’|? (3.52)
& & o 5l :
Oc*

We then only need to estimate ||u — Us |l;71. With the previous notation, we have

[v— H«SfVHHl < Pl
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and
v—Hgfv:u—ug:—u—i—u/Quug;—Hgf <u—u§;—u+u/ﬂuu§:)
:—u§:+u/guu§:—ngr (u§§+u/!2uu§§>
:—u§:+u Quu§§+u§;‘—ﬂafu Q””g?
:(ufﬂgfu)/guu’g;.
Hence,

lv— 5| < cl|u— sull. (3.53)
Due to (3.11) and (3.52), we have
M2||V||?11 <((Au—A)v,v)y x
=((Au=A) (v = 5v),v)xrx + (Au = A) gy, —ul
+((Au = Mgy, u—ug )y x
= (A= )~ TTg0), V) — = 2 (A — ) v x
+ (A= M) v, — )y . (3.54)

For any vs, € X5, we have

which together with (3.4) and (3.5) implies that for any vs, € X5,
S S 8
(A= A) =), v < C(llu—u o+ e — g 1) vl + 12— AZ]. (3.56)

From (3.54) and (3.56), we have

1 5 5 5
V]| <C(||V—H5fV|H1 +§||M—M5f||iz+ [l —ug o+ llu —ug [l +1A = A7 ) (3.57)

Therefore, for all 0 < & < & < 61, we get from (3.49), (3.50), (3.52), (3.53) and (3.57) that

e 3
[l —u g < CCllu = Tsul | o+ [Ju—wig 1r + [lu = us, [|2r)-
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Thus (3.43) is proved. Let us now consider the L? estimate and set y = Vo (see (3.41)). From (3.41)
uf
and (3.52), there holds

||u—u HLZ—/(u—u +/ u—u‘s Ocx —ug:)
_/ (u—u) u-ugc) 5Hu—ua;nLZ/Qu(u—ug;)
= [ =)=+ eI
== AW, o= Y+ = (3.58)

‘We have
(= v = D == vl = (1= i ) (4= v

=((A =)W, (= 1)y,

which, together with (3.55), (3.58), and the fact that Ps,y € ut yields

e —u 17> =((Au /l)llf,ufugt>x'x+*\|u ug I3
(A~ A) (=2, Py W+ (A — ) (9~ Piwr), (1 — )
el
= [ () =6 b Py + 2 —2F) [ @ —wpsy
(A= Ay =Py ), (= + gl

which proves (3.45). Il

4. Spectral Fourier discretization

In this section, we consider 2 = (0,27)¢ with d = 1,2,3 and X = H} (), and we make the following
assumptions:
V € Hg (Q) for some ¢ > d/2, 4.1)

the function F satisfies (1.4)-(1.6) and is in Clo172.0-[01+€((( 4-o0) R). 4.2)
The positive solution u to (1.1), which satisfies the elliptic equation
—Au+Vu+ f(u*)u=Au,

then is in HZ%(Q) and is bounded away from 0.
A natural discretization of (1.1) consists in using a Fourier basis. Denoting for any k € 74 by
ex(x) = (2m) /2% we have for all v € L*(Q),

(x) =) Drer(x)

kezd
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where ¥y, is the kth Fourier coefficient of v:

= [ vedds = x) 2 [ vwe
Q Q
The Fourier spectral approximation of the solution to (1.1) is based on the choice
Xu = Z crex,Vk,cx =c_x ¢,
kezd |k <M

where |k, denotes either the />-norm or the /*-norm of the wave vector k.
Endowing HY (Q) with the norm defined by

1/2
[Vl[Ee = ( Y (1+Iklf)plﬁklz> ;

kezd

we obtain that for all T € R, and all v € Hf (), the best approximation of v in HY () for any p < 7 is

HMV = Z ﬁkek.
k€ZA k| <M

For all real numbers p and 7 with p < 7, we have

1

VVGHJ, ||V—HMVHHp <W

Ve

(4.3)

In this section, we take 8, = M ! and & = N1 (M < N), and ug,, ug° and ugi are denoted as uyy,

u{;’l and uAN” , respectively. It is easy to see that ug’l € HY +2(Q). Aligning the functions uyy, u’(;” and u% in

such a way that (ué”, u’,‘(”)Lz > 0 for k = M, N, and using (4.3), we obtain

1
| — e || 1 < WH"‘%”H‘HZ'

It therefore follows from Lemma 3.6 that

li —upf||;p =0.
ot =y [l

It is proved in Cances ez al. (2010) that uy; converges to u in Hy +2(.Q). In particular, u/2 < upy < 2u

on £ for M large enough.
Besides, u} is solution to the elliptic equation

—Aup] + Ty (Vi + f (uig)upy) = Ay
Thus ¥ is uniformly bounded in H3 (£2), hence in L*(£2), and

Ayt —u) =TIy (V(uy —u) + f(uyy)upf — f(u)u)
+ (Iy = D) (Vu+ f(u?)u) — A @ —u) — (MY — A)u.

(4.4)
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Since uy is bounded in L= (), F € C'([0,),R)NC?((0,0), R), limps_0 ||t — tps || ;1 = 0, and limo<pr<y—seo ||t —
ubl|| ;1 = 0, the right hand side of the above equality converges to 0 in L3(£2), which implies that
(ubl)nen actually converges to u in HZ (). With a bootstrapping argument, we also deduce from (4.4)

that u}f converges to u in H ™(Q).

Besides, the unique solution to (3.41) solves the elliptic equation

—AY,+ (V+ f?) = )y =v— (vu) 20,

from which we infer that v, belongs to HZ2(Q) and | Vit 2 < Cllu— up |2 Hence

1 C
Hlllufu% 7HNWu7u%”H1 < N”V/LHM%HHZ < N”uiu%”ﬂ'

THEOREM 4.1 Under assumptions (4.1)-(4.2), there exist C,Cy,C, € R, such that for all N € N,

||M_MM||HT<W for all —0-<T<6+27 (45)
1 1 \?
B~ B W) <C( gz + ot ) - @6)
1 1
=t < gass + st ) @)
1 1 1 1
M
||M7MN||L2 <C<W+N<W+W>>7 (48)
C C
M
A —Ay | < A +N2("+]>' 4.9
Proof. The proof of (4.5) is detailed in Cancgs ef al. (2010).
Let us first come back to (3.48), which we rewrite as,
YA = (A= A) () u— o +/Q W (g — ), 4.10)
with 5 ) |
Sluy) — fu
= LU =T a2 = ) A0 [ 62 10—,
M

where the argument of f’, namely (u? +1(u2, — u?)), belongs to HZ "*(Q) for any ¢ € (0,1). As, for
M large enough, u/2 < uy < 2u on Q for M, we also have u2/4 < (u2 —|—t(u]2w — uz)) < 4u?. As
f € clol+lo=lol+e([|1y|3.. /4,4||ul 3], R), we obtain that wN is uniformly bounded in HZ () (at
least for N large enough). We therefore infer from (4.10) that, for M large enough,

A=A < Crllu—up|g-o +Calu—ubl||2,. 4.11)

2Note that, as already observed in Cances et al. (2010), it follows from the fact that the continuous solution « and the discrete
ones uy; and u% are bounded away from zero, the assumption that there exist 1 < <2 and 0 < s < 5 —r such that

VR>0,3Cr e Ry s.t. YO<t; <RV €R, |F’(l‘%)l‘2—F/(llz)lz—ZF”(l%)llz(lz —ll)‘ < CR(l + ‘IzlS)‘Iz —[1"

made in Cances et al. (2010) is actually not necessary and is thus not made here.
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We now make use of (3.45), which reads here as

lu=if 1 = [ () =16 Bvy+ A =2 [t —wppew

1
+ ((Au=2)(y = Pow), (=) + 5l = |17, (4.12)
with y = Vil Reasoning as above, we obtain that the sequence
2N\ p(r2
WMW:if(uz”z) i;(u )(u +u)ull = (upr +u uN/ I +t(uy,—u?))at
2

is uniformly bounded in H (2) (at least for M large enough). Setting 6* = min{c,2}, we have

| (= s ipvy = [ Py —w)

<l = upg [ gg-o 117 Py ]| o

< llu—unmllg-o+ [vwll 2

which, together with (3.40), (4.3) and (4.12), implies
e —uy 172 <C<IM—MM||H6* e = uy [l 2 + 1A = A [l — |72

1 1
gl ol =+ = )
Therefore, we have
1
=it < € 3= + o=l ). @.13)

Letv:= uﬁ‘v”* —u, with ul‘Nl* being defined as in (3.51). We deduce from (3.54) and (3.55) that

1
Mo||v][71 <((Aw—A) (v —TIyv),v)x x — 5 llu— U 172 (A = 2)IIyv,u)xr x
+/ (f(u%,,)—f(uz))u%HNer(l—?L/\‘,l)/ U TTyv. (4.14)
Q Q
We also have
/Q (f(ujzw) ff(uz)) M%HNV :/Q WM’NHNV(MM —u)

<l = upg -1 [ v
SCllu = upt || -1 [Vl 1 - (4.15)

From (3.10), (4.14) and (4.15), we obtain

1
Ma|[V[3 < Milly =y g V] o + 5

2
5= 122Vl el + (e = a1+ 12 = A3 [Vl

Therefore,
=y |1 < C(llu— Myvual| o + |t = ung | g-1),
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which together with (4.3), (4.11) and (4.13), completes the proof of (4.6)-(4.9). O

At this stage it is slightly disappointing to remark that the error on the two-grids eigenvalue has
the same asymptotic behavior as the coarse approximation, nevertheless we note that the constant Cy in
front of the coarse asymptotic decay (4.9) is smaller than the one of the coarse approximation. This is
very well illustrated in the numerical simulations of section 7.

5. Finite-element discretization

In this section, we assume that € is a rectangular brick of R? withd = 1,2,3 and X = H& (Q).

By elliptic regularity (Gilbarg & Trudinger (1998)), the positive solution u to (1.1), which satisfies
the elliptic equation

—Au+Vu+ f(u*)u=Au,

is in H2(Q) N H}(Q2) whenever V is in L?(Q), and is in H>(2) N H} (Q2) whenever V is in H' (Q) (use
an extension-by-symmetry argument in order to check that there are no vertex or edge singularities, and
the fact that f'(u?)u?Vu is in L>(£) whenever u is in H>(Q)).

Considering a family of quasi-uniform triangulations (J5)s of £, we introduce the coarse (X4)n
(associated to the triangulations indexed by 6 = H) and fine (Xf) » (associated to the triangulations
indexed by & = h) finite element subspaces of H} () such that :

X5 ={veEH)(Q).YKs € Ts. vk, €Pu(K5)},
k=p orl(pt=1or2)

e S=Horh, withO<h< H,

e 7, is a sub-triangulation of J.

As usual, H (resp. h) denote the maximum of the diameters Hx, K € Jy (resp. hgr, K' € Tp).
We denote by %5 ;. the interpolation operator on X (’; . The following estimates are classical (see e.g
Bernardi er al. (2000); Ciarlet & Lions (1991); Ern & Guermond (2004)).

LEMMA 5.1 For any integer n, 0 < n < k+1, and for all r and ¢, 1 < r < g < +oo, such that VK5 € T,
W' (Ks) is included in C°(Kj), there exists a positive constant ¢ depending only on n, r and g such
that, for any function v of W""(£), we have :

_d
||V*j5’kV||L°° <C6n r |V|V[/n.r7 (51)
_1_d4d
[ A PR (5.2)

LEMMA 5.2 There exists a positive constant ¢ independent of d such that, for any vs € X § we have :

cllvs|| g for d=1,
Vs ll= < c§(B)lIvslly where (&) =4 c(1+[logd])vs]y  ford=2,
6577”\/5”1_11 for d =3.

Let us ; be a solution of the minimization problem

inf{E(v&k), Vs k € Xg,/ Vi, = 1}
0%

such that (u,us);2 > 0. Let us recall the main result in Cances et al. (2010) concerning the finite
element discretization.



TWO-GRID METHODS FOR A CLASS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS

THEOREM 5.1 Assume that
Ve Lz(Q), the function F satisfies (1.4), (1.5) for g = 1, and (1.6),

and there exist 1 < <2 and 0 < s+ r < 3 such that VR > 0,3Cg € R for which

Y0 <t) SRV € R,|F' (13)ta — F'(t])ty — 2F" (1)1} (12 — 11)| < Cr(1+ |12]*) |12 — 11|

Then there exist &) > 0 and C € R, such thatforall 0 < 6 < 8y, k=1ork=2

llus e — ull g1 <C8|ull 2,
lets e —ull 2 <C 82 lull 2,
lets g = ull g1 <C 8 ul 2,
A5 4 — A <C8ull o
If, in addition,
V e H(Q), (5.4) is satisfied for r =2, F € C3((0,+o0),R),
F € C3((0,4o0),R) and F”(t)t'/* and F" (¢)t3/? are locally bounded in [0, +-co),
then there exist & > 0 and C € R, such that for all 0 < & < &,

luts o — ] 1 <C 82 |Jue] 3,
g 2 — 1l 2 <C & lull g3,
||”572—”||H*1 <C54”u|lH3’
As.2— A <C8*|lul 5.
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(5.3)

(5.4)

(5.5)
(5.6)
(5.7)
(5.8)

(5.9)
(5.10)

(5.11)
(5.12)
(5.13)
(5.14)

In this section, we will take X5, = X/, and X5 = X/. Let ug”’ € X be the unique solution of

1 1
Ju,p = inf EH=p(v),v€X,/ v =13, with EH’p(v)zfa(v,v)—i—f/f(u,zi W
’ o) 2 2Jo P

2
)

and u§: = uﬁ’ép be the solution of the following lineared eigenvalue problem (Two-grid scheme 1): find

qu € X/, ||uhH)’f|\Lz =1, (u,u,i{’f)Lz >0, and l}ff € R such that

a(uZ’f,Vh) -|-/_Q f(u%‘l,p) uikpvh = lfép/g uZ’fvh Yy, € X,f.
LEMMA 5.3 If (5.3) and (5.4) are satisfied, then
li - =0 ithp=1or?2.
lim [l s 1= =0 with p =1 or
Proof. To establish this result, we first remark that

|t —up plli= < lJupp — I pullr= + |y pu — ul| 1=

From (5.1), we have

li 1 — o = ().
ng%)H Hpu—ullr==0
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Using (5.2) and Lemma 5.2, we obtain

e p — I putl| = <cC(H)|up p — I pul|
<cC(H) (lurr,p — ullgpr + Nl = Ter pall g1 )

< C(H)H? |[ul o
which implies
i -1 « =0.
i = o e .

This completes the proof. g
The following theorem states the behavior of the two-grid approach in the finite element context.

THEOREM 5.2 If (5.3) and (5.4) are satisfied, then there exist C,C;,C, € R, and hg € R such that for
all 0 < h,H < hg, we have :

E(uy}) — E(u) SC(H? + 1), (5.15)
=y |1 SC(H?+h), (5.16)
e — 2y || 2 SC(H? + 1), (5.17)

A=A <CH? 4O (5.18)

If, in addition, (5.9) and (5.10) are satisfied, then there exist ¢ € Ry and hy € R such that for all
0< h,H < hyand p,f =1 or 2, we have :

E(u}) — E(u) <C(HP +h')?, (5.19)
=yl SCHP' 1), (5.20)
e — 2y, 7|l 2 SC(HPH' 1), (5.21)

A —A,f[;”| <CHY +Ch*. (5.22)

Proof. 'We follow step by step the same lines as in Theorem 4.1. The analysis will be done gradually
under the various regularity assumptions on F. We first start with the analysis of the eigenvalues.
Proceeding as in (4.10), we get

H, H, H,
Ahfp —A=((Ay—=A)(u— ”h,ép)a u— ”h,ep>x’,x + /Q W gy p — ),
with

flugy ) = () !
i — SIS ) P = G+ ) [ 1y, — )
Upy p, — U ’ ' 0
We have already derived from this equality the generic estimate (3.44), which for ¢ = 1 and r = 2, gives
H, H, H,
A = Ai| < Clllu— P N7 + Nl = urg pll 2 + =y, 7l 2). (5.23)

If V and F satisfies the additional regularity assumptions (5.9)-(5.10), then w-" belongs to H' (Q) and

A=Al 1< € (=i s+ = 1) (5.24)
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We refer to the proof of Theorem 3 in Cances et al. (2010) for details. Next for any vy € X,f, there
holds

[ (i) = £ = [y~ g

»—ull2
<Cllun,p (5.25)
We then infer from (3.45) and (5.25) that
H, H,
luftf =l =2 =25 [ @l =Py + [ (Pl = S0l By
1
+<(Au—7t)(u—u“) Y =Py + gllu—uy 72
H, H,
<A = Al — —ump2lu—u, L2
: H, 1 H,
+h|‘”_”11,zp||1{1||”_”h7gp||L2+Z|‘“_”11f||22»
Hence
H, H,
g, —ull 2 < Cllu =gy pll 2 + Rl =y, Pl ). (5.26)

Inserting this result in (3.43) gives
H,
=, [l < (= Tyl g1+ [l = ura p ] 2),

which leads to (5.16) and (5.20), and then to (5.15) and (5.19). Next, from (5.26), we further deduce
(5.17) and (5.21). Finally, (5.18) and (5.22) are consequences of (5.23) and (5.24) respectively. (I

6. The effect of numerical integration

Let us now sketch the effect of a practical implementation of the method, and more precisely to the
numerical integration of the nonlinear term. For simplicity, we focus on the case when & = I, with
periodic boundary conditions and = [0,L)*(L > 0).

For N, € N\{0}, we perform the numerical integration on the cartersian grid %y, := N%Z3. We now
introduce the subspace

1D

Ng: 2

Span {eil¥|1 € 227, |1] < 25 (M )} (N, odd)
<

Span{e®|l € 27, |I (% }eeC(eiﬂNgy/He"‘”Ng”L)(Ng even),

and Wf,f = WAl,gD ® Wl\l,f ®WA1,:) . Itis then possible to define the interpolation projector Iy, from Cy(I", C)
onto WA3,£ by [In,(¢)](x) = ¢(x) for any x € Yy, .
We now consider the following approximate problem

ll’lf{EIZ\Z (VN,Ng)yvN,Ng S XN?L |VN.Ng|2 = l}, (6.1)

where

1 1 1
BN (w) =5 [ VP45 [ Wk+5 [ i
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Let us denote by u}l N & solution to (6.1) such that (uN N, ,uM) > 0. Then ul , satisfies the following
Euler-Lagrange equatlon

<AMMM9V4.NB,’V>X/,X +/ (In, (V) — V)”%,Ngv = )“%Ng/ M%Ngv Vv € Xy.
’ Q ° ’ Q
LEMMA 6.1 There exists a positive constant M3 such that
Y e XN (uN)t, ((Auy, =AW )vv) > M|vilz,

and
M; WM

EM(uy ) — EM (uy) > 7|| Nov = 7

1 1 1
== VZ,/VZ 7/ 2y,2
2/QI Wk g | Vg | Sy

where

Proof. 1t is easy to see that

1
EM(”%Ng) — EM(uy) = 2(( - )(”NN %)M%’,Ng _”1/\l/ll>x’,x-

Note that llj\‘,’f is the variational approximation in Xy of some eigenvalue of A,,,. As (up)men converges
to u in L= (L), A,,, — A, converges to 0 in operator norm. So the n'h eigenvalue of A,,, converges to
the n'" eigenvalue of A, when N goes to infinity, the convergence being uniform in n. As the sequence
(),,{‘,’1 )ven converges to A, the non-degenerate ground state eigenvalue of A,,, we obtain that for N large
enough, A is the non-degenerate ground state eigenvalue of A,,, in Xy. We conclude the proof by
proceeding as in Lemma 3.1. O

Following step by step the same lines as in Cances et al. (2010), we can prove the following result
(we omit the details here for the sake brevity).

THEOREM 6.1 Assume that V € H (£2) for some o > d/2 and that the function F satisfies (1.4)-(1.6)
and is in Cl91T2:0-161€((0, 4-c0), R). Then there exists C > 0 such that for all N € N,

u _ 1 1 N2
E(”N,Ng) _E(u) ~ C M(5+3 + Nc;+1 + Ng 9

1 1 N2

M

||quNg _MHHI <C <M6+3 + No+1 + No |’
8

1 1 N3/2
HMAN/I-,Ng —ull2<C <M6+3 + NO+2 + No |’
8

1 1 N3/2
M
A, — Al <C (Mz(w) + e+ Ng ) .
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7. Numerical examples

In order to evaluate the quality of the error bounds obtained in Theorem 4.1, we have performed numer-
ical tests with Q = (0,27) and f(z) = ¢. The Fourier coefficients of the potential V are given by

\7 B (_1)k+1 1
TV k-1

from which we deduce that V € HJ (0,2x) for all o < 3/2. The reference values for u and A are obtained
for N = 500. We first fix M and study the behaviors of the numerical errors ||u —ubf || 1, |lu—ud||,2,
|A — AY| and |A — A}| as functions of N.

Let us consider for example the case when M = 10. From the left figures of Fig. 1 and Fig. 2 we can
see that ||u — udl|| ;1 and |lu — udf||,> decay respectively as N=>3 and N3 up to N = 40, while from
N = 40 the errors decay slowly and finally reach plateaus, on which the terms in # dominate.

Then, we fix N and study the numerical errors |lu —ul| 51, |lu—ud|;2, [A —AY| and |A — AM| as
functions of M. From the right figures of Fig. 1 and Fig. 2 we can see that ||u — u¥ || ;1 and ||u —ull| ;2
decay respectively as M~*> and M before reaching plateaus. These results are in agreement with the
assertions of Theorem 4.1.

The same conclusion holds for the error on the eigenvalue, both as a function of N or M. An interest-
ing observation is that the two-grid scheme 1 actually leads to two approximations of the eigenvalue, the
first one being lg_c, the second being the Rayleigh quotient (2.2). Our simulations (and this can easily
be confirmed by theoretical arguments) show that the rates of convergence of these two approximations
are the same, and actually also similar as the plain coarse approximation (see Fig. 3 and Fig. 4), we
nevertheless appreciate that the constant (C; on equation 4.9) in front of the coarse rate, is smaller that
the associated constant (roughly equal to C; + C>) in the estimate of the coarse eigenvalue (see also at
the end of this section). In addition, it can be noted that the accuracy is somehow better for the second
approximation and that, in addition, the convergence to zero is more monotonic and smoother. We are
unfortunately not able to provide an explanation of this fact.

In order to evaluate the quality of the error bounds obtained in Theorem 5.2, we have performed
numerical tests, with Freefem++ Hecht (2012), with Q = [0,27]?, f(t) =1, V(x) = x*> +?, using PP,
and P, finite elements. We denote the number of degrees of freedom in the coarse and fine grids by
DOFy and DOF,, respectively.

Fig. 5-8 show the numerical errors using PP; finite elements for both the coarse grid and the fine
grid. These figures agree with the results of Theorem 5.2, except the right figure of Fig. 5 in which the
term in & dominates. Fig. 9-10 show the numerical errors using P; on the coarse grid and P, on the fine
grid. Fig. 11-14 show the numerical errors using P, finite elements on both the coarse grid and the fine
grid. Similar conclusions as for the plane wave approximation hold here which illustrate the various
behaviors stated in Section 5.
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Convergence rate as function of N measured in H' norm Convergence rate as function of M measured in H' norm
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210° | 1
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’{ 100} 1
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- 10 ]
107F 1
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N (log scale) M (log scale)

FIG. 1. Numerical errors |lu — u% ||y1 (Fourier approximation), as functions of N (left) and M (right) (in log-log scale).

s Convergence rate as function of N measured in L? norm Convergence rate as function of M measured in L? norm
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FIG. 2. Numerical errors ||u — 1 ||,» (Fourier approximation), as functions of N (left) and M (right) (in log-log scale).
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s Eigenvalue convergence rate as function of N

10 T T Eigenvalue convergence rate as function of M
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FIG. 3. Numerical errors |A — A} | (Fourier approximation), as functions of N (left) and M (right) (in log-log scale).

Rayleigh quotient convergence rate as function of N

10° T . Rayleigh quotient convergence rate as function of M
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FIG. 4. Numerical errors |4 — IIQ,’I | (Fourier approximation), as functions of N (left) and M (right) (in log-log scale).
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FIG. 5. Numerical errors ||u — “Zi] |1 (P finite elements), as functions of DOF,, (left) and DOFy (right) (in log-log scale).
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FIG. 6. Numerical errors ||u — ui’l] l;2 (P finite elements), as functions of DOF;, (left) and DOFy (right) (in log-log scale).
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FIG. 7. Numerical errors [A — Af{l | (P, finite elements), as functions of DOF,, (left) and DOFy (right) (in log-log scale).
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FIG. 8. Numerical errors |A — 71,{?;‘ | (P finite elements), as functions of DOF}, (left) and DOFy (right) (in log-log scale).
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FIG. 9. Numerical errors ||u— uZél |1 (left) and ||u— uZ"ZI |l ;2 (right), as functions of DOFy (in log-log scale).



34 of 40 E. CANCES, R. CHAKIR, L. HE, Y. MADAY

107" T r 107 T -
e—e DOF,=82433 »—e DOF,=82433
+— DOF,=328705 +—+ DOF,=328705
107 —  The line with -1 slope 107 — The line with -1 slope [{
107 | 10°
%10 % 10t
2 L
10° 10°
10° 10°
107 . . . 107 . .
10 10° 10° 10* 10° 10 10° 10° 10* 10°
DOF, DOF,

FIG. 10. Numerical errors |A — lfz'l | (left) and |4 — i,fé'| (right), as functions of DOFg (in log-log scale).
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FIG. 11. Numerical errors |lu — uﬁ'zz [l 1 (P finite elements), as functions of DOF;, (left) and DOFg (right) (in log-log scale).

We close this section with further finite element simulations on the nonlinear eigenvalue problem
with varying potentials and nonlinearities. We address here only the eigenvalue approximation, because
it is the only entity where the accuracy varies with these coefficients (the accuracy on the ground state
energy or the ground state (eigenvector) are similar to what we presented previously). The problem is

. S 48
now : find (MSF’ 7L§F) € X5, xR

oY 2 I & I
/Q Vuéi Vv5F + /!‘2 (V+6 u5c) uai Ve = 2,515 /Q Msi Vg VV5F € X5
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FIG. 12. Numerical errors |ju — u;l"zzﬂ 12 (P finite elements), as functions of DOF, (Ieft) and DOFy (right) (in log-log scale).
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FIG. 13. Numerical errors |4 — l}i’ 2"2\ (P, finite elements), as functions of DOF}, (left) and DOFy (right) (in log-log scale).
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FIG. 14. Numerical errors |A —1}72‘2\ (P, finite elements), as functions of DOF,, (left) and DOFy (right) (in log-log scale).
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FIG. 15. Numerical errors M — lfl'l | (P finite elements), as functions of DOFy for various values of 6 for a regular potential V
(in the insert the associated time for the simulations in sec.).
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We want to illustrate the two-grid eigenvalue accuracy as a function of the value of 8 and V (using
P finite element for both the coarse and fine grid).

Fig. 15 shows numerical errors with Q =0, [ and V (x,y) = x> +y%.
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Fig. 16 and Fig. 17 show numerical errors with Q2 =]0, 7[and V (x,y) =

These results illustrate the fact that, when 60 increases, the constant C; increases and the convergence
rate of the two grid method gets closer to the coarse approximation. This effect is reduced for large
values of V that has the opposite effect on ratio between C; that depends on 6 and C; that depends on
V.
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FIG. 16. Numerical errors |4 — JL:I‘I | (P; finite elements), as functions of DOFy for various values of 6 for a mild discontinuous
potential V (in the insert the associated time for the simulations in sec.) .
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FIG. 17. Numerical errors |A — lf ]'1 | (P, finite elements), as functions of DOFy for various values of 8 for a strong discontinuous
potential V (in the insert the associated time for the simulations in sec.) .
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Finally, in this last set of numerical simulations we have indicated the time to solve the two grid
eigenvalue problem and the time to solve the fine problem. These costs, that include all the operations,
clearly reflect the reduced dimension of the nonlinear coarse approximation as we have checked that the
number of (self-consistant field) iterations required to achieve convergence is independent on the size
of the number of the degrees of freedom used for the discretization.
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