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a b s t r a c t

Electrical power transmission networks of many developed countries are undergoing deep transforma-
tions aimed at (i) facing the challenge offered by the stochastically fluctuating power contributions
due to the continuously growing connections of renewable power generating units and (ii) decreasing
their vulnerability to failures or malicious attacks and improving their resilience, in order to provide more
reliable services, thus increasing both safety and profits. In this complex context, one of the major con-
cerns is that related to the potentially catastrophic consequences of cascading failures triggered by rare
and difficult to predict extreme weather events. In this work, we originally propose to combine an
extreme weather stochastic model of literature to a realistic cascading failure simulator based on a direct
current (DC) power flow approximation and a proportional re-dispatch strategy. The description of the
dynamics of the network is completed by the introduction of a novel restoration model accounting for
the operating conditions that a repair crew may encounter during an extreme weather event. The result-
ing model is solved by a customized sequential Monte Carlo scheme in order to quantify the impact of
extreme weather events on the reliability/availability performances of the power grid. The approach is
demonstrated with reference to the test case of the IEEE14 power transmission network.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electric energy has an impact on all modern life activities.
Consequently, the public expectation for reliable electric energy
delivery has significantly grown in the past decades. For this, the
so-called power grids, i.e., the interconnected systems that trans-
mit electric power from where it is generated to where it is con-
sumed, play a fundamental role. Thus, it comes with no surprise
that the assessment of the risk of failures of these infrastructures
and the study of strategies for the mitigation of the consequences
have gained increased attention. However, these tasks are difficult
because of the inherent complexities of the power transmission
networks, the complex physical laws governing the power flow
dynamics and the uncertainties affecting the boundary conditions
(operational and environmental) in which they operate. Additional
difficulties come from the evolution of society and energy markets,
that demand changes and adaptations of the large-scale power
transmission infrastructures for continuing to satisfy the require-
ments of reliability/availability under the continuous increase in
electric power demand, avoiding congestions and overloads, so as
to improve safety and increase economic margins. In addition,
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power transmission systems can no longer be considered solely as
a means for energy delivery; rather, they are operated as an elec-
tricity market trading platform for shifting power volumes across
different regions or even different countries, for economic reasons.

Furthermore, in recent years we have witnessed an exponential
growth in the connection of renewable power generating units
(photovoltaic power plants, wind farms, biomass plants, etc.) and
poly-generation systems (electrical power, heat and cooling),
which add even more complexity to the system. In fact, such con-
nections were obviously not planned in the initial design of the
power networks, which now need to adapt to accommodate their
fluctuating power contributions, difficult to predict and geograph-
ically distributed [1].

In this new setting, concerns come for the protection from fail-
ures and attacks, and their possible cascading effects, i.e., the prop-
agation of disconnections of components from the grid due to the
power flows redistribution (manually or automatically) following
the initial failure or attack. Cascading failures may lead to catas-
trophic disconnections of wide portions of the power transmission
networks, as epitomized by several large-scale blackouts occurred
in developed countries in the recent years, such as for example the
blackout in Italy on September, 28 2003 [2], that in the United
States and Canada on August 14, 2003 [3] or that in Europe on
November, 6 2006 [4].

Normally, a power transmission network is designed and oper-
ated so that a single component disconnection does not give rise to
any load shedding, so that cascading failures do not occur (N � 1
criterion [2]); however, rare combinations of circumstances,
uncommon events or inadequate countermeasures may result in
further line disconnections, eventually leading to disruptive conse-
quences. In fact, the operative conditions at a given time are deter-
mined by many, usually correlated factors, such as power demand,
generating capacity, economic optimizations, technical limits and
environmental conditions. Some of these factors are defined as
operative limits or determined by technical-economical optimiza-
tions (e.g., the power generation) and, as such, they are more pre-
dictable. Others, such as the power demand and the environmental
conditions, are uncertain by nature and many efforts are, thus,
devoted to quantify the effects of these uncertainties on the power
production and transportation capabilities, like, for example in [5]
and [6], where the fluctuations of the power demand and of a
specific environmental feature, i.e. the wind speed, are taken into
account, respectively.

Furthermore, human errors, intentional attacks or extremely
severe natural contingencies, such as earthquakes, volcanic erup-
tions and weather related events (floodings, wind storms, light-
ning, icing, heat and cold waves, etc.), may even directly fail the
components of the network [7].

In this context, we address the problem of quantifying the reli-
ability/availability of a transmission grid specifically with respect
to the occurrence of extreme weather events, which have been
identified as major threats to the operation of power networks
[8]. Indeed, the decision making process of the grid designers
and operators should be driven by the results of cost-benefit anal-
yses, accounting for the reliability/availability of the system and
the costs required to design, build and operate it. Proper assess-
ment of the transmission grid reliability/availability allows
informed decisions on grid design and operation by the players
involved in the utility management upon. Also, reliability/avail-
ability analysis is a key factor for supporting the power quality reg-
ulation of transmission grids in many developed countries.

The problem addressed is twofold: first, a realistic, possibly
stochastic, model of the extreme weather event occurrences must
be developed and its parameters properly identified on the basis of
available weather statistics; then, this model is coupled with real-
istic transmission grid dynamic models for the computation of the
network performances in presence of failures triggered by the
extreme weather events.

With regards to extreme weather event modeling for power
grids reliability/availability estimation, the common approach is
that of resorting to the ‘‘two-state” model [9], or to its improved,
‘‘three-state” version [10], where the weather conditions are
divided into two or three classes, normal, adverse and, in case of
three state models, major disaster, and the stochastic transitions
among the different classes are modeled as homogeneous Poisson
processes with constant transition rates, to be estimated from
weather data.

The major drawbacks of these approaches are that (i) they are
not flexible enough to represent the wide range of possible
weather events types and intensity levels and (ii) their rates of
occurrence are, in general, dependent on time, due to their typi-
cally seasonal behaviors. Significant advances towards a more real-
istic modeling of the impact of weather events on power networks
reliability/availability is proposed in [11] and further extended in
[16]. In those works, non-homogeneous Poisson distributions of
the occurrence times and suitable distributions of the events inten-
sities are derived on the basis of available weather statistics; fur-
thermore, the failure rates of the networks’ lines are
mathematically related to the times of occurrence and the intensi-
ties of the weather events considered, following the approaches
proposed in previous works of literature. In fact, it is recognized
that the failure rates of the grid’s components, typically taken con-
stant, are actually significantly increased by the occurrence of sev-
ere weather events. For example, quadratic and exponential
models are introduced in [12] and [13], respectively, to describe
the overhead line failure rates as functions of the wind speed; a lin-
ear model is presented in [14] to model the relationship between
the number of line interruptions and that of lightning flashes;
the combined effect of high winds and lightning, possibly occurring
during severe storms, on the grid components failure rates are ana-
lyzed in [15]. The resulting model is then solved by means of a
sequential Monte Carlo scheme simulating the annual ‘‘lives” of
the power grid subject to the weather events.

The approaches illustrated above, however, have been only
applied either to very simple, representative power grids with
few components [10] or to power distribution grids (e.g., a the
Swedish rural reliability test system in [16] or an actual distribu-
tion system in the Northeast US in [17]). Limited research efforts
have been made in developing ways for performing weather-
related reliability/availability analyses on power transmission net-
work models including realistic representations of cascading fail-
ure phenomena. For example, in [18] simple stochastic models
representing the occurrences of extreme weather events are cou-
pled to grid cascading failure models, where the network reliability
is abstractly quantified with respect to the existence of connecting
paths between grid nodes; however, the realistic electrical behav-
ior of the networks are not taken into account.

In this work, we originally propose to resort to the stochastic
model for representing the uncertainties related to extreme
weather events introduced in [16] and further developed in [11],
and to combine it to a realistic cascading failure simulation model
based on a MATLAB-based DC power flow approximation of a
power transmission network [19] and a proportional re-dispatch
strategy [20]. Furthermore, in order to offer an even more realistic
description of the power grid dynamics in response to extreme
weather events, we develop an original restoration model based
on the definition of suitable repair ‘‘velocities” correlated to the
occurrence of the different events.

The complexity of the resulting model is such that its resolution
for the estimation of the system reliability/availability indices is
not easy. We, then, develop a customized, sequential Monte Carlo
simulation scheme, where several annual histories of power



F. Cadini et al. / Applied Energy 185 (2017) 267–279 269
transmission network lives, subject to both normal and extreme
weather events-related failures, are simulated and the conse-
quences are evaluated. The proposed modeling and simulation
framework is applied for quantifying the impact of extreme
weather events on a power transmission network of reference,
the IEEE14 [21].

The rest of the paper is structured as follows. Section 2
describes the proposed framework for coupling the extreme
weather event model to the cascading failure simulation model.
In particular, Section 2.1 describes the line failure mechanism
and its stochastic representation. s 2.2 and 2.3 illustrate the
cascade model and the restoration strategy, respectively, while
the Sequential Monte Carlo procedure is presented in Section 2.4.
The IEEE14 test network specifications and the results are
described in Section 3. In Section 4, some conclusions are drawn.
2. The model

In this Section, we illustrate the framework for stochastic
modeling of the cascading failure behavior of a transmission power
network under uncertain weather conditions. In cascading failure
analyses, the power transmission network is typically modeled as
a graph G ¼ ðV ; EÞ, where V represents the set of vertices and E
the set of edges. Usually, it is assumed that only elements belong-
ing to one of the sets V or E are subjected to failure and, corre-
spondingly, the analyses are carried on under the assumptions of,
respectively, node removals or edge removals (examples of these
two different approaches can be found in [22–24] and [20,25–
27], respectively). In this work, we restrict our attention only to
edge removals, since power transmission line failures are more
common than bus failures [28].

The proposed framework aims at modeling the effects of ran-
dom line failures due to both normal operation and extreme
weather conditions in a power transmission network, accounting
also for the subsequent restoration processes. The uncertainty in
the occurrence of the failure events affects the network system
reliability/availability in terms of the expected energy not served
(EENS [GWh/y]), the average load shed due to failure events
(ALS [MW/occ]), the average frequency of the power interruptions
(AFF [occ/y]) and their average duration (ART [h/y or h/occ]), which
will be defined in Section 3.

The scheme of the conceptual model adopted is shown in Fig. 1.
The deterministic cascading failure model allows the computation
of the consequences of the failure of an individual line of a given
network. The input to this model is the multivariate distribution
of the sequence of initial line failure occurrences,
Fy ¼ ff 1; f 2; . . . ; f ng, where n is the total number of line failure
events over a given time horizon (assumed to be one year in this
work), with each sequence element f i ¼ fti; lig; i ¼ 1; . . . ;n, repre-
Fig. 1. Conceptual scheme of the proposed stochastic framework f
senting both the occurrence time ti and the network line affected
by the failure li; i ¼ 1; . . . ;NL, with NL being the total number of
lines of the transmission network under consideration. The
sequence of failure occurrences is determined, in turn, by the com-
bination of a ‘‘normal” line failure model, representing, for exam-
ple, failures due to aging, malfunctioning, human errors and
attacks in general, and the ‘‘extreme weather” failure stochastic
model, where the line failures are related to the random occur-
rence of extreme weather events, represented by the sequence
E ¼ fe1; e2; . . . ; emg, where m is the total number of events over
the given time horizon (one year) and ej ¼ ftj; pj; Ijg; j ¼ 1; . . . ;m
is a sequence of elements representing the occurrence time tj,
the type of weather event pj and its intensity Ij. Similarly to [16]
and [29], the severe weather events considered in this work are
exceedingly high winds due to storms and lightning, under the
assumption that the entire network experiences the same weather
conditions.

An original deterministic restoration model is, then, coupled to
the cascading failure model, so that, when a cascading failure
extinguishes, the line initially failed is repaired and the network
is assumed to re-start from ‘‘as good as new” conditions. As it will
be shown in Section 2.3, the restoration process is also affected by
the stochastic weather conditions.

Note that, since the input Fy is a stochastic, multivariate vari-
able described by its probability density function (pdf) dðFyÞ, the
outputs of the deterministic cascading failure model, i.e., the relia-
bility/availability indicators EENS, ALS, ART and AFF, are also
uncertain and described by pdfs dðEENSÞ, dðALSÞ, dðARTÞ and
dðAFFÞ, respectively.

2.1. ‘‘Normal” and extreme-weather stochastic models of failure

The random occurrence of ‘‘normal” failures is modeled as a
homogeneous Poisson process, as proposed in [16]:

PðNf ðtÞ ¼ kÞ ¼ ½knorm � t�k
k!

e�knorm�t; k ¼ 0;1;2 . . . ð1Þ

where Nf ðtÞ [occ/km] is the number of failures per kilometer of grid
line occurring in the time period (0,t], knorm [occ/km/h], assumed to
be constant throughout one year, is the failure rate under normal
weather conditions per kilometer of grid line and PðNf ðtÞ ¼ kÞ is
the probability that k failures occur in the period (0,t], per kilometer
of grid line.

On the other hand, the random occurrence of extreme weather
event-related failures [16] is modeled as a non-homogeneous Pois-
son process with a parameter VeðtÞ dependent on the stochastic
weather conditions during the year. The weather conditions are
determined by the stochastic sequence of weather events
Ey ¼ fe1; e2; . . . ; emg. Similarly to [16], we model the occurrence of
or the estimation of power grid reliability/availability indices.



Table 1
Parameters of the pdfs characterizing the extreme weather model [16].

Distribution Scale, a Shape, b

Wind storm duration (DwindÞ Weibull 9.89 1.17
Wind storm intensity (DwÞ Weibull 1.23 1.05
Lightning duration (DlightÞ Weibull 0.96 0.85

l r
Lightning intensity (NgðtÞÞ Lognormal �5.34 1.07
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two types of events, i.e. exceedingly high winds and lightning,
assuming they are independent. Wind storms are assumed to give
rise to the falling of trees not properly trimmed and to damage
structures like cables and poles, whereas lightning may directly
damage the electrical equipment.

The occurrence of the weather events is modeled by a non-
homogeneous Poisson Process (NHPP) [1]:

PðNpðtÞ ¼ kÞ ¼ ½VpðtÞ�k
k!

e�VðtÞ; k ¼ 0;1;2 . . . ð2Þ

where NpðtÞ [occ] is the number of events of type p occurring in the
time period (0,t], PðNpðtÞ ¼ kÞ is the probability that k events of type
p occur in the period (0,t] and VpðtÞ [occ] is the average number of
occurrences of event p over the time period (0,t]. The time-
dependent parameter VpðtÞ can be expressed as:

VpðtÞ ¼
Z t

0
vpðt�Þdt� ð3Þ

where vpðtÞ [occ/h] is the rate of occurrence of event p (wind storms
or lightning), taken to be stepwise constant on a monthly basis in
order to account for the seasonality of the weather events. Fig. 2,
taken from [16], shows the value of the rates of occurrence of wind
storms and lightning as a function of time, used in this work.
According to [16], the identification of the parameters used in the
stochastic models described above is based on the weather observa-
tions collected in the Swedenergy [30] and the SMHI (i.e. the mete-
orological agency of Sweden) databases [31] and referring to two
locations in the Swedish East and West coasts. Failure and weather
statistics were gathered separately and, then, connected into a data-
base, obtaining the weather conditions to which the grid was
exposed when a line failed.

The occurrences of each type of weather event are, then, charac-
terized by stochastic intensity levels and durations [16]. To repre-
sent the intensity level of a wind event, the maximum mean wind
speed over a 10-min period measured during a three-hour period is
used. The lightning intensity is quantified through the number of
cloud-to-ground flashes per kilometer and hour that affects the
service areas.

According to [16], a wind storm event is considered to occur
each time the wind speed (intensity) overcomes a critical threshold
wcrit: in fact, high winds give rise to failures only when the friction
force acting on trees and poles overcome a critical value. Here, sim-
ilarly to [16], we take wcrit ¼ 8 [m/s], since it is observed that,
above this value, the number of failures due to wind rapidly
increases with wind speed. Thus, operatively, it is assumed that
Fig. 2. Rates of occurrence for wind storms and ligh
the random variable wwind [m/s], i.e. the wind intensity conditional
on the occurrence of a wind storm event, can be written as:

wwind ¼ wcrit þ Dw ð4Þ
where wcrit is fixed and Dw is the random variable assumed to be
described by the Weibull distribution with the parameters reported
in Table 1. The durations of the wind storms (Dwind) events are
assumed to follow a Weibull distribution with the parameters
reported in Table 1.

On the other hand, the lightning intensity level is quantified
through the number of flashes that hit the ground per square-
kilometer and hour NgðtÞ [occ/h/km2], which is assumed to be a
random variable distributed according to the Weibull distribution
with the parameters reported in Table 1 [16]. As opposed to the
high wind events, lightning gives rise to line failures regardless
its ground flash density, so that no critical threshold is considered.
The durations of the lightning events (Dlight) are assumed to follow
a lognormal distribution with the parameters reported in Table 1.

The number of line failure occurrences due to each type of event
is assumed to be distributed according to a NHPP:

PðNf ðtÞ ¼ kÞ ¼ ðR t
0 kf ðt�Þdt�Þ

k

k!
e�
R t

0
kf ðt�Þdt� ; k ¼ 0;1;2 . . . ð5Þ

where Nf ðtÞ is the number of line failures per kilometer occurring in
the time period (0,t], kf ðtÞ [occ/km/h] is the failure rate per kilome-
ter at time t and PðNf ðtÞ ¼ kÞ is the probability that k failures occur
in the period (0,t] per kilometer.

According to [16], since the failure processes are due to inde-
pendent, different physical phenomena, then the total failure rate
kðtÞ can be written as:

kðtÞ ¼ knorm þ kwindðwwindðtÞÞ þ klightðNgðtÞÞ ð6Þ
where kwindðwwindðtÞÞ represents the line failure rate per kilometer
due to wind storms at time t and klightðNgðtÞÞ is the line failure rate
tning events estimated from weather data [16].
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per kilometer due to lightning at time t. The failure rates kwind and
klight depend on the occurrence of the weather events as follows.

A. Wind storm failure rate: The effects of wind speed are (i)
increased pressure over trees, possibly falling on overhead
lines and/or (ii) direct friction on poles and lines of the sys-
tem, possibly making them fall or touch external bodies.
According to [16] and to the previous work in [12], a model
proportional to the square of wind velocity is used, resem-
bling the equation for the drag force acting on an object in
a fluid:  !

kwindðwwindðtÞÞ ¼ a

wwindðtÞ2
w2

crit

� 1 knorm ð7Þ
where a is a positive scaling parameter. When either there are
no wind events or the wind speed w is below wcrit , then
kwind ¼ 0.

B. Lightning failure rate: Lightning directly hits the subcompo-
nents of the network, causing their failures. Similarly to
[16] and to the previous work in [14], a linear relationship
is used between the failure rate due to lightning
klightðNgðtÞÞ and the ground flash density NgðtÞ:

klightðNgðtÞÞ ¼ ðbNgðtÞÞknorm ð8Þ

where b is a positive scaling parameter. When there are no
lightning events, then klight ¼ 0:

Note that a rare, but possible, event is the simultaneous occur-
rence of a light storm and a high wind event. According to (6) the
total failure rate kðtÞ is given by the summation of all the three
contributions.

The specific failure rate of the generic i-th line of length
li; i ¼ 1; . . . ;NL is, then:

kiðtÞ ¼ kðtÞ � li ð9Þ
2.2. Cascading failure model

In this paper, we resort to the cascading failure model devel-
oped in [33] and applied also in [32]. The model simulates the evo-
lution of cascading failures, triggered by an initial set of
disconnected lines Ldisc , relying on the direct current (DC) power
flow approximation [20]. Operatively, the disconnected set Ldisc
includes both the line damaged by the failure f i and, possibly, other
unavailable lines at time ti due to restoration. Starting from the ini-
tial grid G0 ¼ G, the general cascade algorithm reads [33]:

1. G1 ¼ ðV ;M � fLdiscgÞ. Compute vector P1 of power flow in G1.
2. If required, adjust load and generation (re-dispatch).
3. Stage r. Compute Pr power flow vector in Gr .
4. Set Or , i.e., the set of lines overloaded (and disconnected) at

stage r.
5. If jOrj P 1, set Grþ1 ¼ ðV ;Mr � OrÞ and go to step 2, otherwise,

end the cascade.

The stage r corresponds to a line disconnection event in the
cascading failure simulation, which can result in lines disconnec-
tion jOr j P 1 or not jOrj ¼ 0. A re-dispatch action (step 3) is a
consequence of the islanding process, which occurs when an
entire portion of the network G becomes disconnected from the
grid, thus experiencing an excess either in the power supply or
in the power demand. The vector Pr is computed throughout
the cascade by means of the DC power flow model, a linear
approximation of the AC power flow model, which relies on the
following assumptions: (i) all bus voltage phasors are assumed
1.0 per unit in magnitude, (ii) transmission line resistance is
neglected and voltage angles differences are assumed to be small
such that [34]:

8k; j 2 V sinðhk � hjÞ � hk � hj ð10Þ
where hk is the voltage angle at bus k. Let b be the n-dimensional
vector of voltage angles, where a component is chosen to be equal
to 0 (reference bus), and bkj is the susceptance of the line joining
node k to node j. The n � n matrix Br at the r-th iteration is defined
by:

Br
kk ¼

X
bus j connected to bus i

br
kj

Br
kj ¼ �bkj

ð11Þ

The DC load flow equations are:

W r ¼ Br
hr ð12Þ

where W r is the vector of the node power outputs, which sum to
zero due to the power balance constraint between power genera-
tion and demand within the network. The matrix Br has rank
N � 1; removing the row corresponding to the reference bus and
taking the inverse, one obtains:

hr ¼ XrW r ð13Þ
Finally, the power flow in line li connecting bus k and j is com-

puted as:

Pr
li
¼ br

kjðhrk � hrj Þ ð14Þ
For further details on the DC power flow approximation, the

interested reader may refer to [34].
During the propagation of the cascading failure, the grid could

become separated in multiple connected components, also called
islands [33]. The newly formed islands may not satisfy the power
balance, thus not allowing further DC computation. A simple re-
dispatch routine is embedded in the model to overcome this issue,
as follows. Considering the island I � G, where ðGenI; LoadIÞ are the
sets of generator and load buses in I, at each iteration r three differ-
ent unbalanced situations could occur:

1. The power supply does not meet the demand but the generators
have enough reserve to accommodate the surplus:X

k2GenI
PGr�1

k <
X

k2LoadI
PD0

k and
X

k2LoadI
PD0

k <
X

k2GenI
PMAXk ð15Þ

Then, the power production of each generator belonging to I is
increased proportionally:

8k 2 GenI : PG
r
k ¼ PGr�1

k

þ PMAXk � PGr�1
kP

k2GenI PMAXk �
P

k2GenI PG
r�1
k

X
LoadI

PD0
k �

X
LoadI

PGr�1
k

� �
ð16Þ

8j 2 LoadI : PD
r
j ¼ PD0

j ð17Þ
2. The power supply does not meet the demand and does not have

enough reserve to meet the surplus:X
k2GenI

PGr�1
k <

X
k2LoadI

PD0
k and

X
k2LoadI

PD0
k >

X
k2GenI

PMAXk ð18Þ

Then, the power demand of each load belonging to I is
decreased proportionally and the power supply is fixed to the max-
imum limit:
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8k 2 LoadI : PD
r
k ¼ PD0

k

P
k2GenI PMAXkP
k2LoadI PD

0
k

ð19Þ

8j 2 GenI : PG
r
j ¼ PMAXj ð20Þ

Meanwhile, if in the island I the power supply exceeds the
demand, i.e.:X
k2GenI

PGr�1
k >

X
k2LoadI

PD0
k ð21Þ

then, the power production of each generator belonging to I is
decreased proportionally:

8k 2 GenI : PG
r
k ¼ PGr�1

k

P
k2LoadI PD

0
kP

k2GenI PG
r�1
k

ð22Þ

8j 2 LoadI : PD
r
j ¼ PD0

j ð23Þ

In all the above equations, PD0
j denotes the power demand of

node j before the initial failure.
The major drawback of this strategy is related to the fact that it

does not take into account the capacities of the surviving lines in
the system, in order to more effectively re-dispatch the power
flows. For example, in [20] the power supply and demand is
adjusted by means of a linear optimization, whereas in [35] a con-
troller proportionally sheds load or increases generation depend-
ing on the situation. However, with this strategy, the simulation
of cascading failures are much faster, thus allowing to demonstrate
the feasibility of the statistical analyses and the optimizations pre-
sented in this paper at reasonable computational efforts.

At step 4 of the procedure for simulating cascading failures, an
outage model is required to identify the transmission lines which
fail during iteration r. To this aim, we exploit the concept of effec-
tive power flow [33,36], where the transients of the power flows xli
in the network lines after a disconnection event are modeled as:

xli ðt þ 1Þ ¼ ð1� aÞxli ðtÞ þ aPr
li
; l 2 Er ð24Þ

xli ð0Þ ¼ Hr�1
li

ð25Þ

where the parameter a 2 ð0;1� is called thermal inertia of the grid,
Pr
li
is the i-th component of the power flow vector Pr , t is a discrete

time index and Hr�1
li

is the power flowing through line li at the r � 1
-th failure event. The grid inertia a is a parameter introduced in
order to model the ‘‘reactiveness” or ‘‘memory” of the grid with
respect to any changes: if a ¼ 1, the system is memoryless and
xli ðt þ 1Þ ¼ Pr

li
, thus implying an instantaneous power flow change

after the r-th failure event, whereas a < 1 implies a transient phase
which becomes longer as a approaches 0 [33]. If xli ðtÞ is larger than
line capacity, then line li fails and the propagation of the failure cas-
cade continues. If multiple lines are overloaded, the line undergoing
the fastest transient is disconnected; otherwise, if no line is over-
loaded, the cascade stops.

In this paper, for simplicity, the cascade is assumed instanta-
neous, i.e. its duration can be neglected with respect to the restora-
tion times (see next Section).

2.3. Restoration model

Each time the network suffers a damage, the initially failed line
is repaired, so that the network is restored to its initial conditions.
We assume that: (i) to perform the reconnection, a crew of repair-
men is dispatched as soon as the cascade ends; (ii) the network
becomes fully functional as soon as the initial line is repaired;
(iii) the duration of the cascade can be neglected with respect to
the times of repairs.

The variability of the weather conditions introduces uncertain-
ties in the time required for the repair, as adverse environmental
conditions usually slow down or even prevent the crew from inter-
vening. The restoration time is the overall time needed to reacti-
vate the line, i.e. the total time required for the arrival of the
crew, for the repair itself, and for switching back and reactivating
all the disconnected components until the initial steady state is
reached again. In case of multiple failures or sequential attacks to
the networks, it is assumed that multiple crews can be dispatched
to repair the failed lines.

The dependence of the repair times on the weather conditions is
modeled by means of a restoration velocity v rest , defined as the
‘‘portion” of the total required repair effort carried on in one hour.
For simplicity, but with no loss of generality, we assume that the
failed lines always require the same amount of repair effort to be
fully restored, regardless their type or length. The restoration
velocity, on the other hand, depends on the severity of the natural
disturbances under which the repair is carried on. Under normal
circumstances, the restoration velocity for overhead-uninsulated
lines is assumed to be fixed, and equal to vnorm ¼ 20 [%/h] or, in
other words, the undisturbed repair time is always trep;norm ¼ 5
[h], in line with what suggested in [37]. Given a 1-year sequence
of weather events and line failures, if the repairs take place during
a severe weather occurrence, then, a new, lower restoration veloc-
ity vrest is assumed for the repair of the failed line:

v restðtÞ ¼

vnorm
1þeðwwindðtÞ�wcrit Þ ; for wðtÞ > wcrit and Ng ¼ 0
vnorm
1þuNg

; for wðtÞhwcrit and Ngi0
vnorm

½1þeðwwindðtÞ�wcritÞ�þ½1þuNg � ; for wðtÞ > wcrit and Ng > 0

8>><>>:
ð26Þ

where e and u are parameters with positive values. As the intensity
of the severe weather events grows, the restoration velocity
decreases, increasing the duration of the outage and the interrup-
tion in the power delivery. During a given realization of a sequence
of weather events and failures, when the weather conditions go
back to normality, the restoration velocity is again set to vnorm.
For example, if a line failure occurs during a high wind event and
the repair is not finished before the weather event ends, then the
repair action continues with the normal restoration velocity vnorm;
on the contrary, if an outage occurs under normal circumstances
and a natural disturbance takes place before the restoration is com-
pleted, the restoration of the line continues with a lower velocity.

In the proposed model, we further assume that, while a line of
the grid is under repair, the other components of the network are
still subjected to failure, in agreement with the ‘‘failure bunching
due to adverse weather” concept illustrated in [10]. In case this
happens, the network is in a weaker configuration and the failure
of another component has, in general, even more severe conse-
quences, also depending on whether it affects the disconnected
portion of the grid or the still operating part. In the first case, no
further damages are considered, since no power is dispatched
and no further load can be shed. In the second case, the failure of
another line and the possible, consequent cascade likely lead to
more catastrophic consequences, as a smaller subset of lines is
available for the re-dispatching of the power supply. The repairs
of all the failed lines are assumed to be simultaneously carried
on at the same velocities. In conclusion, the occurrence of severe
weather events causes, on average, the restorations to last longer,
due to the combined effects of a reduced v rest and the possible
occurrence of multiple failures.

For the following case study of Section 3 below, the parameters
defining the restoration velocity in disturbed conditions (28) are
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arbitrary set to e ¼ 0:4 and u ¼ 40, on the basis of engineering
common sense.

2.4. Sequential time Monte Carlo

The complete model, i.e., the stochastic model of line failures
driven by ‘‘normal” and extreme weather events combined with
the DC power flow-based cascading failure model, lends itself to
a simulation-based numerical resolution scheme for estimating
the expected values of the reliability/availability indices of interest.
To this aim, similarly to [16] and [17], we propose to resort to a
Fig. 3. Flowchart of the Monte C
customized sequential time Monte Carlo scheme for generating
repeated realizations of several histories of the life of a power
transmission network. In what follows, we briefly describe the
solution method, whose flowchart is shown in Fig. 3. For further
details on the procedure, the interested reader may refer to [16]
and [17].

The sequential Monte Carlo scheme proceeds as follows. The
time horizon of the simulation is 1 year, i.e., 8760 h. At the begin-
ning of each year, the grid is assumed to be fully operational and
the weather conditions to be normal. First, the times of occur-
rences of the ‘‘normal” failures throughout the year are generated
arlo simulation algorithm.
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by sampling from the exponential distribution associated to the
homogeneous Poisson distribution (1) with total parameter

knormTOT ¼PNL
i ðknormi

Þ, where knormi
is the failure rate of line i due

to ‘‘normal” causes. The failed line i of length li is sampled from a

probability mass distribution with values knorm;i 	liPNL
i

ðknorm;i 	liÞ
, i ¼ 1; . . . ;NL.

Then, the occurrence times of the two types of severe weather
events are independently sampled from the distributions associ-
ated to the non-homogeneous Poisson distributions (2) with
parameters vwindðtÞ and v lightðtÞ, respectively. The intensities and
durations of the weather events in the annual sequence are sam-
pled from the corresponding distributions (Table 1). The times of
the failures possibly occurring during each weather event are sam-
pled from the Poisson distribution with total parameter
kpTOT ¼PNL

i ðkpðtÞiÞ, where p refers to the extreme weather event
type. If the sampled failure time falls within the duration of the
extreme weather event under consideration, then, the sample is
accepted; otherwise, it is rejected. The line of the grid actually
undergoing the failure is, then, sampled from the probability mass
distribution built similarly to the case of the ‘‘normal” failures
described above.

Finally, the three sequences of events are superimposed. In cor-
respondence of each failure of the sequence, the cascading failure
model is run until a new, stable configuration is found. At the
end of the cascading failure event, the repair of the initial line
starts with a restoration velocity v restðtÞ computed according to
the model described above (28). The possible occurrence of multi-
ple failures within the same weather event is treated as described
at the end of Section 2.3.
3. Application

The proposed modeling and simulation framework is applied to
the IEEE14 test case [21]. The grid model is composed by two kinds
of components, nodes and lines, which are representative of all the
subcomponents. The test network represents a power transmission
system with 20 links (NL ¼ 20Þ, mainly overhead, uninsulated
lines. The system operates with two different voltage levels, 132
and 230 kV: to allow this, transformers are present. Each node rep-
resents a generating unit, a load point or a transmission/switch
bus. The specific topology and data regarding generating capacity
can be found in [21]. In the following, we shall use G to denote
the topology ðV ;NLÞ of the power network, with jV j ¼ 14 nodes
Fig. 4. Example of a sequence of weather-related and failure events: the start, end and d
wind storms are represented by the circles; the start, the end and the duration of the re
and NL links, and its complete configuration, i.e. the network topol-
ogy, loads and generators. Although the size of the system is small,
its composition is regarded complete with respect to the character-
istics of interest for the purpose of the modeling and simulation
framework development proposed in the present work. In order
to compute the failure probabilities, the length of the lines is
needed. It is possible to infer the line length from the available data
in [21], using the total impedance Z reported in both [38] and [39]:

Zi ¼ ðri þ jxiÞli ð27Þ

where Zi is the impedance of the line i, r and x are the resistance and
reactance per unit of length, respectively. Assuming as power base
Sbase ¼ 100 [MVA] [21] and using the nominal voltage Vbase of each
line, the base impedance Zbase can be obtained:

Zbase ¼ V2
base

Sbase
ð28Þ

Multiplying Zbase for the specific reactance of each line and using
a conversion factor of 0.7 [O/mile], the length of each line can be
inferred, as proposed in [40] and already applied to the IEEE14 net-
work in [39]. Lines containing transformers are considered to have
null length.

Table 3 shows the main network data, i.e. the lines types, their
operating voltages and lengths, the corresponding ‘‘normal” failure
rates knorm (assumed to be related only to the line voltage level, as
proposed in [41] and also used in [39]) and the resulting annual
failure probabilities. The failure rates parameters in (7) and (8)
are chosen to be a ¼ 1:13 	 102 and b ¼ 3:10 	 103, on the basis of
engineering common sense. A total of NS ¼ 4000 histories of one
year life of the IEEE14 network are simulated, with the proposed
Monte Carlo simulation scheme.

Fig. 4 shows the outcome of a realization of weather events and
line failures occurrences during a portion of one year. Each squared
wave represents the occurrence of an event, its starting time and
duration. The solid line is referred to the occurrence of a wind
storm, the circles indicate the weather-related failure times and
the dashed line is associated to the consequent restoration pro-
cesses. In this particular realization, the wind storm event gives
rise to multiple line failures. The event is characterized by a wind
speed of wwind ¼ 9:42 [m/s], lasting for Dwind ¼ 31:6 [h] and causing
four lines failures. The corresponding restoration velocity, com-
puted by (28), is v restðtÞ ¼ 0:638, which would imply a repair dura-
tion trepðtÞ ¼ 7:84 [h]. However, after the occurrence of the initial
uration of a wind storm event are indicated by the solid line; the failures due to the
pairs are indicated by the dashed line.



Table 2
Details of the sequence of Fig. 4.

Failure Time [h] Line Targeted li (unavailable lines) Cascade lines li disconnection Load shed [MW]

1 4479.7 12 – 0
2 4480.2 3 (12) 6 9.54
3 4489.0 13 (3, 6, 12) 19, 18, 17, 16 136.47
4 4498.7 17 20 16.11

Table 3
Data for the IEEE14 transmission network ([39] and [41]).

Node i Node j Line type and voltage Length [km] Failure rate knorm [1/km/y] Annual failure probability (‘‘normal”)

1 2 132 kV line 22 1.086 	 10�2 0.216
1 5 132 kV line 81 1.086 	 10�2 0.585
2 3 132 kV line 72 1.086 	 10�2 0.542
2 4 132 kV line 64 1.086 	 10�2 0.501
2 5 132 kV line 63 1.086 	 10�2 0.495
3 4 132 kV line 62 1.086 	 10�2 0.490
4 5 132 kV line 15 1.086 	 10�2 0.150
4 7 132/230 kV transformer – – –
4 9 132/230 kV transformer – – –
5 6 132/230 kV transformer – – –
6 11 230 kV line 219 5.429 	 10�2 0.696
6 12 230 kV line 282 5.429 	 10�2 0.784
6 13 230 kV line 144 5.429 	 10�2 0.542
7 8 132/230 kV transformer – – –
7 9 132/230 kV transformer – – –
9 10 230 kV line 93 5.429 	 10�2 0.396
9 14 230 kV line 298 5.429 	 10�2 0.802
10 11 230 kV line 212 5.429 	 10�2 0.684
12 13 230 kV line 220 5.429 	 10�2 0.697
13 14 230 kV line 384 5.429 	 10�2 0.876
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failure at t ¼ 4479:7 [h], a second and third failures occur before
the conclusion of the repair of the first failure event. Since the
reconnection of all the disconnected lines is assumed to be per-
formed at the same time (Section 2.3), any further line failure,
occurring within the restoration period of a previous damage, pre-
vents the repairs to be finished on schedule and a new restoration
period begins. In the presented case, the three successive failure
events result in a restoration duration of trepðtÞ ¼ 17:2 [h]. Table 2
reports the storyline corresponding to the failure sequence shown
in Fig. 4, giving the failures occurrence times (column 1), the grid
line damaged by the severe weather event (column 2), the lines dis-
connected after the cascading failure events (column3) and the load
shed after each cascading failure. It can be seen that the size of the
subset of disconnected lines increases from the first to the third fail-
ure and, accordingly, also the undelivered power does. The fourth
and last failure, instead, occurs after the repairs are completed, so
that a larger subset of lines is again available for re-dispatching
the power and, consequently, the final power shed is lower.

As anticipated in Section 2, we quantify the reliability/availabil-
ity of the power transmission network by means of the following
indices: (i) the System Average Restoration Time Index (ART), (ii)
the System Average Failure Frequency Index (AFF) and (iii) the
Expected Energy Not Supplied (EENS).

The ART indicator is estimated in two different versions: ARTy

[h/y] and ARTi [h/occ]. The index ARTy [h/y] is the average duration
of the outages over one year:

dARTy ¼
XNS

j¼1

PNej

i trep;ei
NS

ð29Þ

where Nej is the number of failure occurrences due to the event e
(‘‘normal” or weather-related) in the year j and trep;ei is the restora-
tion time associated to the cascade failure event i caused by the
event e: Note that the index ARTy bears some similarities with the
SAIDI indicator typically used for quantifying the reliability of
power distribution networks (see, for example, [16] and [17]). The
index ARTi [h/occ] is the average duration of a single outage, here
estimated as:

dARTi ¼
PNe;tot

i trep;ei
Ne;tot

ð30Þ

where Ne;tot is defined as the overall number of failure occurrences
due to the event of type e in all the Ns simulations:

Ne;tot ¼
XNS

j¼1

Nej ð31Þ

The AFF [occ/y] index quantifies the average number of failure
occurrences in the grid in one year, here estimated as:

dAFF ¼
PNS

i¼1Nei

NS
ð32Þ

The EENS [GW h/y] indicator represents the annual average
amount of energy not delivered by the transmission network due
to the disruptive events, here estimated as:

dEENS ¼
XNS

j¼1

PNej

i LSei � trep;ei
NS

ð33Þ

Finally, since we are interested also in quantifying the average
impact of cascading failures on the network reliability/availability,
we further introduce the Average Load Shed index (ALS [MW/occ])
as the average power not served at the end of a failure and, possi-
bly, subsequent cascade event, here estimated as:
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dALS ¼
PNe;tot

i¼1 LSei
Ne;tot

ð34Þ

where LSei [MW/occ] is the load shedding after a cascade event
caused by the event e:

Note that the EENS indicator is widely used in analyses of both
transmission and distribution grids and the ALS is a common mea-
sure of the impact of cascading failures in transmission grids.

Following the approach proposed in [16], in order to measure
the contribution to the reliability/availability indices due to the
extreme weather events, the simulations are carried on in two dif-
ferent settings: in the first case (case 1), we assume that the net-
work is subjected only to ‘‘normal” failures, i.e. the cascades are
triggered by line failures only due to normal operating conditions;
in the second case (case 2), the occurrences of wind storms and
lightning are included in the simulation.

With regards to case 2, the estimates of the mean duration, bDe,
and of the average number of occurrences of event e, n̂e, are com-
puted as:

n̂e ¼
PNS

i¼1ne;i

NS
ð35Þ
bDe ¼
Pne;tot

i¼1 De;i

ne;tot
ð36Þ

where ne;tot is the total number of events e among all the NS

simulations. The resulting average occurrences of high wind and
lightning events are estimated to be n̂wind ¼ 53:2 [occ/y] andbNlight ¼ 48:5 [occ/y], respectively, while their mean durations arebDwind ¼ 9:78 [h] and bDlight ¼ 1:21 [h], respectively. The portion of
the year interested by extreme weather events is:

bTwind ¼ bDwind � n̂wind ¼ 520 ½h�bT light ¼ bDlight � n̂light ¼ 58 ½h�bTwind þ bT light

8760h
¼ 6:6%

Table 4 shows the results obtained in the two cases, where the
symbol l indicates the sample means of the reliability/availability
indices and r their sample standard deviations.

Table 5 shows the individual contributions to the reliability/
availability indices due to the occurrence of each type of extreme
weather event considered, including their possible simultaneous
occurrence. In other words, the Table shows the values of the indi-
cators computed by taking into account only the contribution of a
single weather event typology, i.e., either only high winds, light-
Table 5
Results for weather-related failures. Average of 4000 repetitions of the simulations.

IEEE14 dARTi [h/occ] dARTy [h/y]

l r l r

High wind 6.67 1.90 99.15 25.93
Lighting 5.32 1.77 3.89 4.43
High wind + lightning 6.83 2.02 0.22 1.26

Table 4
Results under normal failures. Average of 4000 repetitions of the simulations.

IEEE14 dARTi [h/occ] dARTy [h/y]

l r l r

Case 1 – No Extreme Weather 5.06 1.01 71.68 19.61
Case 2 – With Extreme Weather 5.98 0.89 175.0 31.62
ning or their simultaneous occurrence (lightning during high
winds).

The average number of failures in one year (dAFF, column 3,
Table 4) is larger in case 2, demonstrating that the extremeweather
events have a significant impact on the reliability/availability per-
formances of the network, even if their total average duration rep-
resents only a small fraction of one year, as shown above.

Other significant consequences of the severe weather events are
the increases in the average durations of the single interruption of

supply ( dARTi ) and in the annual average duration of the restoration

processes ( dARTy). It can be seen that the relative increase in dARTi is

significantly smaller than that in dARTy , being due only to the
effects of the restoration model. In particular, the increase is due
to the simultaneous effects of (i) the lower restoration velocity
vrestðtÞ during the weather event, directly correlated to its intensity
and (ii) the occurrence of multiple line failures within the same
extreme weather event, since more lines have to be repaired in

order for the grid to be restored. On the other hand, the dARTy is also
affected by the average annual number of interruptions.

As said above, each time the system is subjected to multiple
failures within the same extreme weather event, it also experi-
ences larger load shedding magnitudes at the end of the cascades,
due to the progressive reduction of the available lines, as shown
earlier. This is shown by the estimates of the load shed indexdALS, as shown in column 4, Table 5, where the separate contribu-
tions due to the different weather event types are reported. In fact,
as the failure rate increases, the probability of multiple failures
grows and the magnitude of the final outages increases. For exam-
ple, the maximum value of the failure rate occurs when a wind
storm and a lightning event occur simultaneously, and, coherently
the maximum ALS is observed in correspondence of this kind of
event. Note also that the duration of the weather event has a sig-

nificant effect on the value of the index ALS. Comparing the dALS
index due to high wind, lightning (column 4, Table 5) and the
one calculated during ‘‘normal” conditions (column 4, Table 4) it
can be noticed that a sustained extreme weather event (as wind
storms) can imply severe consequences, while a short one (such
as lightning) causes an average load shed similar to the one under
normal circumstances.

Another important consequence of the larger number of failures
during extreme weather and of the associated larger restoration
times, is a larger value of the index EENS, as it can be seen from
Table 4. Table 5 also shows that the wind storm events provide
the largest contribution to EENS, mostly due to their longer dura-
tions, which significantly affect the related restoration velocities

(bDwind ¼ 9:36 [h]).
dAFF [occ/y] dALS [MW/occ] dEENS [GW h]

l r l r l r

14.86 3.79 103.10 95.50 10.43 3.86
0.73 0.70 85.60 88.54 0.33 0.57
0.031 0.19 110.50 94.23 0.03 0.13

dAFF [occ/y] dALS [MW/occ] dEENS [GW h]

l r l r l r

13.61 3.79 84.90 107.51 5.80 1.96
29.23 5.06 92.30 18.97 16.60 4.42
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Interestingly, in our application we observe a general, signifi-
cant increase in the estimates of the average reliability/availability
indicators when severe weather events are included in the model,
as opposed to the results obtained in [16], where a distribution
network is analyzed. In fact, even though the duration of extreme
weather events is only a small fraction of the grid operating time,
the consequences are harsher than in a distribution system, due to
the multiplying effect of cascading failures. This behavior is less

evident for the indicator dARTi because, as stated above, it is related
to the cascading failure consequences only indirectly, through the
restoration model. The standard deviations of the reliability/avail-
ability indicators, which are important measures of the operator’s
exposure to risk, are also observed to be higher in case extreme
weather events are included in the framework, in agreement with
the results obtained in [16].

Note that the proposed framework should be used by the grid
operators to (i) check the current grid reliability/availability perfor-
manceswith respect to any thresholds set by the regulatory author-
ities and (ii) to compare alternative actions to be undertaken, in
support of a decision making process involving grid improvements
and operation and maintenance strategies. In particular, the differ-
ent options could be ranked according to the values of the indica-
tors reported in Table 4, possibly assigning different weights to
the various indexes according to the final objective of the decision
making process. Then, in order to further inform the decision mak-
ing process, the results of Table 5 could be used to identify the
typology of weather event to which the grid is mostly exposed to
from a reliability/availability point of view, so as to possibly steer
the investments towards more tailored interventions.

The computational time required by the simulations is mainly
driven by the number of calls to the cascading failure model. The
computational time is approximately 4.5 h for Case 1 and 10 h
for Case 2, on a 2.26 GHz Intel Core 2 Duo processor with 2 GB of
RAM. In Case 2, the occurrence of extreme weather events leads
to a significant increase in the number of line failures, each of
which requires a cascading failure simulation. The computational
time is expected to increase more than linearly with the size of
the grid, as a consequence of the combined effects of (i) the large
annual average number of failures, simply due to the long total
extension of the lines and (ii) the large computational resources
required by a single cascading failure simulation on a more com-
plex network. Rough estimates carried out by running a few cas-
cading failure simulations for the IEEE118 reference network
suggest that the proposed analysis would require computational
times of the order of days/one week on the same machine. This
means that an analysis of a more realistic grid is probably still fea-
sible, although more complex analyses, e.g. including uncertainty
and sensitivity analyses or optimizations, would require either to
resort to processor clusters, or to identify strategies for accelerat-
ing the computations, possibly based on the use of surrogate,
approximating models.
4. Conclusions

In this work, we have developed a modeling and simulation
framework for the quantification of reliability/availability indexes
of power transmission grids, which represents a fundamental task
for the cost-effective development, operation, maintenance and
improvement of these complex infrastructures.

More specifically, the purpose of the proposed framework is
that of allowing for a more realistic reliability/availability evalua-
tion, by including a representation of the cascading failure dynam-
ics triggered by extreme weather events and by introducing a new,
flexible restoration model which allows to capture the uncertain-
ties related to the repair processes.

The framework has been developed by originally combining
stochastic models for describing uncertain weather conditions
with a cascading failure model based on a DC approximation of
the power flows and a proportional re-dispatch strategy. The novel
restoration model accounts for the harsher conditions offered by
extreme weather events, under which a repair crew may be forced
to operate, thus realistically representing the downtime of a power
grid upon a cascading failure event.

The model evaluation has been performed by a customized
sequential time Monte Carlo simulation scheme of resolution.

The main assumptions of the proposed framework, introduced
in the paper, are here critically revisited:

(a) Only failures of the grid’s lines are taken into account. The
failures of other grid’s components, such as buses, substa-
tions, and transformers are not included in the analysis. This
is a common approach followed in many works of literature
(since power transmission line failures are more common
than bus failures [28]) which may lead to an overestimation
of the reliability/availability of the grid.

(b) The cascading failure model for the estimation of the line
failures’ consequences is based on a DC approximation of
the power flows. This is also a very popular strategy adopted
in both research works and actual applications, especially
when the network analyzed is very large, making the AC
power flow computations almost infeasible in many practi-
cal applications. As recognized in (Kenneth Van den Bergh,
Erik Delarue and William D’Haeseleer, DC power flow in unit
commitment models, TME Working Paper - Energy and Envi-
ronment (2014)): ‘‘In general, one can conclude that for high
voltage grids - which are mostly the ones looked at in unit
commitment models - the accuracy of DC power flows is
around 5%, compared to AC power flow and averaged over
all lines. The deviation on single line flows can be much lar-
ger. Hence, the accuracy of DC power flow is acceptable in
the scope of unit commitment models, but one should
always keep the limitations of DC power flow in mind and
be careful with drawing conclusions about single lines”.

Since the purpose of our work is that of analyzing average
behaviors and not single line’s performances, we consider
the DC approximation as the best option, especially in view
of a possible application of our framework in optimization
or sensitivity problems requiring multiple runs.
Another simplification made in the proposed cascading
failure model is that of using a simple, proportional power
flow re-dispatch strategy to balance the islands forming in
the grid when many of the grid’s line are disconnected as
the cascading failure proceeds. In general, optimizations
techniques are used to re-balance the islands in order to
guarantee that the loads are not shed while minimizing
the losses. These methods can be easily embedded in the
proposed framework, but they require much longer com-
putational times. We chose not to do that in order to be
able to perform our research in acceptable times according
to the computational power available.

(c) The distributions of the times of occurrence of the severe
weather events and of the line failures, and the distributions
of the weather event intensities are taken from the works of
literature cited in the Introduction. The parameters of the
distributions must indeed be identified on the basis of
weather statistics collected in the geographical region of
interest.



278 F. Cadini et al. / Applied Energy 185 (2017) 267–279
(d) Also the models relating the intensities of the weather
events to the magnitude of the lines’ failure rates are taken
from previous works of literature, where the relationships
were devised on the basis of both physical and empirical
reasonings.

Then, the main barriers to the applicability of the method are:

(a) The computational times required for the analysis of large
grids with many lines. However, since there are no real-
time requirements, this issue can be addressed by investing
on an appropriate amount of computational power, if single
reliability/availability estimates are required. Optimizations
and uncertainty and sensitivity analyses requiring multiple
runs of the proposed tool would be more problematic, as
already stated at the end of Section 3.

(b) The availability of sufficient weather events statistics in the
geographical region of interest, so as to be able to identify
the parameters of the distributions used in the weather
stochastic model. Usually, weather events databases are
available, so that the problem actually reduces to that of
properly organizing and treating the data for the parameter
identification process.

An application on the well known IEEE14 reference power grid
has been given. The results show that rare, but highly severe (in
terms of duration and intensity), weather events may have, in gen-
eral, a significant impact on the distributions of the reliability/
availability performance indicators of a power transmission grid,
not only in terms of the standard deviations, as already highlighted
in literature for power distribution grids, but also in terms of the
means, since their consequences are enhanced by the possible
development of cascading failures. Furthermore, in the application
considered, it turns out that the duration of the severe weather
events has a more significant influence on the reliability/availabil-
ity of a power grid than their intensity: in fact, a larger failure rate,
with prolonged effects on the failure statistics, may result in mul-
tiple failures and increased restoration periods, giving rise to larger
and long-lasting load losses.

The proposed framework can be used by the grid operators to
control and show that the current grid reliability/availability per-
formance levels fulfill the regulatory constraints or to support
the decision making on possible grid improvements and different
maintenance/restoration strategies, by allowing comparisons and
rankings of the available options. In addition to that, the method
also automatically provides a simple sensitivity analysis by identi-
fying the typology of weather event to which the grid is mostly
exposed to from a reliability/availability point of view, thus further
supporting decisions aiming at protecting the grid from the haz-
ards of natural events.

The application has been demonstrated on a small, but realistic,
network due to the limited computational power available. The use
of the DC approximation for the power flow solution guarantees
that sufficiently accurate estimates can be obtained also for larger
networks at acceptable computational expenses, at least for com-
paring a few relevant scenarios. Thorough optimizations and
uncertainty/sensitivity analysis, on the other hand, would probably
require to include additional approximation schemes in the com-
putational framework, which however would stand valid with no
significant modifications.
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