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A B S T R A C T

Cascading failures seriously threat the reliability/availability of power transmission networks. In fact, although
rare, their consequences may be catastrophic, including large-scale blackouts affecting the economics and the
social safety of entire regions. In this context, the quantification of the probability of occurrence of these events,
as a consequence of the operating and environmental uncertain conditions, represents a fundamental task. To
this aim, the classical simulation-based Monte Carlo (MC) approaches may be impractical, due to the fact that
(i) power networks typically have very large reliabilities, so that cascading failures are rare events and (ii) very
large computational expenses are required for the resolution of the cascading failure dynamics of real grids. In
this work we originally propose to resort to two MC variance reduction techniques based on metamodeling for a
fast approximation of the probability of occurrence of cascading failures leading to power losses. A new
algorithm for properly initializing the variance reduction methods is also proposed, which is based on a smart
Latin Hypercube search of the events of interest in the space of the uncertain inputs. The combined methods are
demonstrated with reference to the realistic case study of a modified RTS 96 power transmission network of
literature.

1. Introduction

In recent years, power outages and interruptions have been
occurring in many countries, with large consequences. For example,
the major of Northeast America in 2003 caused a 6 billion dollars
economic loss for the region [1,2] and several other social conse-
quences of power interruptions, e.g. related to transportation, food
storage and credit card operations, just to mention a few of them [3].

Blackouts are the outcomes of cascades of failures, initiated, in turn,
by the failures of a limited set of components, due, for example, to
overloads generated by excessive load demands, loss of generation,
human errors in network operation, or to external events, e.g. caused
by extreme environmental conditions, such as lightning, icing, floods,
wind storms, earthquakes, etc. Subsequently, other components fail
and are disconnected to avoid further severe damage.

Traditionally, a power transmission network is designed and
operated so that a single component disconnection cannot give rise
to cascading failures (N − 1 criterion [4]); however, rare combinations
of circumstances, uncommon events or inadequate countermeasures
may result in further line disconnections, eventually leading to failure
propagation. Extremely severe natural events may even directly fail the

components of the network.
In this work, we propose to evaluate the reliability of a power

transmission network operating under uncertain environmental con-
ditions. Quantitatively, the problem amounts to computing the prob-
ability that an initial, limited outage yields a cascading failure with final
load shedding larger than zero (or any other predefined threshold).

Mathematically, the problem can be framed as follows. We consider
the model  of the system response Y to the vector of uncertain inputs
x:

Y x= ( ) (1)

where x is a n-dimensional random vector x x x x={ , ,…, }n1 2 , with
probability density function (pdf) xf ( ). The model  x( ) is often called
the system performance function. The system failure is usually defined
as the event  x{ ( ) > 0}, where the set of values x x: ( )=0 is defined as
limit state and x x: ( ) > 0 is called failure domain. Then, the system
failure probability is:

P P x= [ ( ) > 0]f (2)

In the present work, the performance function  x( ) is given by the
combination of the network line failure model and the cascading failure
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model, whose output is the final load shedding, as it will further
detailed in Section 4. Correspondingly, the failure probability Pf is the
probability that an outage yields a cascading failure event leading to a
final load shedding larger than zero.

Simulation-based methods, i.e. Monte Carlo (MC) computational
schemes, are the most widely used for estimating the probability of
failure Pf . In the crude MC scheme, a large number (N )MC of input
vector values x is sampled from the joint pdf xf ( ) and the performance
function  x( ) is evaluated in correspondence of the available NMC input
points. A failure indicator variable is defined as:




⎪

⎪

⎪

⎪

⎛
⎝
⎜⎜

⎧
⎨
⎩

⎫
⎬
⎭

I x
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if x
) =

1 ( ) > 0

0 ( )≤0
F i

i

i (3)

The sample mean of the values of the indicator variable obtained is
the MC-based estimator of the failure probability:

∑P P
N

I x≈ ˆ = 1 ( )f f
MC i

N

F i
=1

MC

(4)

The accuracy of the estimates can be expressed in terms of the
coefficient of variation (δ), defined as the ratio of the sample standard
deviation and P̂f [1]:

δ
P

P N
ˆ =

1− ˆ
ˆMC

f

f MC (5)

Two difficulties may arise: on one hand, power networks have very
large reliabilities and cascading failures are rare events; on the other
hand, the computational expenses needed for the resolution of the
complex models of power flows within the network become soon
prohibitive, as the accuracy and level of realistic details to be included
in the analysis increase.

For a computationally expensive performance function  x( ), an
accurate estimation of Pf becomes prohibitively time consuming when
the failure probability is small. For example, if Pf is of the order of 10 p− ,
NMC should be at least 10p+2 to achieve a coefficient of variation δ̂MC of
the order of 10%.

In order to overcome this issue, many methods have been proposed
in literature. In structural reliability analysis, for example, First or
Second Order Reliability Methods (FORM or SORM) are commonly
used [5–9]. These methods approximate the limit state function
 x( )=0 around the so-called Most Probable Failure Point (MPFP) or
“design point” by a Taylor series expansion, which allows fast analytic
computations of the failure probabilities. However, these methods
suffer from a major drawback, i.e. they require the numerical computa-
tion of the gradient and the Hessian of the limit state function, thus
potentially leading to large and not easily quantifiable estimation
errors.

Other approaches increase the efficiency of the MC estimators by
resorting to so-called variance reduction techniques.

Probably, the most popular variance reduction technique is that of
importance sampling (IS), which has been successfully applied in many
fields of research. In IS, a suitable importance density alternative to the
original input pdf xf ( ) is chosen so as to favor the MC samples to be
near the failure region, thus forcing the rare failure event to occur more
often. The major difficulty of the method lies in the a priori definition of
a suitable importance density. In order to overcome this issue, a
common approach in structural reliability is that of choosing the
importance density as a joint Gaussian distribution centered around
some properly identified design points [10], such as, for example, the
MPFP(s) identified by a FORM (or SORM) in the isoprobabilistically
transformed standard input space [9,10]: by doing so, it is possible to
refine the result of the FORM (SORM) by an IS procedure, which picks
the samples in the vicinity of the failure region. Another popular
strategy is that of iteratively adapting the importance density by
exploiting the model evaluations gathered in previous estimation steps

or, in other words, to use some adaptive pre-samples [11,12]: in order
to gain this prior knowledge, usually, many performance function
evaluations are required to find samples falling in the failure regions, in
particular when the failure probability to be estimated is very low. To
overcome this problem, [13] introduced a method based on Markov
Chain Monte Carlo (MCMC), based on a modified Metropolis-Hastings
algorithm (or similar schemes), to adaptively approximate the optimal
importance density. In general, however, the major drawback of IS-
based approaches is that for complex, high dimensional problems, it is
often difficult, if not impossible, to build efficient importance densities,
as observed in [14] and also demonstrated in [15].

One of the most successful variance reduction alternative technique
is subset simulation (SS) [16,17], which does not suffer from this issue.
The method is based on a representation of the failure probability as
the product of conditional probabilities of some properly chosen
“intermediate”, more frequent failure events, the estimation of each
of which only requires few performance function evaluations. The
conditional probabilities are, then, sampled by means of a MCMC
method. However, the total number of evaluations required remains
too large in many applications requiring long-running computer codes
[18], so that the failure probability estimation may still be computa-
tionally prohibitive. Moreover, the method's efficiency stems from i) a
smart definition of the “intermediate” failure events, which is not an
easy task, especially for complex models with little or no availability of
prior information, and ii) the crucial choice of the proposal pdfs, which
is, in general, significantly dependent on the problem under analysis,
thus limiting somewhat the flexibility of the approach [16].

Another important class of variance reduction methods successfully
addressing the problem of large dimensionality is that based on line
sampling (LS) [19], which uses lines, instead of points, to probe the
failure domain. The method stems from the determination of an
important direction pointing towards the failure domain, with respect
to which the sampling lines are then defined, thus giving rise to
conditional, one-dimensional problems, simpler to solve. However,
similarly to SS, the method still requires too many performance
function evaluations in many applications. Moreover, the efficient
determination of the principal direction is still an open issue, which
significantly depends on the application under analysis [19].

Recently, effective strategies for further reducing the computational
efforts required by small failure probability estimation have been
proposed, which use a surrogate model (metamodel) for a fast
approximation of the performance function within a sampling based
Monte Carlo scheme. To run a metamodel is, in fact, orders of
magnitude faster than the original model, thus potentially allowing
significant computational savings. In this context, the Adaptive Kriging
MC Sampling (AKMCS) algorithm [20] and its improved version
Adaptive Kriging Importance Sampling (AKIS) [21,22] have been
recently proposed, where a Kriging-based metamodel is coupled to a
MC-based strategy (crude, in AKMCS, and IS, in AKIS), within an
adaptive learning scheme which automatically refines the metamodel
to a desired level of precision. These methods have been demonstrated
efficient in estimating small failure probabilities in different engineer-
ing fields, from structural reliability [20–22] to probabilistic risk
analysis of nuclear installations [23–26]. However, the most attractive
feature of this class of methods, which stimulated their application in
this work, is the fact that they require very little calibration when
applied to different problems, demonstrating high levels of adaptability
and flexibility, as opposed to most of the methods illustrated above. A
further motivation for the use of Kriging in the present context lies in
the successful demonstration of its applicability for approximating
step-wise discontinuous functions given by [24], provided that proper
care is taken in the construction of the metamodel DoE.

Thus, in the present work, we propose to exploit this feature for the
analysis of the reliability of power networks subject to cascading
failures, a context very different from that of structural reliability, for
which these methods were first introduced. Yet, in order to be able to
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exploit the algorithm flexibility, a new initialization algorithm is needed
to account for the specific peculiarities of these systems and of their
performance function  x( ): when a cascading failure is successfully
controlled (which should be the case in most of the line failure events),
the final load shedding is always equal to zero, i.e.,  x( )=0. This means
that the initial small set of performance functions evaluations needed
by the AKMCS (AKIS) in order to build the first Kriging-based
metamodel, which would then be progressively refined by the adaptive
module of the algorithm (see Section 2), would most likely contain only
examples with output (i.e. the load shedding) equal to zero. Thus, if in
correspondence of several inputs the related outputs are always equal
to the same constant value (zero), the meta-model cannot learn the
behavior of the performance function in correspondence of input
points leading to a load shedding larger than zero, and the AKMCS
(AKIS) does not work.

However, a single point of failure in the input space is sufficient for
properly initializing the adaptive scheme for the refinement of the
Kriging-based metamodel, and we develop a new computational
strategy based on a Latin-Hypercube search of the input space in
order to identify it [27]. The proposed modification, called Latin
Hypercube-based Sampling Algorithm (LHSA), is, then, coupled to
the AKMCS (AKIS). The resulting estimation tool is demonstrated on
the realistic case study of the RTS 96 power transmission network of
literature [28], modified in [29,30] to account for the contribution of
two wind farms connected to the grid, where cascading failures are
realistically simulated resorting to a direct current (DC) approximation
of the power flowing in the network lines.

The rest of the paper is structured as follows. Section 2 describes
the procedure and methodology of the analyzed models: first the
AKMCS and AKIS simulation techniques are recalled in Section 2.1,
and, then, insights on the LHSA sampling scheme are given in Section
2.2. In Section 3.1 and Section 3.2, the proposed algorithm is validated
on a simple case study and on an analytical case taken from literature,
respectively. The test networks specification, the cascade model, the
restoration strategy as well as the Sequential Monte Carlo procedure
are presented in Section 4. In Section 5 conclusions are given.

2. Failure probability estimation algorithm

2.1. The Adaptive-Kriging Monte Carlo Sampling and importance
sampling methods (AKMCS and AKIS)

In this work, we propose to resort to the efficient Adaptive Kriging
Monte Carlo Sampling (AKMCS) technique introduced in [20] and its
improved version, the Adaptive Kriging Importance Sampling (AKIS)
[21]. In what follows, we briefly recall the basic idea underlying the
functioning of the algorithms; for further details, the interested reader
may refer to [20] and [21].

The AKMCS exploits the idea of replacing a computationally
expensive  x( ) with a fast-to-evaluate Kriging-based surrogate model,
built on the basis of a set of N available evaluations of  x( ) performed
in correspondence of properly selected inputs, within an adaptive
Monte Carlo scheme which allows to gradually improve the surrogate
model precision, while performing the failure probability estimation.

The Kriging approximation considers the performance function
 x( ) as a realization of a Gaussian process with mean xμ ( )Ĝ and
variance xσ ( )G

2 ˆ [31], whose parameters are identified by an optimiza-
tion procedure based on a set of N available examples, also called the
Design of Experiment (DoE) [32].

A population of NAKMCS points xi, i N=1,…, AKMCS, is sampled from
xf ( ) and labeled as failure and safe points by the Kriging-based

metamodel. An estimate of the failure probability can, then, be
obtained as

∑P
N

I xˆ = 1 ˆ ( )f AKMCS
AKMCS i

N

F i,
=1

AKMCS

(6)

where xÎ ( )F i is the value of the indicator function obtained by
substituting the Kriging-based approximation xμ ( )iĜ to  x( )i in (3).

The estimate of the failure probability P̂f AKMCS, is iteratively
updated. At each iteration, an active learning function [33] is used to
identify the best new sample among the NAKMCS available ones to be
added to the DoE in order to maximize the metamodel improvement.
In order to do so, the original performance function  is evaluated in
correspondence of the input point characterized by the most uncertain
classification and added to the DoE, so as for the metamodel to become
more accurate and precise in proximity of the boundary between failure
and safe input points [20–22,33]. For reasons which will be shortly
explained, the iterations are organized in successive batches of size Mm,
labeled by an index m = 0,1,2,… The first batch groups the first M0
iterations (M = 200 for m = 0). Operatively, the procedure proceeds by
first computing the following learning function:

U x
μ x

x
( )=

( )
σ ( )

m
i

G i

G i

( ) ˆ

ˆ (7)

at each iteration of the m-th batch, for i N=1,…, AKMCS, where xU ( )im( )

represents the normalized distance in terms of Kriging prediction
standard deviations xσ ( )iĜ from the predicted limit state xμ ( )=0Ĝ . The
sample x∼0 among the NAKMCS available that minimizes (7) is chosen as
the sample to be added to the DoE. Once the DoE is updated, a new
metamodel is created and a new estimate of the failure probability can
be computed again according to the steps illustrated above. In past
works using the AKMCS, the iterative procedure was stopped when

xU U( ) >∼m
th

( )
0 , with U =2th , i.e. the most uncertain point in the popula-

tion has a probability equal to or larger than UΦ( =2)≈0. 977th
(0) of being

correctly classified [33], where Φ(∙) is the cdf of the standard normal
distribution. In this work, we relax this stopping criterion by gradually
lowering the thresholdUth

m( ), (i.e., the stopping probability UΦ( )th
m( ) ), for

each successive batch m of adaptive iterations, by settingU c U= ∙th
m

th
m( +1) ( )

(c = 0.9 in this work). At the same time, we halve the size of the next
batch of iteration by setting M M= /2m m+1 . By so doing, we facilitate the
convergence of the adaptive algorithm in presence of relatively large
approximation errors of the metamodel in proximity of the limit state,
due to discontinuities in the first-order derivatives of  x( ), or even in
 x( ) itself, at the limit state, which is the case of the present application
(as it will be shown later). In fact, even when the Kriging approxima-
tion may seem to be satisfactory, in presence of very steep transitions
between the safe and the failure regions at the limit state, the Kriging
predictions may still be affected by large relative errors for points very
close to the limit state (see, for example, Fig. 4). Thus, as practically
observed, the condition xU ( )>2∼m( )

0 may turn out to be too strict, so that
convergence would hardly be reached. With the proposed adaptive
procedure for the stopping rule, we avoid setting too low thresholds,
which could compromise the metamodel performances, and we let the
threshold Uth

m( ) adapt to the most suitable value. We start from a
relatively large size of the first batch (M =2000 ) because we want to be
sure that the threshold is lowered only when further iterations of the
batch would not significantly contribute to the metamodel accuracy.

The Adaptive Kriging Importance Sampling (AKIS) aims at further
improving the efficiency of the AKMCS by resorting to the well know
importance sampling variance reduction technique [21,22]. The AKIS
relies on (i) a isoprobabilistic transformation (the Nataf transformation
[34]) of the input vector x into the standard space, where the
transformed uncertain inputs u are distributed according to a joint
standard Gaussian distribution ϕn and (ii) the definition of an
importance density in the standard space as a joint Gaussian distribu-
tion φn centered around the estimate of the MPFP identified by means
of a FORM or SORM. The diagonal elements of the corresponding
covariance matrix are usually chosen to be equal to one, although
different values can be used depending on the specific application,
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whereas the covariances are set to zero. A population of NIS points
u u u={ ,…, }ii n1 , i N=1,2,…, IS, is sampled from φn in the standard space.
Analogously to the procedure described for the AKMCS, the input
points ui are, then, classified by the Kriging-based metamodels, and the
failure probability Pf can be estimated as:

⎛
⎝⎜∑P P

N
I u

ϕ u
φ u

≈ ˆ = 1 )
( )
( )f f

IS i

N

F i
n i

n i=1

IS

(8)

and the estimated variance of the failure probability estimator is:
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I u
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Pˆ ( ˆ )= 1 1 ( )
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− ˆf
IS IS i
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F i
n i

n i
f
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2
2

IS

(9)

The importance sampling scheme coupled to FORM/SORM allows
to increase the speed of convergence of the Kriging-based metamodel
adaptation, by picking the new samples to add closer to the limit state,
and to achieve better coefficient of variations with a smaller number of
input samples NIS.

2.2. The Latin Hypercube-based search algorithm (LHSA)

Usually, the size of the initial DoE of the Kriging-based metamodel
in both the AKMCS and the AKIS, i.e. the number of performance
function evaluations required to start the adaptive algorithms, is in the
order of 10–12 points randomly sampled from the original uncertainty
pdfs [20–22]. Unfortunately, as anticipated in the Introduction, the
particular shape of the performance function  x( ) of our problem, i.e.,
that is almost always equal to zero when a cascading failure is
successfully controlled and larger than zero only when the cascading
failures lead to load shedding, is such that the Kriging-based metamo-
del cannot be built, since the initial randomly sampled DoE is likely to
contain only events with a constant, zero output. The problem is even
worse for the AKIS, where the FORM/SORM cannot identify the MPFP
around which the importance density must be centered, since the
calculation of the gradients driving the search always yields zero.

In this work, we propose a new strategy for initializing the Kriging-
based metamodels of the AKMCS and the AKIS, which relies on the
assumption that a single point of failure in the DoE is sufficient for
effectively starting the adaptive procedure for the refinement of the
Kriging-based metamodel. This assumption is empirically verified with
respect to two analytic case studies, in the next Section. Indeed, under
this assumption, one may think of randomly sampling input points and
evaluating the corresponding performance functions until a point of
failure is encountered. However, this procedure would require a
prohibitively large number of expensive performance function evalua-
tions when the failure probability is very small. In fact, if Pf is of the
order of 10 q− , the number of samples required should be at least 10q to
obtain, on average, one failure point.

Thus, we here propose a new method, called Latin Hypercube-
based Search Algorithm (LHSA), aiming at identifying at least one
input point belonging to the failure region by systematically proposing
input points of increasing failure “likelihood” and evaluating the
corresponding values of the performance function, until a failure (load
shedding larger than zero) is found.

Operatively, the LHSA exploits a Latin Hypercube Sampling
scheme for dividing the supports xj, j n= 1,…, , of the cumulative
density functions (cdfs) describing the uncertainties of the input
variables x x( ,…, )n1 in N iso-probable intervals. Fig. 1 shows how the
range (0,1] of a Gaussian cdf (chosen as an illustrative example) can be
divided in N intervals of the same width, for N = 2,4,8,16, giving rise to
iso-probable intervals in the support x, whose extremes are depicted
by red crosses for the case N = 4. Under the assumption that the input
variables are not correlated, the samples u{ }ij , j = 1,…,n, i N= 1,…, ,
are taken from a uniform distribution defined over each of the N
equally sized intervals in the cdf range, for each of the n input variables.

Then, these values u{ }ij are randomly combined to form N
n−dimensional samples u u u={ ,…, }i n i1 , i N= 1,…, . Fig. 2 shows an-
other illustrative example of a possible outcome of the procedure in the
case of n=2 input variables and N = 10 iso-probable intervals. Up to
this stage, the procedure is that of a standard Latin Hypercube
sampling strategy [27]. Once the N samples ui are obtained, the
LHSA evaluates the performance function  x( ) in correspondence of
only the n2 samples x x x={ ,…, }l n l1 , with l u= argmax{ }

i N
i

=1, …,
j or

l u= argmin { }
i N

i
=1, …,

j , i.e., those corresponding to the vectors ui with one of

their elements uj, j n= 1,…, , equal to either umax{ }i
i

j or umin{ }j i
i

, for

j = 1,…,n, i.e., for example, the four points labeled by triangles in
Fig. 2. By so doing, it performs the expensive evaluations of  x( ) only
in the input regions of lower probability, i.e. those where the failure
regions most likely lie. Fig. 1 shows these regions colored in grey for the
illustrative example described above, when N = 16. Note that the n2
samples x x x={ ,…, }l n l1 are simply obtained by inverting the cdfs of the
input variables in correspondence of the values u{ }lj , j = 1,…,n.

Since the aim is that of finding a failure point lying as close as
possible to the limit state function, and not simply falling within the
failure region, the LHSA starts its evaluations by dividing the supports
xj in N = 2 iso-probable intervals and proceeds doubling the value of
N at each iteration, until it identifies a point of failure.

The LHSA is a semi-heuristic procedure, which does not guarantee
the identification of a failure point and whose efficiency strongly
depends on the shape of the failure domain in the original input space.
In fact, in the particular case of a failure region completely surrounded
by non-failure points (i.e., an island), then the iterative algorithm may
miss it and the search would not come to an end. On the other hand, if
the failure region were comprised in a very narrow multi-dimensional
corner, many iterations (i.e., doublings of N ) might be necessary before
a point in the failure region were randomly sampled. Another problem
may arise in presence of multiple, disconnected failure regions of
similar dimension: in this case, in fact, the LHSA would identify a point
in only one of the regions and the subsequent failure probability
estimation by a Kriging-based sampling scheme could turn out to be
biased [22]. In principle, one may continue the search after the
identification of the first failure point by the LHSA, but, in case other
failures were identified, it would be hard to say whether they belong to
the same failure region or not. Actually, this problem is shared by many
other methods of literature (as, for example, the standard FORM or
SORM [5–9]) and cannot be easily addressed, although some ap-
proaches have been proposed for adapting existing methods [22].

In our case, a stopping condition is introduced in the LHSA in order
not to further divide the domain when unnecessary. The maximum
number of intervals N is set to 109, in order not to increase the
computational effort without additional benefits. At this stage, if a
failure point is not yet found, the reason lies on the way the
independent uniform samples are paired and it is, thus, more efficient
to restart the procedure from N = 2. Note that the maximum threshold
can be changed, if a smaller probability has to be sampled.

The failure point identified by the LHSA can also be used as a
“surrogate” of the MPFP for centering the importance densities of the
AKIS, thus allowing, in principle, also the application of the AKIS to
this kind of problems.

Finally, note that a zero-valued performance function  x( ) in
correspondence of the non-failure points gives rise to another compu-
tational problem. In fact, regardless the number of examples available
in the DoE and the accuracy of the corresponding Kriging-based
metamodel, any approximation xμ ( )Ĝ cannot be strictly equal to zero
in the non-failure region, but it assumes both positive and negative
(small) values. This, in turn, would lead to wrong classifications of the
input samples and, consequently, to biased estimates of the failure
probability. In order to overcome this issue, we artificially modify the
output of the performance function by taking a properly chosen
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constant, negative value T , instead of zero, each time the cascades do
not lead to any load shedding. By so doing, the values reconstructed by
the metamodel fluctuate around a negative, relatively large value, thus
remaining negative, so that the estimate of the failure probability is not
biased. On the other hand, we also introduce a discontinuity in the
performance function to be approximated, which is in general more
difficult to be captured by the metamodel, thus affecting the recon-
structed position of the limit state. However, as demonstrated in the
case studies of the next Section, the error introduced is largely
compensated by the improvement due to the shift of the fluctuations
and it is partially mitigated by the adaptive scheme of the algorithm.

Fig. 3 shows a flow chart which summarizes the operative proce-
dure of the LHSA.

Note that both the AKMCS and AKIS algorithms are implemented
by resorting to the DACE toolbox for the Kriging-based approximation
of the performance function [35], where different kinds of regression
and correlation models are available. As in [20–22], in this work
ordinary Kriging is used along with an anisotropic exponential
correlation model and linear regression.

3. Analytic case studies

In this section, we demonstrate the proposed algorithm on a one-
dimensional case study and on a modified two-dimensional example
often used in literature as a reference test case, both bearing some
similarities with the problem addressed in this paper.

3.1. One dimensional example

The performance function is defined as:

 ⎧⎨⎩
⎫⎬⎭x x x k

x k( ) = 200 + 20* if >
0 if ≤ (10)

where x is the uncertain input, whose uncertainty is described by a
standard Gaussian distribution, and k is a parametric threshold which
can be used to set the failure probability P P x= { ( )>0}f to any desired
level. Note that (i) x k= is a discontinuity point for  x( ), with an
amplitude dependent on k and (ii) the performance function is always
constant for x k≤ . The failure probability can be easily analytically
computed, yielding P k=1−Φ( )f . The threshold is set to k = 2.6, so that
the corresponding failure probability is P ≅4.7⋅10f

−3.
According to the remarks at the end of the previous Section, we set

 x( )=−100 for x≤2.6. Table 1 compares the results of the estimations
performed with the proposed methods (LHSA+AKMCS, third row and
LHSA+AKIS, fourth row) with those obtained by a crude Monte Carlo
simulation (first row), where Ncalls is the total number of performance
function evaluations required. For completeness, we add the results
obtained by coupling the LHSA technique with Importance Sampling,
LHSA+IS (second row), which is similar to the classical FORM+IS
approach, the difference lying in the fact that here the Gaussian
importance density in the standard space is centered around the failure
point found by the LHSA procedure, and not the MPFP. The compar-
ison is carried out at approximately the same estimate error, i.e. the
value of the corresponding coefficient of variation (δ). The values of
Table 1 are obtained by averaging the results obtained by running the
algorithms 30 times, for larger robustness. The LHSA requires only
seven evaluations of  x( ) in order to identify one sample x k> of
failure, whereas a pure random sampling would require approximately
P ≅200f

−1 runs. All the three methods presented offer significant
improvements with respect to the crude Monte Carlo simulation in
terms of the number of performance function evaluations required,
Ncalls. In this case study, the performances of the LHSA+AKMCS and
LHSA+AKIS turn out to be almost the same, due to the effects of the
adaptive stopping criterion adopted in the illustrated in Section 2,
which ends the adaptation in both algorithms before significant

Fig. 1. Cumulative distribution function of a standard Gaussian random variable. The red crosses represent the extremes of the iso-probable intervals on the cdf support for N=16. The
grey areas depict the iso-probable intervals in the cdf range where the samples are evaluated after four steps (N=16) of the LHSA. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Two-dimensional example of a selection process of the LHSA: the triangles
indicate the points to be selected and evaluated.
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differences in terms of number of performance function evaluations
could emerge. The only difference lies in the number of evaluations of
the Kriging-based metamodel required to approximately achieve the
same coefficient of variation, i.e. N =10MC

5 and N =1.5⋅10IS
3: the con-

sequences on the computational times in this case study are negligible,
but in other applications involving lower failure probabilities and/or
larger precision requirements, the difference may become significant
[21]. Finally, as expected, both methods outperform the LHSA+IS, the
difference being due to the use of a Kriging-based surrogate model in
both the AKMCS and the AKIS for performing most of the performance
function evaluations required.

In this example, we have thus shown that the AKMCS and AKIS

algorithms are capable of providing satisfactory results even when the
initial DoE of the Kriging-based metamodel contains a single point of
failure. However, it is worth verifying how the performances change if a
different number of failure points in the initial DoE is chosen. In order
to quickly find more failure points in the input space, we run again the
LHSA to identify the first failure point and, then, we further sample
new points from a normal distribution centered in the failure point and
with standard deviation σ=1, until we obtain the required number of
failure points. By so doing, the newly sampled points will more likely be
of failure. Table 2 shows the results of the AKMCS run for different
numbers of failure points in the initial DoE, averaged over 30 algorithm
runs for achieving a larger robustness. Again, the comparison is carried
out for approximately the same coefficient of variation δ. A slight

Fig. 3. Conceptual scheme of the LHSA.

Table 1
Estimation performances for the one-dimensional example of Section 3.1, averaged over
thirty repetitions of the simulations.

Method Ncalls Pf δ (%)

Crude MCS 105 4.657·10−3 4.626
LHSA+IS 7+1500 4.705·10−3 4.477
LHSA+AKMCS 7+203 4.667·10−3 4.618
LHSA+AKIS 7+203 4.668·10−3 4.617

Table 2
Estimation performances for the one-dimensional example of Section 3.1, as a function
of the number of failure points in the initial DoE.

# of failure points in the initial DoE Ncalls Pf δ (%)

1 7+203 4.667·10−3 4.618
5 14+202 4.669·10−3 4.617
10 23+190 4.668·10−3 4.618
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improvement in the number of performance function evaluations
required by the AKMCS is observed only for the case of 10 failure
points in the initial DoE. However, the total number of evaluations
required, including the 24 needed to identify the 10 failure points, is
not significantly better than that achieved in the case of a single failure
point in the DoE. As noted also in [20], it is, thus, preferable to start
with an initially poor DoE and let the active learning function of the
Kriging-based sampling algorithm select the best new sample to be
added to the DoE, since it is more informative than a random one
sampled a-priori.

Finally, Fig. 4 shows the modified performance function  x( ) (solid
line) and its corresponding approximation by the final Kriging-based
metamodel obtained for the case with k = 2.6 (bold), whose DoE
contains six points (circles). It can be seen how the fluctuations of
the reconstruction in correspondence of the non-failure points do not
affect the classification, i.e. the values of I xˆ ( )F .

3.2. Modified two-dimensional case study of literature [21]

The performance function is [21]:

 x x x x( , )=0. 5( − 2) −1. 5( − 5) −31 2 1
2

2
3 (11)

where x1 and x2 are two standard normal distributed random variables.
Here, the performance function is modified as follows:

 
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

x
x x

x x x

x x
( , )=

0. 5( − 2) −1. 5( − 5) −3 if ( , ) > 0

0 if ( , )≤0
1 2

1
2

2
3

1 2

1 2 (12)

in order to have a constant, zero output of the performance function in
correspondence of the non-failure points. However, in view of the
considerations made at the end of Section 2, we set  x x q( , )=1 2 , where q
is a constant, negative parameter, in order to avoid the misclassifica-
tion issue. Indeed, the failure probability P P G x x= { ( , )>0}f 1 2 remains
unchanged. We set q = −100. A crude MC simulation with N =10MC

7

samples is run to obtain a reference value for P P G x x= { ( , )>0}f 1 2 , with a
coefficient of variation δ approximately equal to 6%.

Table 3 compares the results obtained with the crude MC simula-
tion (first row) with those obtained by averaging 30 runs of the LHSA
+IS (second row), LHSA+AKMCS (third row) and the LHSA+AKIS

(fourth row) at approximately the same δ . In the LHSA+IS, a
population of N =2.5⋅10IS

4 input points is sampled from a joint standard
Gaussian distribution centered around the failure point identified by
the LHSA. The LHSA+AKMCS and the LHSA+AKIS significantly
reduce the number of performance function evaluations, Ncalls.
However, as in the previous case study, they offer similar perfor-
mances, due to the same reason explained before.

Note that the number of performance function evaluations achieved
with the LHSA+AKIS is approximately one order of magnitude larger
than that obtained in [21] on the similar case study. This was to be
expected, however, since the importance density in the LHSA+AKIS is
centered around a failure point close to the limit state, but different
from the good approximation of the most probable failure point
(MPFP) used in the AKIS of [21] and obtained with the FORM. As
demonstrated in [15], even small differences from the actual position of
the MPFP, may lead to poorer estimates of the failure probability,
especially in larger dimensional input spaces. On the other hand, it
would not be possible to use the AKIS of [21] for estimating the failure
probability in the present case study, due to the constant value of the
performance function in correspondence of non-failure points.

4. Cascading failures in a power transmission network

The test system is a version of the reference IEEE RTS 96 modified
in [29,30] to account for additional power generation due to the
presence of two wind farms (Wind Energy Conversion Systems) and to
increase the vulnerability of the grid to cascading failures, for demon-
strative purposes. The system operates with two different voltage levels,
138 and 230 kV, thus requiring the presence of transformer branches.
The original grid model is composed by 24 nodes and 38 arcs, where
each node represents a generating unit, a load point or a transmission/
switch point. The specific topology and data regarding the generating
capacity can be found in [28].

Here, we resort to a modified version of the stochastic framework
developed in [29] for simulating the operations and the failures of an
electric power transmission network subject to variable conditions, in
order to quantify the contributions to unreliability due to the uncer-
tainties of the total load required by the grid users, the ambient
operating temperature and the wind speed acting on the grid lines and
structures. As opposed to [29], where the dynamic evolution in time of
the grid was simulated on an hourly basis and accounting also for the
restoration of the network after any disruptive event, we here focus on
the effects of the individual cascading failure events, possibly triggered
by specific realizations of the operating conditions, without accounting
for their timeline. The uncertain model inputs are treated as follows.

4.1. Power demand

In [29], the current power demand (load) is represented as a

Fig. 4. Performance function reconstruction for the one-dimensional step function.

Table 3
Estimation performances for the two-dimensional example of Section 3.2, averaged over
thirty repetitions of the simulations.

Method Ncalls Pf δ (%)

Crude MCS 107 2.915·10−5 5.864
LHSA+IS 27+2500 2.891·10−5 5.639
LHSA+AKMCS 28+348 2.882·10−5 5.887
LHSA+AKIS 28+374 2.712·10−5 5.379
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function of time on the basis of the hourly peak load taken from [28]:

Current Load Max load Lf Hourly Peak= * * (%) (13)

whereMax load=2850 MW is the maximum total load requested by the
system, Lf = 0.8 is a load factor and the time varying hourly peak is
expressed as the percentage of the maximum load required. The
available data account for customer power demand variations from
day to night, weekdays and from season to season. In this work, since
no temporal dependency is considered, a sample pdf of the current
power demand is built on the basis of all the available hourly
observations of the loads (Fig. 5). In other words, we assume that
the Current Load is a realization of a stochastic, uncertain variable
representing the power demand during a random hour of the year.

4.2. Ambient temperature

In [29], the daily minimum and maximum values during one year
are considered. A linear variation of the temperature values between
the daily minimum and maximum values is assumed, with the
minimum and maximum peaks registered at 5 a.m. and 4 p.m.,
respectively. Similarly to the case of the current load, since no temporal
dependency is considered, a sample pdf of the ambient temperature
(Fig. 6) is built on the basis of all the available hourly observations of
the temperatures. Again, we assume that the ambient temperature is a
realization of a stochastic, uncertain variable representing the tem-
perature during a random hour in the year.

4.3. Wind speed

In [29], to compute the wind speed curve, a set of hourly values has
been retrieved from [36] and analyzed. Here, we assume that, for each
day of the year, the wind speed is constant throughout the day and it is
equal to the daily average value. Following [37], a Weibull distribution

⎛
⎝⎜

⎞
⎠⎟f x α β x e x( , , )= , ≥ 0α

β
α−1 −

α

x
β

α

, is used to represent the wind speed

uncertainty, with parameters estimated by maximum likelihood on
the basis of the available hourly measurements [37], yielding a scale
parameter α = 1.15∙103and a shape parameter β = 28.3 (Fig. 7). The
wind speed is thus a realization of a stochastic, uncertain variable
representing the wind speed during a random hour in a day.

4.4. Wind power generation

The uncertainty in the wind speed propagates to the power output
of wind turbine generators (WTGs), since the power output of a WTG
directly depends on the wind regime as well as on the performance
characteristics and the efficiency of the generator [38].

The power output from a WTG is determined using the functional
relationships used in [39], linking the characteristics of a WTG and the
wind speed field [40] (Fig. 8). The wind turbine generating unit can
have four different operative states: a first standby phase, in which
wind speed is lower than the cut-in wind speed (w =3cut in− m/s) and
there is no power production; a second phase, in which power
production increases with a cubic trend in the wind speed range
between wcut in− and the rated wind speed wr , after which the power
production is constant and equal to the WTG target power; finally,
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when the wind speed exceeds the maximum wind speed (w =25cut off− m/
s), the WTG is disconnected for protection purposes and the power
production stops (cut-off phase). Hence, a wind turbine produces its
maximum power, i.e. the rated power, within a certain interval that has
its upper limit at the cut-out wind speed. Note that the WTG used in
this work starts producing power when the wind speed equals the cut-
in speed of 3 m/s, so that the larger fraction of wind power generation
is produced during the nonlinear part of the output curve (Fig. 8).

As anticipated in the introduction, the unreliability of the transmis-
sion network is here measured by the frequency of occurrence of a total
load shedding larger than zero at the end of the cascading events,
possibly triggered by an initial line failure due to the occurrence of an
undesired combination of the values of the three uncertain input
variables, i.e. the total load (X1), the ambient temperature (X2) and the
wind speed (X3).

Using the formalism of the Introduction, the output of the model,
i.e., the final load shedding LS, can, then, be written as:

LS X X X= ( , , )1 2 3 (14)

The objective is that of estimating the failure probability
P P LS= [ > 0]f , due to the uncertainties in the model inputs
X X X( , , )1 2 3 . This failure probability can be taken as an indicator of
the capability of the power grid to handle different scenarios, sustain
hazards and, in case a failure occurs, efficiently re-dispatch power flows
in order to avoid further propagation of the damages.

The power transmission grid is assumed to operate through steady-
state conditions, also during the occurrence of major disturbances.
Given an input scenario, the power generated and the power demanded
(load) at each node of the grid, the full nonlinear alternate current (AC)
power flow equations should be solved in order to determine the

operating conditions of the power grid, i.e., the powers flowing in each
line, and to verify whether any line undergoes an overload, thus being
automatically disconnected from the network by the protection systems
and, possibly, triggering a cascading failure. However, the solution of
the full non-linear power flow equations is computationally too
demanding for the purposes of this work. Therefore, the power flow
equations are linearized, thus obtaining the so-called direct current
(DC) approximation [41,42], which are here solved by means of the
MATLAB tool MATPOWER [43].

The approximate power flows in each line of the grid thus obtained
represent the potential current configuration of the network, unless a
line failure occurs due to a power flow exceeding its rated transmission
capacity. Similarly to [29], the first line failure occurring, i.e. the one
leading to the reconfiguration of the system and, possibly, to a cascade
event, is identified on the basis of a failure model representing the line
overheating dynamics [44]. Thus, the problem of heat conduction is
analyzed for rods of small cross-section, in which an electric current of
constant intensity flows. For simplicity, we assume that (i) each
transmission line has constant physical properties, (ii) the temperature
is constant at all points of its cross-section and (iii) the heat flux across
the surface of the line is proportional to the temperature difference
between the surface and the surrounding medium and is given by
H T T( − )rod 0 , where Trod is the temperature of the line, T0 is the
temperature of the medium and H is the surface conductance. Since
the heat source is equally distributed along the line, and assuming that
fluctuations in the current flowing along the transmission lines
propagate much faster than any heat flow transients, we can neglect
the spatial variation in temperature along the line. Finally, in order to
keep the heat equation linear, we neglect the heat exchanged by
radiation with the surrounding medium, usually resulting in a cooling

Fig. 7. Probability density function of the ambient temperature.

Fig. 8. Characteristic curve of the wind turbine generator.
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term, especially when the wind is absent. Thus, a unique temperature is
defined for each line, function of environmental conditions, current
circulating and time. When the power flowing through the line changes
up to exceeding its critical threshold, the rod will start heating, with the
temperature increasing towards the equilibrium temperature corre-
sponding to the new power flow. As the temperature grows, the line sag
increases and, when the temperature overcomes its rating, line tripping
automatically occurs. For further details on the heat model adopted,
the interested reader may refer to [29,44].

Thus, in correspondence of a given set of values of the input
variables X X X( , , )1 2 3 , the initial line failure (if any) is identified as the
first one occurring among all the theoretically possible line disconnec-
tions due to overheating. As soon as the first line is disconnected, the
DC power flow is calculated again and new lines may possibly overcome
their rated capacities. In this case, the simulation of the cascade event
proceeds in the same fashion, otherwise, it stops. During the propagat-
ing event, if unbalanced islands, i.e. disconnected portions of the grids,
are formed, then the simple proportional re-dispatch strategy of [41] is
adopted to achieve balance.

A crude MC simulation is performed to obtain the reference value
for the failure probability P P LS= { >0}≅4.80∙10f

−2, with a coefficient of
variation δ̂MC lower than 5%. In order to do so, the cascading failures
are possibly simulated in correspondence of N =10MC

4 samples of the
input variables X X X( , , )1 2 3 and the corresponding final load shedding
LS is recorded at the end of each simulation. In this case, the crude MC
simulation could be performed in a reasonable computational time due
to the relatively large value of the failure probability due to the
simplifying modeling assumptions. For example, in reality more
efficient and optimized re-dispatch strategies are adopted, which, in
combination with other control tools available to the network opera-
tors, are such that cascading failures are almost always avoided. Note
that, in order for the AKMCS and the AKIS to properly work, according
to the considerations made in both the case studies of the previous
Section with regards to the performances of the Kriging-based meta-
model, we set LS = −200 MW each time the actual final load shedding
is equal to zero.

Table 4 compares the results obtained with the crude MC simula-
tion (first row) with those obtained by averaging 30 runs of the LHSA
+IS (second row), LHSA+AKMCS (third row) and the LHSA+AKIS
(fourth row) at approximately the same δ . LHSA is able to find a failure
event with around 8 calls to the CM. In the LHSA+IS, a population of
N =10IS

3 input points is sampled from a multivariate standard Gaussian
distribution centered around the failure point identified by LHSA.

The LHSA+AKMCS and the LHSA+AKIS significantly reduce the
number of performance function evaluations Ncalls. Note that, in this
case, the LHSA+AKIS shows performances slightly improved with
respect to LHSA+AKMCS, suggesting that the coupling between the
shape of the limit function and the natural input distribution is crucial
to determine the convergence velocity of the method, especially if the
AKIS process is not centered in the MPFP but in its approximation,
identified by LHSA.

Fig. 9 shows the load shedding predicted by the final metamodel of
the AKMCS algorithm as a function of the power load. It can be seen
that the fluctuations due to the approximation errors do not signifi-
cantly affect the classification of the input samples into failure or safe

points, which is also shown in the plane X X( − )1 3 (current load – wind
speed) in Fig. 10. Interestingly, the shape of the failure region in Fig. 10
also highlights that, given the input distributions adopted in this work,
the current load demand is more important than the wind speed in
determining whether an input scenario leads to load shedding larger
than zero or not. Similar plots in the other planes, not shown here for
brevity's sake, visually demonstrate that the ambient temperature is the
least important. This was actually to be expected, since, besides the
obvious significant importance of the load request, the wind speed has
a double influence on the model, i.e. by affecting the heat equation in
the line failure model and, most importantly, by modifying the power
generated by the two wind farms, whereas the ambient temperature
only affects the heat equation.

5. Conclusions

In this work, we have addressed the problem of estimating the
probability of rare, failure events occurring in an electrical power
transmission network subject to cascading failures triggered by un-
certain boundary conditions. The peculiarity of the dynamic behavior
of the system analyzed has required the adaptation of some efficient
algorithms available in literature. More specifically, we have developed
a new computational approach, called LHSA, for an alternative
initialization of two algorithms of literature, i.e. the AKMCS and the
AKIS, for the efficient estimation of the failure probability of a power
transmission network operating under uncertain boundary conditions.
The failure has been defined as the event that the grid undergoes an
unsuccessfully controlled cascading failure leading to a final load
shedding larger than zero. The new algorithm, based on a Latin
Hypercube search of the space of the uncertain model inputs, has
allowed a quick identification of at least one point of failure in a setting
where the gradient of the performance function (i.e., the load shedding)
with respect to the model inputs in the non-failure region, is always
equal to zero. The identification of the point of failure has been shown
to be sufficient for the adaptive construction of the Kriging-based
metamodel used in both the AKMCS and the AKIS methods in two
analytic case studies, properly constructed so as to bear similarities to
where the combined LHSA+AKMCS and LHSA+AKIS algorithms
offered satisfactory performances at a significantly lower number of
performance function evaluations than the crude MC.

Then, the combined LHSA+AKMCS and LHSA+AKIS have been
demonstrated to be capable of estimating the probability of a final load
shedding larger than zero on a model of the reference IEEE14 power
transmission network subject to cascading failures, possibly triggered
by the uncertain operating conditions. The model has been purposely
simplified in order to be able to achieve verifiable results in reasonable
computational times, while maintaining those peculiar dynamic fea-
tures which stimulated the investigation. Both combined methods
provided satisfactory results at a relatively small number of evaluations
of the network model.

The adaptability of the algorithm provided by the AK-module
comes at the price of the unexpectedly low convergence speed observed
in the simple, one-dimensional analytic example, which is due to the
steep, hard to approximate shape of the performance function at the
limit state. However, it should also be noted that the number of
performance function evaluations required by the AK module remains
of the same order of magnitude as the complexity and the dimension-
ality of the performance function increase.

It is worth reminding that both the AKMCS and the FORM+AKIS
methods alone, i.e. without the proposed initialization module, cannot
be used in this context, along with many other methods available in
literature for the estimation of small failure probabilities, even
potentially more efficient. For example, the FORM/SORM methods
(and those exploiting their results, such as FORM+IS) are based on the
approximation of the derivatives of the performance function, which, in
our case, are always equal to zero in the safe region, so that, without

Table 4
Estimation performances for the power transmission grid model, averaged over thirty
repetitions of the simulations.

Method Ncalls Pf δ (%)

Crude MCS 104 4.80·10−2 4.41
LHSA+IS 9+103 4.77·10−2 3.67
LHSA+AKMCS 8+297 4.80·10−2 4.45
LHSA+AKIS 8+207 4.69·10−2 3.56
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any prior knowledge, no information can be gained on the position of
the failure region. Subset simulation also would not work, due to the
impossibility of setting intermediate failure levels in the failure regions,
nor line sampling, for which it would be hard to efficiently identify the
important direction with the initializing approaches proposed so far. In
this last regard, possible alternative approaches not using the AK-
module (thus not incurring in the risk of low efficiencies when
approximating step-wise discontinuous functions) may consider using
the LHSA i) to support the identification of the most important
direction and then apply a line sampling module or ii) to find the
initial failure point from which to start a MCMC for the direct
estimation of the failure probability. Both approaches are currently
under investigation.

Finally, note that the proposed approach can be more generally
applied to engineered systems where constant outputs characterize the
range of “nominal” operating conditions, whereas drifts, offsets or
anomalous behaviors are observed in correspondence of rare, unde-
sired operating conditions.
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