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ABSTRACT Accelerated degradation testing (ADT) is commonly used to obtain degradation data of
products by exerting loads over usage conditions. Such data can be used for estimating component lifetime
and reliability under usage conditions. The design of ADT entails to establish a model of the degradation
process and define the test plan to satisfy given criteria under the constraint of limited test resources. Bayesian
optimal design is a method of decision theory under uncertainty, which uses historical data and expert
information to find the optimal test plan. Different expected utility functions can be selected as objectives.
This paper presents a method for Bayesian optimal design of ADT, based on the inverse Gaussian process
and considering three objectives for the optimization: relative entropy, quadratic loss function, and Bayesian
D-optimality. The Markov chain Monte Carlo and the surface fitting methods are used to obtain the optimal
plan. By sensitivity analysis and a proposed efficiency factor, the Bayesian D-optimality is identified as the
most robust and appropriate objective for Bayesian optimization of ADT.

INDEX TERMS Accelerated degradation testing, Bayesian optimal design, inverse Gaussian process,
Markov chain Monte Carlo (MCMC), surface fitting.

I. INTRODUCTION
Accelerated testing is an effective method to access the
reliability and lifetime of products in a short time, especially
for high reliability and long life products [1]. The optimal
design of accelerated life/degradation testing (ALT/ADT)
aims to find a cost-effective testing plan, which trades off dif-
ferent objectives and constraints. Traditional optimal design
is based on an acceleration life/degradation model with spec-
ified parameter values. The optimal test plan designed is,
then, generally referred to as the local optimal solution.
Differences between the specified parameter values and the
true values cause the optimal test plan to be sub-optimal.
Based on available historical data and expert information,
a prior distribution can be assigned to account for parameter
uncertainty, and then, the optimal test plan can be obtained
by averaging over the parameter space and sample space.

Recently, the Bayesian optimal design method has been
applied in ALT design. Zhang and Meeker [2] studied the

Bayesian ALT design based on censored data from a log-
location-scale distribution. Xu and Tang [3] proposed a
Bayesian optimal design with the objective of expected rela-
tive entropy between the posterior and the prior distributions
of the parameters. ALT can shorten testing time, but for some
products with extremely high reliability and long lifetime,
even Bayesian ALT methods are not suitable, as few physical
failures can be observed even in ALT. On the other hand, fail-
ure of a product is associated with the degradation of its char-
acteristics. Degradation of a product accumulates over time
and causes failure when it exceeds a failure threshold. This
naturally provides a relationship between degradation and life
of a product [4], [5]. For this reason, ADT has been devel-
oped to avoid the aforementioned problem in ALT. Limited
published literature is available on Bayesian ADT optimal
design, compared to ALT. Models of stochastic degradation
processes are used in ADT, different from the models used
in ALT; consequently, the optimal methods proposed in ALT
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cannot be directly used for ADT. Shi and Meeker [6] pre-
sented a Bayesian method for accelerated destructive degra-
dation tests (ADDT), under a class of nonlinear degradation
models with one accelerating variable. The optimal objective
was to maximize the precision of a specified failure-time
distribution quantile under usage conditions. A large-sample
approximation for the posterior distribution was made to
provide a useful simplification to the planning criterion. The
general equivalence theorem was applied to verify the global
optimality of the numerically optimized test plans. Li et al. [7]
presented a Bayesian methodology for designing step stress
accelerated degradation testing (SSADT) with the objec-
tive of relative entropy. It is assumed that the degradation
model follows a drift Brownian motion and the acceleration
model follows Arrhenius equation, and the corresponding
parameters follow normal and Gamma prior distributions.
The Markov Chain Monte Carlo (MCMC) and surface fitting
method are chosen to solve for optimality. Liu and Tang [8]
proposed a Bayesian design method for ADT, with physically
based statistical models. The hot-carrier-induced degradation
of modern MOS field is considered as case study of transistor
degradation. A single-path power-law statistical degradation
model with nonlinear stresslife relationships is developed.
Based on this model, the optimal objective is to minimize the
expected pre-posterior variance of the quantile life at the use
condition.

Bayesian design is based on the theory of making optimal
decisions under uncertainty. The aim is to find an optimal test
plan by maximizing the expected utility of the test outcome.
The optimal plan is targeted to specific objectives. There are
different mathematical expressions for the expected utility
function, such as relative entropy, quadratic loss function
and Bayesian alphabetic optimal. Relative entropy is one
of the most widely used objectives [3], [7], [9], providing
a measurement of the distance between prior and posterior
distributions. From the Shannon information point of view,
relative entropy can also represent the increased information
provided by testing. There is also some published literature
on Bayesian optimal design with the quadratic loss func-
tion as the objective [2], [6], [8], [10], which minimizes
the asymptotic variance of the maximum likelihood estima-
tor (MLE) of a specified quantile lifetime at the usage condi-
tion. Bayesian alphabetic optimality considers the precision
of model parameters, minimizing the asymptotic variance of
the MLE of a function of the model parameters. The most
common alphabetic optimization is D-optimality [11], [12]
which minimizes the determinant of the covariance matrix of
the model parameter estimates [13]. Various optimal objec-
tives have been used to design ALT/ADT plans, and dif-
ferent objectives are expressed by different mathematical
functions. However, limited published literature is concerned
about the difference and applicability of the objectives. In this
paper, the ADT optimal design with the objectives of relative
entropy, quadratic loss function and D-optimality are investi-
gated with respect to the difference and applicability of these
objectives.

The other important element of ADT Bayesian optimal
design is the degradation model. There are two popular
models for ADT data, which are the Wiener process and
the Gamma process. Although the Wiener process and the
Gamma process have received much attention in degradation
data analysis, they cannot handle all degradation problems.
For example, Wang and Xu [14] found that neither mod-
els fit the GaAs laser degradation data well ([15, Exam-
ple 13.5]), and built a degradation model based on inverse
Gaussian (IG) process that fits the GaAs degradation data
better. Ye and Chen [16] systematically investigated the IG
process and showed its advantages as degradation model.
Ye et al. [17] provided Bayesian optimal design of constant
stress ADT considering the stochastic IG process with the
objective of quadratic loss function. Wang et al. [18] pro-
vided an optimal SSADT plan for the IG degradation process.
Under the constraint of total experimental budget, design
variables were optimized by minimizing the asymptotic vari-
ance of the estimated p-quantile of the lifetime distribution of
the product. The sensitivity and stability of the SSADT plan
were studied to verify that the optimal test plan is quite robust
for a moderate departure from the values of the parameters.

The purpose of this paper lies in two aspects: firstly, it is
to investigate the Bayesian planning method for SSADT
using the IG process, with the objectives of relative entropy,
quadratic loss function and D-optimality; secondly, it is to
present the different advantages of the three objectives by
comparison. The remaining paper is organized as follows.
In Section 2, the framework of Bayesian optimal design for
SSADT based on the IG process is presented. In Section 3,
the Bayesian optimal criterion is presented with the opti-
mal objectives of relative entropy, quadratic loss function,
Bayesian D-optimality, respectively, and the optimal model
is constructed with cost constraint. The Markov Chain Monte
Carlo (MCMC) and surface fitting method are utilized to
obtain the optimal plan. In Section 4, applications are pre-
sented and conclusions are drawn based on a number of
comparisons.

II. IG PROCESS IN ADT
We assume that the degradation path of a product satisfies
the IG process. Let Y (t), t ≥ 0 be the degradation path of
a product. The product fails when its degradation path Y (t)
reaches a predefined threshold level YD and the associated
first-passage-time is denoted by TD.

A. THE IG PROCESS
If a degradation process has the following three properties,
we say that it is an IG process,

(1) Y (0) = 0 with probability one;
(2) Y (t) has independent increments, i.e., Y (t2)−Y (t1) and

Y (t4)− Y (t3) are independent, for 0 ≤ t1 < t2 ≤ t3 < t4;
(3) Each increment follows an IG distribution, i.e.,1Y (t) ∼

IG(µ13(t), λ13(t)2), where µ > 0, λ > 0, 13 =
3(t) − 3(s), 3(t) is a given, monotone increasing function
of time t with 3(0) = 0.
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For any x > 0, the probability density function (PDF) of
IG(u, v), u > 0, v > 0, with mean u and variance u3/v is
defined by,

fIG(x; u, v) =

√
v

2πx3
· exp

[
−
v(x − u)2

2u2x

]
. (1)

Then, the degradation process can be characterized by
Y (t) ∼ IG(µ3(t), λ3(t)2). The mean and variance of
Y (t) are µ3(t) and µ33(t)/λ, respectively. Substituting
u = µ3(t) and v = λ32(t) into (1) yields the PDF of
IG(µ3(t), λ32(t)) as,

fIG(x;µ, λ) =

√
λ(3(t))2

2πx3
· exp

[
−
λ(x − µ3(t))2

2µ2x

]
(2)

The parameter µ could be assumed as the degradation rate
of a product and it is a function of the accelerated stress S,
i.e. it is an acceleration model, which is denoted as µ(S) and
could be written as follows,

µ (S) = exp [a+ bϕ (S)] (3)

where, the parameters a and b need to be estimated fromADT.
For convenience, the stress level can be standardized using a
normalization scheme. In this paper, the linear normalization
method is applied. Let S0 and SH be the usage stress level
and the highest stress level that can be used in the test,
respectively. Then, ϕ(S) is a standardized function of S and
expressed as,

ϕ (S) =
(
ξ
(
Sj
)
− ξ (S0)

)
/(ξ (SH )− ξ (S0)) (4)

where ξ (S) represents a pregiven function of S. For example,
if the accelerated stress is temperature, ξ (S) = 1/S, and if the
accelerated stress is electricity, ξ (S) = ln(S).
The parameter λ has no physical meaning and is a constant,

i.e. if there are K accelerated stress levels in an ADT, then
λ1 = λ2 = · · · = λK . Since µ and λ are not dependent on
time, the process is a homogeneous IG process or simple IG
process. Generally, there are three different shapes of perfor-
mance degradation trend, linear, convex and concave. Hence,
it is appropriate to assume 3(t) = tβ , β > 0 [10], because
when 0 < β < 1, the trend is conve; when β = 1, the trend
is linear; and when β > 1, then trend is concave. As the
path of the IG process is strictly increasing, the cumulative
distribution function (CDF) of TD can be expressed as,

FYD (t) = P(Y (t) ≥ YD) = 8

[√
λ

YD
(tβ −

YD
µ

)

]

− exp
(
2λtβ

µ

)
·8

[
−

√
λ

YD

(
tβ +

YD
µ

)]
. (5)

According to [16], when both µ3(t) and t are large,
Y (t) is approximately normally distributed with mean µ3(t)
and variance µ33(t)/λ. Therefore, the CDF of YD can be
approximated as,

FYD (t) = 1−8

[
YD − exp(a+ bϕ(S))tβ√
exp(a+ bϕ(S))3tβ/λ

]
(6)

The p-quantile lifetime of YD, based on this approxima-
tion is,

tp = 3−1
[
µ

4λ

(
zp +

√
(zp)2 + 4YDλ/µ2

)2
]

(7)

where zp is the standard normal p-quantile, and3−1 (.) is the
inverse function of 3(.).
For the sake of simplicity, we assume that the four param-

eters ( i.e., a, b, λ and β) in (6) are independent from each
other and compose the parameter vector θ = (a, b, λ, β).
In practice, it is appropriate to consider θ a vector of

random variables. In this study, when the degradation incre-
ment x follows an IG distribution, λ and β should be posi-
tive. Therefore, common positive distributions (i.e. Gamma,
Lognormal and Beta distributions) can be used to describe
λ and β. Normal, Logistic and Gumbel distributions can be
used to describe a and b. The selection of the distributions is
discussed in section IV.

B. ADT SETTINGS AND BAYESIAN INFERENCE
We assume that there are n samples for ADT. The K accel-
erated stress levels are numerically ordered as S0 < Smin ≤

S1 < S2 < · · · < SK ≤ Smax ≤ SH . Let Smin and Smax be the
lowest and highest stress levels which will be used in ADT.
There areml degradationmeasurements on the l th stress level,
and the cumulative measurement times of the whole test isM
and M =

∑K
l=1 ml .

Let τ be the non-overlapped interval of degradation mea-
surement constant during SSADT; then, the test duration tl
on the l th stress level is tl = τml , and the total test duration
is T0 = τ ∗M .
Let Y (tilj) be the measurement result of the jth mea-

surement of the ith item on the l th stress level at time
tilj (i = 1, 2, · · · , n, l = 1, 2, · · · ,K , j = 1, 2, · · · ,ml).
The degradation increment is xilj = Y (til(j+1)) − Y (tilj)
and follows (2). Then, based on (2), the likelihood function
is (8), as shown at the top of the next page, and, the posterior
distribution p(θ |x) of θ is,

p(θ |x) =
p(x|θ )π (θ )∫

2
p(x|θ )π (θ )dθ

. (9)

According to Equation (7) and (9), the Bayesian posterior
p-quantile lifetime of YD is expressed as follows,

t(p, θ |x) = t(p|θ ) · p(θ |x)

=3−1

[
µ

4λ

(
zp +

√
(zp)2 + 4YDλ/µ2

)2
]
· p(θ |x)

(10)

III. BAYESIAN OPTIMAL MODEL
The optimal design can be obtained by maximizing the
expected utility of the experiment [19]. If a design plan η is
chosen from the possible plan set D, then the sample data
x will be collected, and a decision rule d from the decision
rule set H is selected with the given η and observed x.
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p(x|θ ) =
K∏
l=1

n∏
i=1

ml∏
j=1

√√√√√λ
[(
mil(j+1)τ

)β
−
(
miljτ

)β]2
2πx3ilj

· exp

−
λ
[
xilj − exp (a+ bϕ(Sl))

] [(
mil(j+1)τ

)β
−
(
τmilj

)β]2
2
[
exp (a+ bϕ(Sl))

]2xilj
 (8)

The utility function can be denoted as U (d, η, x, θ); then
for any design η, the expected utility of the best decision is
expressed as:

E(η) =
∫
�

max
d∈H

∫
2

U (d, η, x, θ )p(θ |x , η)p(x |η )dθdx

(11)

where p(x|η) denotes the likelihood function under the
given η and p(θ |x, η) denotes the posterior distribution of θ

under the given η and observed x. The pre-posterior expected
utilityE(η) of the best decision rule is taken as the expectation
in the parameter space2 to account for the uncertainty of the
unknown θ and in the sample space �. The Bayesian best
plan η∗can be obtained by maximizing

E(η∗)=max
η∈D

∫
�

max
d∈H

∫
2

U (d, η, x, θ )p(θ |x , η)p(x |η )dθdx

(12)

In the case of SSADT, the sample size n, the total number of
degradationmeasurementsM , the specified accelerated stress
levels S, S = (S1, S2, · · · , SK ), and the specified number of
degradation measurements on each accelerated stress levelm,
m = (m1,m2, · · · ,mK ), are the key elements of a design
plan η, rewritten as η(n,M ,S,m).

To some extent, the utility embodies the effectiveness
obtained and the cost spent in an ADT. Moreover, the budget
of an ADT is always given in advance and the test should be
conducted within this budget. With the utility as the objective
and the cost as the constraint of a test, an optimal problem
is formulated and the optimal plan should be obtained by a
trade-off between them. Therefore, in this optimal problem,
n, M , S and m are the decision variables.

A. OPTIMAL OBJECTIVES
1) RELATIVE ENTROPY
In the Bayesian theory, the relative entropy is expressed as
showed in [7],

RE(η) =
∫ ∫

p(x|θ , η) log (p(x|θ , η)) dx

−

∫
p(x) log p(x)dx (13)

where p(x) is the marginal likelihood function and p(x|θ , η)
denotes the likelihood function with known parameter vec-
tor θ ; then, (13) can be expressed as,

RE(η) = ExEθ log (p(x |θ , η ))− Ex log p(x). (14)

Since p(x|θ , η) denotes the likelihood function, it is easy
to calculate ExEθ log [p(x|θ , η)] using Monte Carlo simula-
tion. However, it is a significant challenge to calculate the

marginal likelihood function p(x). The Markov Chain Monte
Carlo (MCMC) sampling method is one of the solutions to
this problem and can be implemented, for example, using a
software like WinBUGS [20]. The harmonic mean estima-
tor introduced by Newton and Raftery [21] will be used to
estimate p(x), expressed as,

p (x) ≈

{
1
N

N∑
i=1

[p(x, θ |η)]−1
}−1

(15)

To some extent, the relative entropy is explained as the
information gain from a test. Therefore, as an objective,
the optimal plan should be obtained by maximizing (14) and
written as max RE(η).

2) QUADRATIC LOSS FUNCTION
Based on (10), the posterior variance of t(p, θ |x, η) is the
quadratic loss of p-quantile lifetime on the usage condi-
tion of YD. Since we need to calculate this quadratic loss,
denoted as Var(t(p, θ |x, η)) before ADT data are collected,
its corresponding expectation should be with respect to Îÿθ
and x. Consequently, we can get the pre-posterior variance as
follows.

Q(η) = ExEθ [Var(t(p, θ |x, η))]. (16)

The pre-posterior variance is interpreted as the quadratic
loss; therefore, the optimal plan should be obtained by mini-
mizing (16) or maximizing −Q(η), written as max −Q(η).

3) BAYESIAN D-OPTIMALITY
Chaloner and Larntz [22] proposed the Bayesian
D-optimality criterion, written as follows,

8(η) = Eθ [log(det(I (η, θ )))] =
∫

log(det(I (η, θ )))p(θ )dθ

(17)

where the symbol det denotes the determinant of the
matrix, and I (η, θ ) denotes the Bayesian information matrix
expressed as follows,

I (η, θ )

=


E
(
−
∂2L
∂a2

)
E
(
−

∂2L
∂a∂b

)
E
(
−

∂2L
∂a∂λ

)
E
(
−

∂2L
∂a∂β

)
E
(
−
∂2L
∂b2

)
E
(
−

∂2L
∂b∂λ

)
E
(
−

∂2L
∂b∂β

)
E
(
−
∂2L
∂λ2

)
E
(
−

∂2L
∂λ∂β

)
symmetrical E

(
−
∂2L
∂β2

)


(18)
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where, the symbol symmetrical denotes the symmetric
matrix, and the matrix I (η, θ ) must be non-singular. The
expressions for all the elements of I (η, θ ) are given in
Appendix A. Then, the Bayesian D-optimality is to maxi-
mize (17), which can be expressed as max 8(η).

B. CONSTRAINTS
1) COST CONSTRAINTS
The test cost is mainly related to the test item and operation.
The cost related to the test item is expressed as the product
of the sample unit price and sample size. The cost related
to test operation mainly includes the cost of the resources
consumed in the test, such as test labor, power resource, etc.
For simplicity, the operation cost is expressed as the product
of operation unit price and total test duration. Therefore,
the total test cost can be written as follows,

n · C1 +M · τ · C2 ≤ C0 (19)

where C1 denotes the sample unit price, C2 denotes the
operation unit price, C0 denotes the given budget of an ADT.

2) OTHER CONSTRAINTS
In reality, besides the test budget, there might be other con-
straints to the decision variables given in advance, such as
the value range, the relationship between them, etc. From
the point of view of practice, we present the following
requirements:

a)Sample size n
Generally, we require n ≥ 3; but the sample size cannot be

infinite, there should be a specified limit nmax for the sample
size.

b)The number of accelerated stress levels K .
In order to ensure the feasibility and accuracy of the extrap-

olation in stress dimension, generally, the value ofK could be
chosen in the range of values 3 ∼ 6.
c) Number of degradation measurements under each accel-

erated stress levels m = (m1,m2, · · · ,mK ).
Since the degradation rate in higher stress levels is greater

than in lower stress levels, in order to guarantee that
enough useful degradation information can be obtained in
all stress levels, more degradation measurements should be
assigned in lower stress levels than in higher stress levels,
i.e. m1 > m2 > ę > mK (l = 1, 2, · · · ,K ).

C. OPTIMAL MODEL
Based on the analysis in sections III-A and III-B, the optimal
model for Bayesian SSADT design can be expressed as,

max E(η)
s.t. n · C1 +M · τ · C2 ≤ C0

3 ≤ n ≤ nmax
Smin < S1 < S2 < . . . < SK ≤ Smax

m1 ≥ m2 ≥ . . . ≥ mK > 0, M =
K∑
l=1

ml

(20)

where E(η) can be substituted to (14), (16) and (17). By solv-
ing the optimal model (20), we can obtain an optimal plan
η∗(n∗,M∗,S∗,m∗).

D. OPTIMIZATION PROCEDURE
According to the model (20), the settings for the design
space D are defined as follows:

1)The subspace AnM is determined by the constraint (19),
which accounts for the sample size and the total number of
measurements.We assume that there areRn choices of sample
size and RM choices of total measurements, and then there
are RnM = Rn ∗ RM choices of AnM , i.e., AnM = {(nM )} ,
nM = ((n,M )1, (n,M )2, · · · , (n,M )RnM ).
2)The subspace Am describes the allocation of perfor-

mance measurement times of each accelerated stress level,
i.e., Am = {m} ,m = (m1,m2, ę,mK ). We assume that there
are Rm choices of the combination of measurement times on
each accelerated stress level, i.e.,Am =

{
m1,m2, · · · ,mRm

}
.

3)The subspace AS describes the specified value of each
accelerated stress level, i.e., AS = {S} ,S = (S1, S2, ę, SK ).
Through equation (4), we make a simplification for the deter-
mination of the stress level, that is, the interval between
ξ (Sl) and ξ (Sl+1) is constant. We assume that there are
RS choices of the combination of accelerated stress levels,
i.e., AS =

{
S1,S2, · · · ,SRS

}
.

The subspaces mentioned above consist of D = AnM ×
Am × AS, as shown in Fig. 1. Therefore, there is R = Rn ×
RM × Rm × RS choices of design in D.

FIGURE 1. Design space D.

In order to alleviate the computational burden, limited
choices of η inD are firstly considered and the corresponding
E(η) is calculated. Then, the surface fitting method is utilized
to surf the R calculated values of E(ηr ), r = 1, 2, · · · ,R,
to find out the optimal plan η∗ by maximizing E(η). The
procedure for solving themodel (20) is shown asAlgorithm 1:

IV. CASE STUDY
A. NUMERICAL CASE
The stress relaxation data of [23, Example 8.7] are employed
in this case study. The data refers to accelerated degradation
of electrical connectors. The stress relaxation is the stress
loss of a component under constant stress loading. An elec-
trical connector would fail due to excessive stress relaxation.
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Algorithm 1 The Procedure for Solving the Model(20)
for each ηr ⊆ D %D is determined according to the sections C and D
Sample parameter θ r from their corresponding prior distributions
for each ηr
Generate degradation data xrq from the sampling distribution (2) for R1 times (q = 1, 2, · · · ,R1).
Estimate the posterior distributions p(ηrq|xrq, ηr ) by the MCMC algorithm
q = q+ 1;

endfor
if the optimal objective is relative entropy (14)
Calculate ExEθp(x|θ , η) based on θ r and xrq;
Draw θ rqs (s = 1, · · · ,R2) from their corresponding posterior distributions p(ηrq|xrq, ηr )
and calculate Ex(log(p(x))) based on (15);
Calculate the relative entropy E(ηr ) based on (14);

else if the optimal objective is the quadratic loss function (16)
Draw θ rqs (s = 1, · · · ,R2) from the corresponding posterior distributions p(ηrq|xrq, ηr ).

Calculate Var(t(p, θrq|xrq, ηr )) = 1
R2

R2∑
s=1

[
1
R2

R2∑
s=1

t(p|θrqs)− t(p|θrqs)

]2
Calculate Var(t(p, θr |xr , ηr )) = 1

R1

R1∑
q=1

Var(t(p, θrq|xrq, ηr ))

else if the optimal objective is the Bayesian D-optimality (17)
Calculate the elements of equation (18) based on the drawn θ r and xrq according to appendix A;
Calculate the value of the derivative of the information matrix;

endif
r=r+1;
endfor
Fit the surface based on the data pair (ηr ,E(ηr ))
The optimal plan for SSADT is obtained by taking the maximum of this surface.

TABLE 1. Estimated values of the model parameters.

In general, an electrical connector is defined as failed when
the stress relaxation is over 30% i.e. YD = 30. The acceler-
ated degradation data were obtained under the conditions of
S1 = 60◦C , S2 = 85◦C and S3 = 100◦C , respectively. These
collected ADT data and the corresponding measurement
times are shown in Table 11 and Table 12 in Appendix B.

In [17], it is proved that the collected stress relaxation data
follow the IG process, in which the stress function ξ (S) could
be rewritten as 1/S. By using the maximum likelihood esti-
mation method and square root of the diagonal of the Fisher
matrix, the mean and the variance of the model parameters
can be obtained, as reported in Table 1.

Based on the parameter estimations in Table 1, the prior
distribution can be determined. As the mean and variance
have been estimated already, it is obvious that when the distri-
bution form is selected, the hyper-parameters are determined.
In this section, parameters a and b follow normal distributions
and parameters λ and β follow Gamma distributions; then,
the prior distribution of θ can be determined as reported
in Table 2.

Reference [20] has pointed out that the normal stress
level S0 is 40◦C ; therefore, Smin and Smax are set to 50◦C
and 100◦C , respectively. Without loss of generality, let K be
equal to 3 and nmax be equal to 5. The testing cost (C1,C2,C0)
is set to be (2, 0.02, 30) × 102 dollars, and the measurement
interval τ is 10h. With the aforementioned settings, the opti-
mization model (20) could be rewritten as follows,

max E(η)
s.t. n · 200+M · τ · 20 ≤ 3000

3 ≤ n ≤ nmax

Smin < S1 < S2 < . . . < SK ≤ Smax

m1 ≥ m2 ≥ . . . ≥ mK > 0, M =
K∑
l=1

ml

(21)

Since n has only three choices, i.e. 3, 4 and 5 in the
constraints of model (20), the corresponding M could be
determined based on (19), i.e. nC1 +MτC2 ≤ C0, and their
possible values are reported in Table 3.

In order to further reduce the number of design choices
in D, the following simplification is used. First, let
S1 = [50 55 60 65 70 75 80] ◦C and S3 =

Smax = 100◦C ; then, by using the interval between
ξ (Sl) and ξ (Sl+1) constant, S2 = [73 76 78 81
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TABLE 2. Prior distributions of the model parameters.

TABLE 3. Evaluation of test variables n and M.

84 87 89] ◦C . Similarly, let m1 = [40 50 60 70],
m3 = [40 30 20 10] and m2 = 1/2(m1 + m3); then,
m2 = [40 40 40 40]. In this way, only the optimization of S1
andm1 is needed, because S andmwill be determined as long
as S1 and m1 are chosen. Consequently, RnM = 3, RS = 7
and Rm = 4; then, there are R = RnM × RS × Rm = 84
choices of the design plan inD.With the above simplification,
the decision variables in the plan η include (n,M , S1,m1).

When the different objectives, as formulated by (14), (16)
and (17) are selected, the corresponding optimization pro-
cedure proposed in section III-D can be applied. In this
study, the locally weighted linear regression algorithm is used
to smooth the data (E(η), S1,m1) for every combination of
values n and M of Table 3. The optimal results are shown
in Table 4; the surface fitting results for n = 3 and M = 120
are shown in Fig. 2.

FIGURE 2. Optimal results for n = 3, m = 120 under the objectives of
(a) relative entropy, (b) quadratic loss function and (c) D-optimality.

From Table 4, it is obvious that E(η) increases with n
increasing but decreases withM . If we define the data amount
as z = n ×M ; then, when n = 3, M = 120, z = 360; when
n = 4, M = 110 z = 440; when n = 5, M = 100, z = 500:

more data, more information and, therefore, the optimal plans
obtained under n = 5, M = 100 would be the best ones with
all objectives.

B. SENSITIVITY ANALYSIS
In practice, it can be different to select the prior distributions
of the parameters. Hence, a sensitivity analysis is carried out
to study the robustness to different distribution forms of the
parameters. Without loss of generality, we assumed that the
sensitivities of the optimal plans under n = 3 and M = 120
are of our interest.

Different prior distributions for a, b, λ and β are selected.
The details to the selection of the prior distributions are
explained as below.
• The first selection of prior distributions is shown
in Table 2 and its corresponding optimal results will be
regarded as the baseline of the following comparisons;

• The second selection takes Lognormal distributions for
λ and β, since these two parameters should be positive;
the other two prior distributions for a and b are the same;

• The third selection takes Logistic distributions for
a and b, while the prior distributions of λ and β are the
same as the first selection;

• The fourth selection considers non-informative priors
for all four parameters; so, the uniform distribution is
used and the corresponding upper and lower bounds are
obtained by ±3σ from the mean.

• For the first three selections, we keep the mean and the
variance of the prior distribution of each parameter the
same as in the first selection.

The four selections of prior distributions are given
in Table 5.

The optimal plans and the corresponding values of
objectives obtained with the different optimizations (shown
in Table 6, Table 7, Table 8, respectively) are reported
in Table 5.

Fig. 3 represents the test plan with different prior dis-
tributions under the same optimization objective. Plans 1,
2, 3 and 4 represent the plans designed with distributions
selection I, II, III, IV, respectively.

It is obvious that different optimal objectives result in
different plans, as different prior distributions also do. Some
discussions can be given as follows:

(a) From the perspective of robustness of optimal design,
the optimization with D-optimality is the most stable one,
since all four optimal plans concentrate, whereas the results of
the other two optimizations scatter around the whole design
space (see Fig 3). Furthermore, from Table 6 to Table 8,
the values of D-optimality slightly change with different prior
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TABLE 4. The estimated values of the model parameters.

TABLE 5. Different prior distrubutions of the model papameters.

TABLE 6. Optimal SSADT plans with relative entropy as objective.

TABLE 7. Optimal SSADT plans with quadryic loss as objective.

TABLE 8. Optimal SSADT plans with D-optimality as objective.

distributions, whereas the other two change a lot. In other
words, Bayesian D-optimality is not so sensitive to the prior
distribution selection.

(b) From the perspective of engineering practice,
the wider the range of accelerated stress levels, the more
comprehensive information collected and the higher the
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FIGURE 3. Optimal results of different prior distributions under the
objectives of (a) relative entropy, (b) quadratic loss function and
(c) D-optimality.

prediction precision; the closer the lowest accelerated stress
level to normal stress level, the less extrapolation of the stress
dimension and the more credible the prediction. Based on this
analysis, the optimal plans obtained from relative entropy are
not so credible, since the range of accelerated stress levels
is narrow and the lowest level is far away from the normal
level.

(c) From the perspective of the three optimal objectives,
when the prior distribution is selected as the non-informative
uniform distribution, the relative entropys value and the
quadratic losss value of their corresponding optimal plans,

respectively, are both quite large, since the former objective
focuses on the information gain collected from the test, while
the latter describes the variance of the estimated p-quantile
lifetime.

Furthermore, to some extent, although the D-optimality
describes the variance, it focuses on the precision of the esti-
mated parameters; contrarily, the results of the quadratic loss
are rather large, because the variance has been enlarged when
the estimated parameters are used to predict the p-quantile
lifetime. This is possibly the reason that the values of the
D-optimality are quite stable no matter the prior distribution.

C. COMPARISON ANALYSIS OF OPTIMAL OBJECTIVES
From the sensitive analysis above, we can know which opti-
mization is more robust. But when the optimal plans obtained
by the proposed methods are used for some specific popula-
tions which have their own true values of the model param-
eters, how efficient the optimal plans are? To evaluate this,
we propose an efficiency factor, which is the ratio between
the value of the optimal objective under the corresponding
optimal design plan, denoted as E(η∗). And the value of
the optimal objective calculated under the corresponding
optimal design plan based on the true values of the model
parameters, denoted as ET (η∗). The efficiency factor ψE(η∗)
is expressed as,

ψE(η*) =

{
ET (η*)/E (η*), for RE and D-optimality
E (η*)/ET (η*), for quadratic loss

(22)

TABLE 9. True values of model parameters.

From (22), the more efficient the plans, the higher ψE(η∗).
Different true values are selected for the parameters in
model (6) (see Table 9). In Table 9, the subscript “T”means
“true value”, θT1 is randomly selected, θT2 is themean shown
in Table 1, while θT3 and θT4 are the results obtained by using
θT2 plus and minus the corresponding variance from Table 1,
respectively.

When the plans under the condition of n = 3 and
m = 12 shown in Table 4 are chosen as η∗, we use the
Algorithm 1 mentioned in section III-D to calculate E(η∗),
where ηr is selected as η∗ and the parameters in Table 9 is
used as θ r . By following Algorithm 1, the results of ET (η∗)
can be obtained as reported in Table 10.

From Table 10, generally speaking, the efficiency of rel-
ative entropy is the highest, then is D-optimal. As for the
efficiency of quadratic loss, it is too unstable to draw any
conclusion.
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TABLE 10. Efficienty factor of different optimization objectives.

TABLE 11. Stress relaxation degradation data of electrical connectors under different accelerated stress levels.

V. CONCLUSION AND FUTURE WORK
A Bayesian SSADT optimal design method based on IG
Process is proposed. The objectives of the proposed optimal
design methodology are relative entropy, quadratic loss func-
tion and D-optimality, and the testing cost is regarded as the
constraint. MCMC method is adopted in the simulation and
the surface fitting technique is utilized for the optimal design.

By sensitivity analysis of the prior distribution,
D-optimality has been identified as the most robust design.
From the perspective of engineering practice, its associated
optimal plans are more reasonable than the ones from the
relative entropy and the quadratic loss. An efficiency factor
is proposed to quantify how close the designed plan is to the
right optimal plan. The efficiency factor is the ratio between
the value of the optimal objective under the corresponding

optimal design plan and that calculated under the correspond-
ing optimal design plan based on the true values of the model
parameters. In the numerical case study, the optimizationwith
relative entropy as objective is the most efficient, whereas
quadratic loss is the worst one.

Combining sensitive analysis and efficiency factor, we can
conclude that D-optimality is a good choice as the optimal
objective in Bayesian design, even though its efficiency is
slightly lower than relative entropy.

Bayesian decision theory has been proved as an effective
method to help us to obtain the optimal plans for ADT,
hence, it is high attractive and potential to apply the other
Bayesian method for ADT. For example, naive Bayes classi-
fication [24]–[26] can be utilized to carry out fault diagnosis
based on ADT data.
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TABLE 12. Inspection time under different stress levels.

APPENDIX A
In order to simplify the expression of the equations in (18),
we assume that 3ilj = til(j+1) − tilj) = (mil(j+1)τ ) − (miljτ ),
and then,

∂3ilj

∂β
= ln

(
mil(j+1)τ

) (
mil(j+1))τ

)β
− ln

(
miljτ

) (
miljτ

)β
∂23ilj

∂2β
= ln2

(
mil(j+1)τ

) (
mil(j+1))τ

)β
− ln2

(
miljτ

) (
miljτ

)β
The elements of I (η, θ ) in (18) are derived as follows,

E
(
−
∂2L
∂a2

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
2λxilj

exp2 [a+ bξ (Sl)]
−

λ3ilj

exp [a+ bξ (Sl)]

)

E
(
−
∂2L
∂a∂b

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
2λxilj

exp2 [a+ bξ (Sl)]
−

λ3ilj

exp [a+ bξ (Sl)]

)
•ξ (Sl)

E
(
−
∂2L
∂a∂λ

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
3ilj

exp [a+ bξ (Sl)]
−

xilj
exp2 [a+ bξ (Sl)]

)

E
(
−
∂2L
∂a∂β

)

=

K∑
l=1

n∑
i=1

ml−1∑
j=1

 λ
∂3ilj
∂β

exp [a+ bξ (Sl)]


E
(
−
∂2L
∂b2

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
2λxilj

exp2 [a+ bξ (Sl)]
−

λ3ilj

exp [a+ bξ (Sl)]

)
•ξ2 (Sl)

E
(
−
∂2L
∂b∂λ

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
3ilj

exp [a+ bξ (Sl)]
−

xilj
exp2 [a+ bξ (Sl)]

)
•ξ (Sl)

E
(
−
∂2L
∂b∂β

)

=

K∑
l=1

n∑
i=1

ml−1∑
j=1

 λ
∂3ilj
∂β

exp [a+ bξ (Sl)]

 • ξ (Sl)
E
(
−
∂2L
∂λ2

)
=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
1
2λ2

)

E
(
−
∂2L
∂λ∂β

)

=

K∑
l=1

n∑
i=1

ml−1∑
j=1

3ilj

(
∂3ilj
∂β

)
xilj

−

∂3ilj
∂β

exp [a+ bξ (Sl)]

E
(
−
∂2L
∂β2

)

=

K∑
l=1

n∑
i=1

ml−1∑
j=1

(
∂3ilj
∂β

)2
3ilj

2 −

(
1
3ilj

+
λ

exp [a+ bξ (Sl)]

)

×
∂23ilj

∂2β
+

λ

xilj

[(
∂3ilj

∂β

)2

+3ilj

(
∂23ilj

∂2β

)]

APPENDIX B
The stress relaxation data and the measurement times are
tabulated in Table 11 and Table 12.
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